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Abstract: Optimizing the entire therapeutic regimen in septic critically ill patients should be based
not only on improving antibiotic use but also on optimizing the entire therapeutic regimen by
considering possible drug–drug or drug–nutrient interactions. The aim of this narrative review is
to provide a comprehensive overview on recent advances to optimize the therapeutic regimen in
septic critically ill patients based on a pharmacokinetics and pharmacodynamic approach. Studies on
recent advances on TDM-guided drug therapy optimization based on PK and/or PD results were
included. Studies on patients <18 years old or with classical TDM-guided therapy were excluded.
New approaches in TDM-guided therapy in septic critically ill patients based on PK and/or PD
parameters are presented for cefiderocol, carbapenems, combinations beta-lactams/beta-lactamase
inhibitors (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam), plazomicin,
oxazolidinones and polymyxins. Increased midazolam toxicity in combination with fluconazole,
nephrotoxic synergism between furosemide and aminoglycosides, life-threatening hypoglycemia
after fluoroquinolone and insulin, prolonged muscle weakness and/or paralysis after neuromuscular
blocking agents and high-dose corticosteroids combinations are of interest in critically ill patients. In
the real-world practice, the use of probiotics with antibiotics is common; even data about the risk
and benefits of probiotics are currently spares and inconclusive. According to current legislation,
probiotic use does not require safety monitoring, but there are reports of endocarditis, meningitis,
peritonitis, or pneumonia associated with probiotics in critically ill patients. In addition, probiotics
are associated with risk of the spread of antimicrobial resistance. The TDM-guided method ensures a
true optimization of antibiotic therapy, and particular efforts should be applied globally. In addition,
multidrug and drug–nutrient interactions in critically ill patients may increase the likelihood of
adverse events and risk of death; therefore, the PK and PD particularities of the critically ill patient
require a multidisciplinary approach in which knowledge of clinical pharmacology is essential.

Keywords: septic patients; critically ill; therapeutic drug monitoring; pharmacokinetics; pharmacodynamic;
PK/PD relationship; probiotics; synbiotics; septic stress

1. Introduction

Most critically ill patients are susceptible to serious infections with multidrug-resistant
(MDR) agents due to exposure to several factors: invasive procedures (central venous
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catheter, mechanical ventilation, vesical catheterization), which may be sources of biofilm-producing
MDR bacteria; history of colonization or infection with MDR pathogens; immunosuppres-
sion and disruption of defense mechanisms (e.g., cough reflex); trauma, surgery, treatment
(corticoids, sedation, stress ulcer prophylaxis); or disease-related immunosuppression [1].
Studies published during the COVID-19 pandemic found an elevated prevalence of 30–50%
of superinfections with MDR bacteria (e.g., Enterococcus faecium, Staphylococcus aureus,
Acinetobacter baumannii, carbapenem-resistant Enterobacterales, and Pseudomonas aeruginosa)
in critically ill COVID-19 patients admitted to intensive care units (ICUs), and their
severity was directly correlated to corticoids and mechanical ventilation [2]. The EU-
ROBACT I trial, which included 1156 critically ill patients from 24 ICUs in 24 coun-
tries, revealed an MDR incidence of 47.8%, including 20.5% extended drug-resistant and
0.5% pan-drug-resistant patterns [3]. A lower but significant prevalence of MDR agents
(14.1%) was reported in 652 critically ill patients included in the DEFINE trial [4]. There-
fore, ICUs are regarded as centers of the emergence, amplification, and spread of MDR
infections [1]. The harmless symbiotic population of bacteria was found to be significantly
reduced in the detriment of pathogens with MDR potential, such as Enterococcus spp. or
Clostridium spp., in hospitalized patients compared with healthy people [5,6]. The therapeu-
tic management of critically ill patients is a challenge not only because of MDR pathogens
but also due to the multiple organ dysfunction syndrome (MODS). MODS in critically ill
patients includes a life-threatening intestinal dysfunction caused by the dysregulated host
response to infection [7].

