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Abstract: Background and Objectives: The anterolateral ligament (ALL) could be the potential anatomi-
cal structure responsible for rotational instability after anterior cruciate ligament (ACL) reconstruction.
The purpose of this study was to investigate the anatomical and biomechanical characteristics of the
ALL in Korean cadaveric knee joints. Materials and Methods: Twenty fresh-frozen cadaveric knees
were dissected and tested. Femoral and tibial footprints of the ALL were recorded. Pivot shift and
Lachman tests were measured with KiRA. Results: The prevalence of ALL was 100%. The average
distance of the tibial footprint to the tip of the fibular head was 19.85 ± 3.41 mm; from the tibial
footprint to Gerdy’s tubercle (GT) was 18.3 ± 4.19 mm; from the femoral footprint to the lateral
femoral epicondyle was 10.25 ± 2.97 mm. ALL’s footprint distance was the longest at 30◦ of flexion
(47.83 ± 8.05 mm, p < 0.01) in a knee with intact ALL–ACL and neutral rotation. During internal
rotation, the footprint distance was the longest at 30◦ of flexion (50.05 ± 8.88 mm, p < 0.01). Internal
rotation produced a significant increase at all three angles after ACL–ALL were transected (p = 0.022),
where the footprint distance was the longest at 30◦ of flexion (52.05 ± 7.60 mm). No significant differ-
ence was observed in KiRA measurements between intact ALL–ACL and ALL-transected knees for
pivot shift and Lachman tests. However, ACL–ALL-transected knees showed significant differences
compared to the intact ALL–ACL and ALL-transected knees (p < 0.01). Conclusions: The ALL was
identified as a distinct ligament structure with a 100% prevalence in this cadaveric study. The ALL
plays a protective role in internal rotational stability. An isolated ALL transection did not significantly
affect the ALL footprint distances or functional stability tests. Therefore, the ALL is thought to act as
a secondary supportive stabilizer for rotational stability of the knee joint in conjunction with the ACL.

Keywords: knee; anterolateral ligament; anterior cruciate ligament; rotatory instability; cadaver
study; triaxial accelerometer

1. Introduction

The anterolateral ligament (ALL) of the knee joint is an important ligamentous struc-
ture involved in anterolateral rotational stability in anterior cruciate ligament (ACL) injured
knees [1–3]. The ALL originates in the region of the lateral femoral epicondyle and inserts
midway between the tip of the fibular head and Gerdy’s tubercle (GT) [1,4,5]. Charac-
teristics of the ALL vary. Prevalence reports range from 20% to 100%. [5–11]. Studies of
ALL in Asian populations are scarce. Studies on Chinese and Japanese populations were
conducted by Zhang et al. and Watanabe et al., respectively, and only one cadaveric study
was performed on a Korean population by Cho et al. [5,10,11].
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The role of the ALL in the rotational stability of the knee joint is uncontroversial [8,12,13].
ALL injuries are commonly indicated in ACL injuries through the presence of a Segond
fracture [14–16]. Studies have demonstrated that the ALL provides rotatory stability in an ACL-
deficient knee [12,17,18]. However, various studies are shifting their focus to the anterolateral
structures in controlling the internal rotation of the tibia [19]. The role of individual capsular
structures like the ALL and the iliotibial band (ITB) have not been thoroughly investigated.

Kinematic Rapid Assessment (KiRA; OrthoKey) is a non-invasive triaxial accelerome-
ter device that can be used to evaluate the functional stability of the knee joint [20]. KiRA
measures knee laxity in patients with suspected ACL lesions. It records the range and rate
of change of acceleration in a pivot shift test and the range and degree of translation in
a Lachman test, quantifying tibial acceleration and tibial translation [21]. Several studies
have shown KiRA to be a valid tool for measuring the pivot shift and Lachman test by
comparing the ACL-deficient knee to the contralateral knee [21–25]. To our knowledge, no
study has yet tested the conditions of an isolated ALL injury using KiRA.

The purpose of this study was to investigate the anatomical and biomechanical charac-
teristics of the ALL in Korean cadaveric knee joints, and then to examine the effect of ALL
injuries on anterolateral stability using KiRA. It was hypothesized that the ALL would be a
distinct ligament structure, and that knees with ALL injury would have an increased tibial
acceleration in functional stability tests compared with knees with intact ALL–ACL.