A bidirectional relationship was seen between xenobiotics and organ disfunction in
critically ill patients. On the other hand, dysbiosis is a factor that modifies drug disposition.
Moreover, the administration of antibiotics (mainly broad spectrum), antacids, sedatives,
opioids, catecholamines, neuromuscular blockade, enteral/parenteral feeding, and even
supine position may have devastating effects with disruption of gut microbiota and risk of
selection of resistant bacteria [5].

Inappropriate antibiotic therapy may seriously impact the microenvironment, favoring
the development of MDR bacterial or fungal superinfections. For this reason, antibiotic stew-
ardship programs (ASP) were developed to limit the antimicrobial resistance phenomenon,
following the same steps: (1) rapid identification of patients requiring antibiotic therapy;
(2) initiation of empirical antibiotic treatment; (3) optimization and individualization of
treatment; and (4) de-escalation of antibiotic therapy [8]. According to the Antimicrobial
Stewardship, Therapeutic Drug Monitoring and Early Appropriate infection Management
in European ICUs (A-TEAMICU) survey, which included 812 participants from 71 countries,
ASPs are available in 63% of ICUs [9]. In the precise medicine, therapeutic drug monitoring
(TDM) is a tool to control the drugs’ toxicity and to increase effectiveness with positive
pharmacoeconomic impact. This method is essential in critically ill patients in absence of
the development of new antimicrobial classes in parallel with an antimicrobial resistance
(AMR) rate highly increased [10]. However, optimizing the therapeutic regimen in septic
critically ill patients should be based not only on improving antibiotic consumption but
also on optimizing the entire therapeutic regimen by considering possible drug–drug or
drug–nutrient interactions. One of the most used classes of xenobiotics used in association
with antibiotics is probiotics; even the current recommendations are against the use of
probiotics for the prevention of Clostridioides difficile infection [11].

In this context, the aim is to review recent approaches used to optimize the therapeutic
regimen in septic critically ill patients based on pharmacokinetics and pharmacodynamic characteristics.

2. Materials and Methods

Our aim was to realize a narrative synthesis on recent pharmacokinetics and phar
macodynamic-based advances to optimize the therapeutic regimen in septic critically ill
patients; therefore, we followed the basic principles of a systematic review. The litera-
ture was searched independently by two authors (MIO and CMG), up to January 2023,
in PubMed, Scopus, Web of Science, and Embase databases. We used the terms “septic
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patients”, “critically ill”, “therapeutic drug monitoring (TDM)”, “pharmacokinetics (PK)”,
“pharmacodynamic (PD)”, “PK/PD relationship”, “probiotics”, “synbiotics”, “prebiotics”,
“paraprobiotics”, “postbiotics”, “pharmabiotics”, “nutribiotics” and “septic stress” in dif-
ferent combinations. Title and abstract were screened, and we selected relevant articles to
be read in their full form. Through the snowballing search, we screened the references of
the selected articles for additional articles to be included (Figure 1). Including criteria were
studies on recent advances on TDM-guided drug therapy optimization based on PK and/or
PD results in septic critically ill patients. Excluded criteria were studies including patients
under the age of 18 years old or studies with classical TDM-guided optimization of drug
therapy in septic critically ill patients. We organized our narrative review in one section
with new approaches in TDM-guided recommendations in septic critically ill patients based
on PK and/or PD parameters and two sections on aspects of high interest in critically ill
patients (antibiotic–drug interactions and the risk of probiotic use).
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3. Results
3.1. TDM-Guided Recommendations in Septic Critically Ill Patients

Antibiotic treatment should be adjusted based on the PD properties, the pathogens’
susceptibilities (as assessed by their minimal inhibitory concentrations (MICs)) and PK
characteristics of antibiotics in the critically ill host. In clinical practice, MIC is the most used
PD parameter. Knowledge of MIC is the foundation for selecting antimicrobial therapy
against bacteria and fungi and helps to guide dosing needs in critically ill patients [12]. Its
main limitation is that knowing MIC does not account for the individual host defenses
and does not provide sufficient information on the patterns of exposure to antimicrobial
agents for an optimal therapeutic response [13]. In addition, bacterial status (tolerance
or persistence), bacterial inoculum size, or antibiotic concentrations may influence their
antimicrobial activity [14].