2. Materials and Methods

This study was approved by the Institutional Review Board (IRB No. 2020AN0423).
Ten pairs (N = 20) of fresh-frozen Korean cadaveric knee specimens were used. Cadaveric
specimen information is presented in Table 1. No history of prior injury, trauma, surgery,
anatomic abnormality, ligament instability, or osteoarthritis was included. The specimens
were kept frozen at −20 ◦C and thawed for one day at room temperature. Tissues were
kept moist with 0.9% saline solution throughout all phases of testing.

Table 1. Specimen Information.

Specimen Information

Sample size (specimen/knee joint) 10/20
Gender (male/female) 9/1

Mean age at the time of death (years) 74.3 ± 14.2 years
Height (cm) 167.3 ± 5.5 cm
Weight (kg) 50.8 ± 8.8 kg

Body mass index (kg/m2) 18.25 ± 3.66 kg/m2

ALL presence (present/absent) 20/0

All cadavers were dissected by a single surgeon (D.S.) using techniques described in
the literature [2,26–28]. Care was taken to prevent unnecessary excision of tissue. Dissection
was initiated by making a 20 cm-sized incision along the lateral aspect of the knee flexed
to 90◦. The skin was then retracted with retractors, exposing the ITB. Subcutaneous fat
tissue was cleared for better visibility. A further incision was made along the midline of
the ITB near the level of the knee joint. The ITB was minimally detached from GT to better
expose the lateral structures. The lateral collateral ligament (LCL) was palpated. With the
knee flexed and internally rotated, a dense fibrous tissue (the ALL) was identified in the
anterolateral capsule of the knee, which ran from the region of the LFE to the proximal
tibia, posterior to GT (Figure 1).

The anatomical landmarks of the anterolateral knee were identified and parked with
pins at the center of the lateral femoral epicondyle, GT, and the tip of the fibular head. Once
the ALL was identified, the femoral and tibial footprints were carefully delineated. Then,
the centers of the footprints were marked and pinned as described in previous cadaveric
studies [2,5]. The distance from the femoral footprint to the lateral femoral epicondyle, and
the distance from the tibial footprint to the GT and tip of the fibular head, were measured.
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ALL footprint distance was measured with a digital Vernier caliper (MIT50019620, Mitutoyo
Corporation, Kawasaki, Japan) between the pinned footprints.
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Figure 1. Anatomical landmarks around the ALL. ALL, anterolateral ligament; FH, fibular head; GT,
Gerdy’s tubercle; ITB, iliotibial band; LCL, lateral collateral ligament; LFE, lateral femoral epicondyle.

To evaluate the changes in the distance between ALL footprints during tibial rotation,
the examiner exerted manual torsional force from the ankle while an assistant maintained
an appropriate angle of knee flexion. The distance between the footprints were measured
at 0◦, 30◦, 60◦, and 90◦ of knee flexion. Each angle was measured using a standard go-
niometer. The stationary arm of the goniometer was aligned with the lateral aspect of
the thigh; the fulcrum was positioned at the lateral femoral epicondyle; and the moving
arm was aligned with the lateral portion of the tibia. A total of 27 measurements was ob-
tained for each knee in combination of three knee flexion angles—30◦, 60◦, and 90◦—three
ligament conditions—intact ALL–ACL, ALL-transected, and ACL–ALL-transected knee
conditions—and three rotational conditions—neutral, internal, and external rotation. To
maintain the neutral alignment during the tests, care was taken for the tibia to be placed in
its reduced position with reference to the femur with the foot in neutral position. Once the
measurements were taken under an “intact ALL–ACL” condition, the ALL was transected
at the mid-portion of the ligament without damaging the lateral meniscus and lateral joint
capsule to obtain an “ALL-transected” knee (Figure 2). Finally, a 2 cm-medial parapatellar
incision was used to visualize the ACL. Dissection scissors were used to transect the ACL
at its mid-portion while protecting the menisci and posterior cruciate ligament to obtain
an “ALL–ACL-transected” knee. Measurements were taken and reported under each
respective condition.