Pathological changes in critically ill patients in the volume of drug distribution, pro-
tein binding, and clearance led to a high intra- and inter-individual PK variability that
significantly alters exposure to antibiotics with the risk of suboptimal doses or increased
risk of toxicity. Depending on their PK/PD characteristics (Table 1), the PK parameters (e.g.,
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Cmax, Cmin or AUC) should be assessed in relation to MIC to establish the effectiveness
and safety of antibiotic therapy [15–17]. Recently, a new concept of the maximum tolerable
dose (MTD) for beta-lactams in critically ill patients was proposed as the highest dose
deemed safe for the patient, which has the goal of maximizing the kill of bacteria and
minimizing the risk of antimicrobial resistance and toxicity, but there are a lack of data on
the association of beta-lactam antibiotic levels and markers of toxicity [18].

Table 1. PK/PD relationship of antibiotics [16,17].

PK/PD Relationship Antibacterial Class PK, PD Parameters

Time-dependent β-lactams, linezolid, lincosamides, macrolides f T > MIC
Concentration-dependent aminoglycosides, fluoroquinolones, daptomycin f Cmax/MIC

Co-dependent (concentration-dependent
with time-dependence)

fluoroquinolones, tigecycline, linezolid,
glycopeptides, macrolides, colistin f AUC24/MIC

Abbreviations. fT > MIC: time that free serum concentration above minimum inhibitory concentration; fC-
max/MIC: maximum free serum concentration divided by MIC; fAUC24/MIC: area under the curve of free serum
concentration divided by MIC.

For this reason, model-informed precision dosing (MIPD), such as populational PK,
PK/PD models in combination with TDM, Bayesian algorithms, and Monte Carlo simu-
lations, are important tools for the individualization of treatment in critically ill patients.
TDM quantifies drug concentrations (in plasma) using validated bioanalytical methods,
while drug exposure may be directly correlated with the therapeutic target for PD response
(MIC) or estimated through Bayesian methods. Dosing nomograms, clinician-based predic-
tions, or dosing software (e.g., BestDose®, Antibiotics kinetics®, MwPharm++®, TDMx®,
etc.) allow for further individual dosage adjustment [19–22]. TDM is already successfully
implemented on a large scale; A-TEAMICU reported that TDM was used in 61% of ICUs
surveilled [9].

In 2020, experts from many worldwide associations on antibiotic treatment revised the
TDM guidelines. Accordingly, TDM is routinely recommended for various beta-lactams,
aminoglycosides, linezolid, teicoplanin, or vancomycin in critically ill patients [23].

3.1.1. Beta-Lactams TDM-Guided Recommendations

Beta-lactams have a time-dependent bactericidal activity. The maximum bactericidal
activity of beta-lactams is considered to occur when free fractions are maintained at least
four times above the MIC over the entire dosing interval (i.e., 100% f T > 4xMIC) with an
increase up to 8xMIC in critically ill septic patients, while minimum plasma concentra-
tion (Cmin) estimates antibiotics toxicity (e.g., the cut-off value for Cmin—361 mg/L for
penicillins or 20 mg/L for cephalosporins) [24,25].

Cefiderocol is a novel siderophore cephalosporin approved for infections caused by
multidrug-resistant aerobic Gram-negative organisms in adults with limited treatment
options and f Cmin/MIC ratio is considered the optimal PK/PD parameter. In a case series
of 13 patients with extended drug-resistant Acinetobacter baumanii, microbiological failure
was reported in 80% of patients with suboptimal f Cmin/MIC (<1) compared with 29% of
those with optimal or quasi-optimal f Cmin/MIC ratio (≥4, and respectively 1–4) [26].

For carbapenems, the optimal clinical results in critically ill patients are 100%ft > MIC
and 100%ft > 4xMIC or target through concentration >4–8xMIC, while a Cmin of 64.2 mg/L
is potentially neurotoxic [27]. In patients with normal renal function, the usual recom-
mended doses are often subtherapeutic and do not reach the target concentrations. In a
meta-analysis including 35 studies, we noted that meropenem should be administered
in doses up to 6 g /day (every 6 h, 8 h or 12 h) or by continuous infusion or prolonged
infusion (up to 3 h) to achieve the PK/PD target [28,29].
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3.1.2. Beta-Lactam and Beta-Lactamase Inhibitor Combinations
TDM-Guided Recommendations

As many authors have highlighted, the widely used antipseudomonal piperacillin/tazobactam
had a wide PK variability in ICU, and varied target concentrations could not be achieved.
TDM-guided dose modifications dramatically improved therapeutic exposure and defined
target concentrations of 100 mg/L and 361 mg/L for nephrotoxicity and neurotoxicity,
respectively [27,30]. Nevertheless, the recently published TARGET international study find-
ings are not promising. After evaluating 244 patients, the authors found that TDM-guided
piperacillin/tazobactam medication had no beneficial impact on critically ill patients [31].

Ceftazidime/avibactam possesses a high activity against many carbapenem-resistant
Enterobacterales and Pseudomonas aeruginosa with a therapeutic target of 24–30 mg/L in
plasma and 8–10 mg/L at the site of infection; dosage adjustment based on TDM led to
therapeutic failure in 1% of cases [32].

Ceftolozane/tazobactam was recently approved for treating intraabdominal, renal,
and lower respiratory infection (including ventilation-acquired pneumonia) caused by mul-
tiresistant Enterobacterales, Pseudomonas aeruginosa or Haemophilus influenzae. In 40 patients
with multi- or extended drug-resistant P. aeruginosa infections, TDM-recommended dose
reductions were applied in 84.2% of cases receiving prolonged infusion and allowed the
achievement of 100%ƒT ≥ MIC target even at lower doses [33,34].

3.1.3. Aminoglycosides TDM-Guided Recommendations

Aminoglycosides are concentration-dependent antimicrobials with known toxicity and
very high PK variability in critically ill patients. TDM methods are already implemented at
a large scale.

Plazomicin is a new aminoglycoside antibiotic effective against Enterobacterales (in-
cluding carbapenemase-producing bacteria), Pseudomonas aeruginosa, and Staphylococcus
spp., including methicillin-resistant strains. In patients with normal renal function, the
recommended dosage of plazomicin is 15 mg/kg per day; TDM is recommended in pa-
tients with a creatinine clearance <90 mL/minute to maintain plasma trough concentrations
below 3 g/mL [35].

3.1.4. Oxazolidinones TDM-Guided Recommendations

From the oxazolidinones group, Linezolid is extensively used in ICUs to treat in-
fections produced by Gram-positive multiresistant cocci. It has a narrow therapeutic
index and a high PK variability in critically ill patients; the usual recommended doses of
1.2 g/day often led to subtherapeutic levels. The ratio of the area under the drug plasma
concentration–time curve over 24 h to the MIC (AUC/MIC) or percentage time above the
MIC (%T > MIC) are predictors of the therapeutic response, and concentrations in the range
of 2–8 mcg/mL appear to define the optimal window for acute bacterial infections, while
a cut-off value >8 mg/L is an indicator for thrombocytopenia. Thus, TDM based on PK
models or continuous infusion over 6 h instead of intermittent infusion is recommended
for the optimization of Linezolid treatment to achieve the target AUC/MIC [17,36–39].

3.1.5. Polymyxins TDM-Guided Recommendations

Even though there is not a well-defined recommendation for polymyxins (polymyxin
B, colistin) monitoring, a narrow therapeutic index related to nephrotoxicity and the ratio
of the area under the unbound plasma concentration–time curve over a dosing interval to
minimum inhibitory concentration (f AUC:MIC) is considered the most predictive PK/PD
parameter of colistin activity [40,41]. Many authors consider polymyxin E as the subject
of TDM in ICUs as an adaptive feedback control because of the following: (1) CMS and
colistin prodrug concentrations are not correlated, and (2) in critically ill patients, kidney
function and renal replacement therapy dramatically impact the PK of prodrug CMS and
colistin with the risk of under or overdosing [42–44].
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However, these are only a few examples of TDM–guided recommendations for an-
tibiotics usually used in critically ill patients, and many other methods are published in
the literature.