The pivot shift and Lachman tests were performed, as reported in previous litera-
ture [29]. KiRA device was connected wirelessly to a specific application installed on a
commercial tablet (Apple Inc., Cupertino, CA, USA) [21,30]. KiRA was used based on
the video supplied by the manufacturer. The sensor was placed and fixed tightly on the
lateral aspect of the tibia near GT. For the Lachman test, the sensor was positioned two
fingers over the malleoli with the sensor fixed over the tool facing anteriorly, with the light
sensor located proximally. A rigid support was placed under the distal femur for stability,
and the test was performed. Pivot shift and Lachman tests were performed on each knee,
as described by Torg and Galway, and were repeated five times for each condition [31].
A single examiner performed all examinations, as one would during a clinical visit. We
excluded the highest and lowest values and calculated the average of the three values. The
acceleration was evaluated in m/s2, and the translation was recorded in millimeters (mm).
Each test was made to ensure that the same force and speed were used in every knee.
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Figure 2. Transection of ALL. ALL, anterolateral ligament.

Descriptive statistics were used to evaluate the cadaver cohorts. Outliers were assessed
using boxplots, and a normal distribution was validated using the Shapiro–Wilk test
(p > 0.05). One-way repeated measures analysis of variance (ANOVA) was performed to
analyze the differences in the distance of the footprints according to flexion angles and
ligament states under neutral, internal, and external rotation. One-way repeated measures
of ANOVA were used to analyze differences according to ligament status for pivot shift and
Lachman tests. Mauchly’s test for sphericity was used for the assumption of sphericity, and
if it was violated (p < 0.05), the Greenhouse and Geisser correction was applied. p < 0.05
was considered significant, and a post-hoc test with Bonferroni adjustment was used for
statistically significant differences. Data analysis was conducted using SPSS 20.0 (SPSS Inc.,
Chicago, IL, USA).

3. Results

The ALL was identified in all 20 knee specimens evaluated in this cadaveric study.
The ALL originated around the lateral femoral epicondyle with variations and inserted
midway between GT and the tip of the fibular head. Footprint characteristics are sum-
marized in Table 2. The ALL footprint distance was the longest during 30◦ of flexion
at 47.83 ± 8.05 mm. Post-hoc analysis produced significant differences from angles 0◦ to
90◦ (p = 0.035) and 30◦ to 90◦ (p = 0.01) (Table 3). Internal and external rotation resulted
in a significant change in footprint distance in the intact ALL–ACL condition during all
three angles (p < 0.01). Internal rotation significantly increased the footprint distance, and
external rotation significantly decreased footprint distance (Table 4).

During internal rotation, the footprint distance was also the longest at 30◦ of flexion
in all three ligament conditions (Table 5). Post-hoc analysis showed that significant in-
creases in footprint distance were observed in intact ALL–ACL knees between 30◦ and
90◦ (p < 0.01), and 60◦ and 90◦ (p < 0.01). ACL–ALL-transected knees also showed sig-
nificant increases in footprint distance between 30◦ and 90◦ (p =0.015), and 60◦ and 90◦

(p < 0.01). Although ALL-transected knees showed longer footprint distances than the
intact ALL–ACL knees at all three flexion angles, there were no statistically significant
differences. The footprint distance in the ACL–ALL-transected knees was longer than
that in the normal and ALL-transected knees at 30◦ and 60◦ of flexion (p = 0.022 and
p = 0.049, respectively), with post-hoc analysis showing a significant difference at 30◦

(p = 0.017 and p = 0.01, respectively) (Table 5). External rotation significantly decreased the
footprint distances as knee flexion increased in all ligament conditions (p < 0.01 for all
angles) (Table 6).

The pivot shift and Lachman tests assessed by KiRA showed significant differences in
ACL–ALL-transected knees compared to both intact ALL–ACL and ALL-transected knees
(p < 0.01) (Table 7a). Although the ALL-transected knees showed higher acceleration and
translation than the intact ALL–ACL knees, there was no significant difference (Table 7b).
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Table 2. Footprint information.