3.2. Antibiotic–Drug Interactions of High Interest in Critically Ill Patients

Changes in PK and PD in critically ill patients are of concern not just for antibiotics
but also for many other ICU-used drugs (including sedatives, anesthetics, or cardiovas-
cular medication). Due to their polypharmacy, these patients may be exposed to poten-
tially harmful PK or PD drug–drug interactions. Of interest could be reactions, such as
increased midazolam toxicity in combination with fluconazole, nephrotoxic synergism
between furosemide and aminoglycosides, possible life-threatening hypoglycemia after
fluoroquinolone and insulin combination, prolonged muscle weakness including myopathy,
and/or paralysis after the combination of neuromuscular blocking agents and high doses of
corticosteroids, but the examples are much more numerous [45,46]. Due to these considera-
tions, the therapy must be individualized based on the patient’s features (such as obesity for
lipophilic medications, changes in drug disposition such as hypoalbuminemia, renal and
hepatic function), medical history, and concomitant medication. Numerous applications,
such as Lexicomp®, Micromedex, Drugs.com®, and Stockley’s drug interactions, provide
vast and constantly updated databases for optimizing drug interactions [47]. However,
many of these platforms with various performances are not systematically validated and
may lead to suboptimal clinicians’ decisions, particularly in critically ill patients [48].

3.3. The Risk of Probiotic Use in Critically Ill Patients

Probiotics are commonly used in clinical practice to combat antibiotic-associated side
effects (such as Clostridioides difficile infection and diarrhea, even in critically ill septic
patients. Yet, this combination of probiotics and antibiotics should be regarded as a
“double-edged sword” where the hazards may outweigh the benefits [49].

Often marketed as natural health products, functional foods, dietary supplements or
medical devices, their beneficial effects on critically ill patients have been a topic of interest
for many authors only in recent years [50]. Supplements are considered either pharmabiotics
(with a proven pharmacological role in health or disease and specific health claims) or
nutribiotics (food, a food product, or dietary supplements that are subject to regulatory
standards pertaining to food safety and nutritional recommendations) [51]. Despite the
rising global usage of supplements such as probiotics, prebiotics, synbiotics, paraprobiotics
and postbiotics (Table 2) in various health-promoting goods for their immunomodulatory
and antibacterial activities [52], there are still major gaps in our understanding of these
products and their implication for therapeutics in critically ill patients. Paraprobiotics and
postbiotics are new entities derived from Lactobacillus species that consist of a wide range
of effector molecules with similar benefits to lactobacillus but have the advantage of clear
chemical structure and safe dose parameters [53,54].

Clinical studies showed the benefits of probiotics in several pathological states, such as
metabolic diseases (obesity, insulin resistance syndrome, type 2 diabetes, and non-alcoholic
fatty liver disease), allergic diseases (e.g., atopic dermatitis), depression, and gastrointesti-
nal diseases (e.g., irritable bowel syndrome, gastrointestinal disorders, Helicobacter pillory
infection, inflammatory bowel disease) [55]. Lactobacillus (L. acidophilus, L. rhamnosus, L.
casei, etc.), Bifidobacterium spp., and yeasts (e.g., Saccharomyces boulardii) are the most exten-
sively assessed probiotic strains introduced in international guidelines for the treatment
of diarrhea (including antibiotic-associated diarrhea and traveler’s diarrhea) or C. difficile
infections, but their use for these indications is not agreed by all associations [11,56,57].
However, Lerner et al. (2019) cited the findings of a recent study indicating that “post-
antibiotic gut mucosal microbiome reconstruction is impaired by probiotics” [58].
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Table 2. Examples of supplements [53–55].

Product Strain

Probiotics

Lactobacillus (e.g., L. acidophilus, L. rhamnosus, L. reuteri, L. bulgaricus, L. plantarum,
L. casei, L. lactis, etc.), Bifidobacterium (B. bifidum, B. longum, B. breve, B. infantis, B.
lactis, B. thermophilum, etc.), Saccharomyces spp. (S. cerevisiae, S. boulardii), lactic
acid bacteria (LAB) including Lactococcus, Lactobacillus, Streptococcus, and
Enterococcus or Clostridium spp. cluster IV

Prebiotics
galactooligosaccharides (GOS), fructooligosaccharides (FOS),
xylooligosaccharides (XOS), isomaltooligosaccharides (IMO), inulin, lactulose,
lactosucrose, lactitol

Synbiotics
L. rhamnosus + inulin,
Lactobacillus + Bifidobacterium + Enterococcus + FOS,
Saccharomyces boulardii + Lactobacillus sporogenes + FOS)

Paraprobiotics peptidoglycans, teichoic acid, cell-wall polysaccharides, cell surface-associated
proteins, proteinaceous filaments

Postbiotics Exopolysaccharides, short chain fatty acids, enzymes, bacterial lysates, etc.

The optimal probiotic for critically ill patients could not be ascertained, although
probiotics had some beneficial effects in clinical studies (e.g., reduced antibiotic use and
incidence of C. difficile infections), with effects dependent on various variables (e.g., pro-
biotic strain or disease state, age, lifestyle, diet). ICU patients were assessed for various
outcomes, including the occurrence of ventilator-associated pneumonia (VAP) nosocomial
infections, hospitalization length, and death. Almost all published studies have shown that
probiotics reduce the incidence of VAP but had no significant impact on hospitalization
duration, mortality, duration of mechanical ventilation, and even the incidence of diarrhea
(Table 3) [59–68]. In the PROSPECT study, probiotics were not superior to placebo in
terms of the incidence of antibiotic-associated diarrhea (52.4% vs. 50.0%, p = 0.57) or C.
difficile infections (2.4% vs. 2.1%, respectively, p = 0.60) among 2653 critically ill patients
in the largest multicenter international placebo-controlled trial [69]. The variety of strains
investigated, dosages, timing, length of therapy, and contradictory findings preclude a
clear conclusion regarding the effectiveness of probiotics in critically ill patients, and more
well-planned multicenter trials are necessary.

Table 3. Meta-analysis and systematic reviews of the effectiveness of probiotics, prebiotics, and
synbiotics in critically ill patients [59–68].

Author Method No. Studies/
No. Patients Results Conclusion/Limitations

Li et al.,
2022 [59] meta-analysis 31 RCT

8339 patients

- nutritional supplementation with
probiotics and synbiotics reduced the
risk of VAP and nosocomial infections,
respectively.

- prebiotics are the most effective in
preventing diarrhea (possible
antibiotic-induced).

- probiotics may offer an
advantage in critically ill
patients,

- recommendation limited
by the low quality of
analyzed studies.

Naseri
et al.,

2022 [60]

umbrella
review 20 RCT

- probiotics may reduce the rate of
ventilator-associated pneumonia,
nosocomial pneumonia, the overall
infection rate, duration of mechanical
ventilation, and antibiotic use.

- no significant association between
probiotics and mortality, length of
hospitalization, incidence of diarrhea.

- not enough evidence to
support the routine use.

- further well-designed
multicenter trials needed.
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Table 3. Cont.

Author Method No. Studies/
No. Patients Results Conclusion/Limitations

Sun
et al.,

2022 [61]
meta-analysis 23 RCT

5543 patients

- probiotics reduced the risk of VAP.
- no effects on 28-/90-day mortality,

nosocomial infections, bacteremia,
diarrhea.

- prophylactic probiotics
might be a preventive
method for VAP.

- further large,
high-quality
RCTs needed.

Weng
et al.,

2017 [62]

meta-analysis
with trial
sequential
analysis

13 studies
1969 patients

- reduced incidence of VAP.
- no significant difference in mortality

(28-/90-day and overall—ICU or
hospital)

- no significant difference in length of
ICU/ hospital stays.

- no significant difference in duration of
mechanical ventilation and diarrhea.

- quality of trials relatively
low.

- insufficient information.
- further trials needed.

Cheema
et al.,

2022 [63]

systematic
review and

meta-analysis

18 RCTs
4893 patients

- probiotics may reduce the incidence of
VAP (not significant).

- probiotics reduced the length of ICU
stay and the duration of antibiotic use.

- low quality of trials.
- further large-scale trials

are needed.

Su et al.,
2020 [64] meta-analysis 14 studies

1975 patients

- significant reduction in VAP incidence
among all studies but not among the
double-blinded studies.

- no statistically significant differences for
ICU mortality, ICU stay, duration of
mechanical, occurrence of diarrhea.

- additional large-scale
and multicenter RCT
needed.

Bo et al.,
2014 [65]

Cochrane
review

8 RCTs
1083 patients.

- probiotics decreased the incidence of
VAP (low-quality evidence).

- uncertain results for ICU mortality,
in-hospital mortality, length of ICU
stays, duration of mechanical
ventilation, antibiotic use.

- low quality of evidence.
- not enough evidence for

conclusions.

Manzanares
et al.,

2016 [66]

systematic
review and

meta-analysis

30 RCT
2972 patients

- significant reduction in infections (p =
0.09).

- significant reduction in the incidence
VAP.

- no effect on mortality, length of
hospitalization or diarrhea.

- subgroup analysis: probiotics more
efficient than synbiotics.

- not sufficient evidence
for final strong
recommendation.

- probiotics should be
considered to improve
outcome in critically ill
patients.

- further trials needed.

Barraud
et al.,

2013 [67]
meta-analysis 13 trials

1439 patients

- probiotics reduced the incidence of
ICU-acquired pneumonia and length of
stay in ICU.

- probiotics did not significantly reduce
ICU or hospital mortality.

- probiotics use did not shorten duration
of mechanical ventilation or hospital
length of stay.

- heterogenicity between
study treatments.
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Table 3. Cont.

Author Method No. Studies/
No. Patients Results Conclusion/Limitations

Wang
et al.,

2022 [68]

systematic
review and

meta-analysis

25 RCT
5049 patients

- reduction in incidence of VAP
significant only in patients receiving
synbiotics and not significant in those
receiving only probiotics.

- no significant difference in mortality,
length of ICU stays, diarrhea.

- heterogenicity between
study treatments.

According to current legislation, probiotics used as supplements do not require safety
monitoring as medicinal products. However, the Food and Drug Administration and
European Food Safety Authority periodically update evaluations and recommendations
regarding the safety of food products, including probiotics [70]. The most often reported
side effects of probiotics are gastrointestinal (constipation/diarrhea, bloating, gastroin-
testinal ischemia, thirst, or taste changes), skin (rash, acne), excessive immune activation,
and metabolic problems (e.g., obesity, D-lactic acidosis, or metabolic acidosis). Several
cases of bacteremia caused by L. rhamnosus in immunocompromised pediatric patients and
fungemia caused by Saccharomyces spp. in immunocompromised individuals were reported.
There are also reports of endocarditis, meningitis, endometritis, peritonitis, and pneumonia
associated with probiotics [71,72]. Recently, Israeli and American researchers released
the findings of a five-year study involving more than 2,000 critically ill patients. They
concluded that ICU patients had an elevated risk of probiotic-associated bacteremia [73].

Understanding the role of microbiota on antibiotic resistance has been significantly
enhanced by the discovery of the resistome [73]. In non-pathogenic bacteria, both intrinsic
non-transmissible resistance and acquired resistance due to spontaneous gene mutations
(non-transmissible) or horizontal gene transfer (transformation, phage-associated transduc-
tion, or transfer of mutant genomes via integrons and transposons) pose a threat. Lactobacilli,
the most prevalent strain in probiotics, feature a gene reservoir that contains transferrable
resistance genes. Bacillus subtilis strains also provide the potential for horizontal gene
transfer to other close bacteria [74].

Although the current guidelines offer recommendations only for certain strains that
have been studied, there are other marketed probiotics which contain other bacterial strains
(e.g., Enterococcus spp. or Clostridium butyricum) which are not included in the EFSA’s
Qualified presumption of safety (QPS) due to the identification of toxins in some strains
(e.g., Clostridium spp.) or to the risk of becoming opportunistic pathogens with MDR risk
(e.g., Enterococcus spp.) [75,76]. Such probiotics must be used with great care only after a
good analysis of the risk/benefit ratio in ICU patients.

3.4. Multidisciplinary Approach Therapy Optimization in Septic Critically Ill Patients

There are multiple challenges in critically ill patients obtaining clinical and microbio-
logical cures. These patients are more susceptible to being infected with multidrug-resistant
or pan-drug-resistant pathogens, with limited therapeutic options and the necessity of
choosing the rescue antibiotics (such as polymyxins or Linezolid) associated with a high
degree of toxicity [36,42]. In addition, the substantial intra- or inter-individual variation
in PK characteristics often leads to suboptimal or toxic therapeutic levels. In this con-
text, the implementation of the Italian TDM-guided expert clinical pharmacologist advice
(ECPA) program allowed dose optimization for antibiotics used for MDR infections, such
as piperacillin–tazobactam, carbapenems, but also Linezolid [77].

Each step for the management of critically ill patients is highly relevant, but the
optimization of antibiotic treatment applying principles of 3D (right drug—right dose—right
duration) in conjunction with in vivo and in vitro drug interactions and even drug–nutrient
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interaction is essential and often needs well-trained interdisciplinary teams in which the
clinical pharmacologist should play an essential role (Figure 2) [78,79].
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4. Discussions

AMR is rightly considered a silent pandemic since the annual mortality rate associated
with drug-resistant infections has an average of 4.95 million deaths worldwide [80]. Without
an appropriate measure, this may increase to 10 million deaths annually by 2050 [81]. ASP,
as a measure within the One Health transdisciplinary action, decreased the consumption
of antibiotics by up to 28% [82]. Moreover, implementing ASP using a multidisciplinary
approach for PK/PD analysis reduced the rate of MDR in ICU-acquired infections by
almost 9% [83]. TDM has been designed since 1960 and has seen widespread expansion
with the development of clinical pharmacology departments. Although it has disadvan-
tages, such as the need to have well-trained multidisciplinary teams or the costs related to
the development of sensitive and accurate bioanalytical methods, it is now widely used for
a variety of diseases (rheumatic, cardiovascular, inflammatory, neuropsychiatric, oncologi-
cal) for a variety of molecules, including biological therapy [84–86]. As a result, every effort
should be made to develop protocols for TDM, particularly in countries with a known
AMR rate and/or high antibiotic consumption [87].

In addition, the optimization of antibiotic therapy should consider drug–drug inter-
actions (DDIs). In a large, multicenter observational study, 48.5% of ICU patients were
found to have DDIs. The most frequent DDIs reported were between QT-prolonging drugs
and between NSAIDs and other serotoninergic agents (e.g., selective serotonin reuptake
inhibitors or Linezolid) [88].

However, not all drug interactions are well defined even though they may cause harm.
Considering the note of Morrow et al. (2012), “in an era of increasing antibiotic resistance
among pathogens and limited new antibiotics in the research pipeline, probiotics offer
clinicians promise,” the consumption of probiotics worldwide is extremely high despite
the little knowledge of these products [50]. Since only several probiotics are authorized
as medical devices and the majority are supplements, their approval process differs from
that of medicines and varies from country to country. This can lead to discrepancies in
individual requirements, labels, and warnings about safety. Most results regarding the
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effectiveness of probiotics are inconclusive or even contradictory, and adverse reactions
can be serious in critically ill patients (they can even produce acidosis).

However, despite regulatory differences on international or regional levels, regulators
worldwide have two common concepts in mind: to avoid misleading the consumer and to
ensure the product’s safety. Therefore, in vitro and in vivo studies, including appropriately
designed, adequately powered experimental trials meeting CONSORT criteria, are required
to evaluate the product’s efficacy and safety [89]. Until the implementation of these
requests, doctors must be aware of the entire treatment of critically ill patients, including
the composition of the chosen probiotic and their possible negative impact, to reduce the
risks of medical errors. In addition, investigator-initiated studies should be encouraged to
obtain information about probiotics from real-world settings.

5. Conclusions

The TDM-guided method ensures a true optimization of antibiotic therapy, and partic-
ular efforts should be made to apply it globally. In addition, it is recognized that multidrug
interactions in critically ill patients increase the likelihood of adverse events and risk
of death.

Even though pharmacologically active medications are well-known, probiotics fre-
quently used in association with antibiotics have only lately attracted interest, and recent
data on the safety and interactions of probiotics are equivocal or contradictory. There-
fore, the PK and PD particularities of the critically ill patient require a multidisciplinary
approach in which knowledge of clinical pharmacology is essential in the context of the
polypharmacy of this group of patients.
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