Anatomical Landmarks Measurements

Tibial footprint Tip of the fibular head
Gerdy’s tubercle

19.9 ± 3.41 mm 1

18.3 ± 4.19 mm 1

Femoral footprint
Lateral femoral epicondyle

Orientation in relationship to
the lateral femoral epicondyle

10.3 ± 2.97 mm 1

14 postero-proximal (70%)
3 proximal (15%)

2 antero-proximal (10%)
1 postero-distal (5%)

1 mean ± standard deviation.

Table 3. Changes in the ALL footprint distance at different knee flexion angles under neutral rotation
in intact ALL–ACL knees in mean ± standard deviation (mm).

Knee Flexion Angle (◦) 0◦ 30◦ 60◦ 90◦ p-Value

Footprint distance 44.67 ± 6.33 47.83 ± 8.05 43.44 ± 8.28 41.78 ± 8.71 <0.01 1

Post-hoc analysis
30◦ 60◦ 90◦ Mean difference (95% confidence interval)

0◦ 1.00 0.97 0.035 1 2.89 (0.15, 5.63) mm
30◦ - 0.16 0.010 1 3.06 (0.63, 5.49) mm
60◦ - - 0.069 n.s.

1 statistically significant; n.s., not significant.

Table 4. Changes in the ALL footprint distance at different knee flexion under different rotational
conditions in mean ± standard deviation (mm).

Intact ALL–ACL 30◦ 60◦ 90◦ p-Value

Neutral rotation 47.83 ± 8.05 43.44 ± 8.28 41.78 ± 8.71 <0.01 1

Internal rotation 50.05 ± 8.88 49.35 ± 6.26 49.05 ± 7.18 <0.01 1

External rotation 40.60 ± 6.66 39.35 ± 6.88 37.00 ± 7.10 <0.01 1

p-value <0.01 1 <0.01 1 <0.01 1 -
1 statistically significant.

Table 5. Changes in the ALL footprint distance at different knee flexions under different ligament
conditions during internal rotation in mean ± standard deviation (mm).

Internal Rotation 30◦ 60◦ 90◦ p-Value

Intact ALL–ACL 50.05 ± 8.88 49.35 ± 6.26 49.05 ± 7.18 <0.01 1

ALL-transected 50.95 ± 7.71 50.05 ± 7.63 48.42 ± 8.84 0.15
ACL–ALL-transected 52.05 ± 7.60 51.16 ± 9.14 48.21 ± 9.00 <0.01 1

p-value 0.022 1 0.049 1 0.136 -

Post-hoc analysis
60◦ 90◦ Mean difference (95% confidence interval)

Intact ALL–ACL
30◦ 0.80 <0.01 1 3.00 (1.51, 4.49) mm
60◦ - <0.01 1 2.30 (0.74, 3.86) mm

ACL–ALL-transected
30◦ 1.00 0.015 1 3.60 (0.61, 6.59) mm
60◦ - <0.01 1 2.95 (1.30, 4.61) mm

30◦ ALL-transected ACL–ALL-transected Mean difference (95% confidence interval)

Intact ALL–ACL 0.12 0.017 1 −2.05 (−3.77, −0.34) mm
ALL-transected - 0.01 1 −2.11 (−3.74, −0.47) mm

1 statistically significant.
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Table 6. Changes in the ALL footprint distance at different knee flexion under different ligament
conditions during external rotation in mean ± standard deviation (mm).

External Rotation 30◦ 60◦ 90◦ p-Value

Intact ALL–ACL 40.60 ± 6.66 39.35 ± 6.88 37.00 ± 7.10 <0.01 1

ALL-transected 40.74 ± 5.60 38.95 ± 6.68 36.05 ± 7.18 <0.01 1

ACL–ALL-transected 41.21 ± 5.21 38.58 ± 6.67 36.00 ± 6.51 <0.01 1

p-value 0.48 0.88 0.78 -
1 statistically significant.

Table 7. Pivot shift and Lachman tests using KiRA and the post-hoc analysis.

(a) Pivot shift and Lachman tests using KiRA.

Pivot shift test (m/s2) Lachman test (mm)

Intact ALL–ACL 15.83 ± 6.70 7.301 ± 2.82
ALL-transected 22.51 ± 8.38 11.82 ± 7.89

ACL–ALL-transected 35.72 ± 14.4 27.37 ± 9.49
p-value <0.01 1 <0.01

(b) Post-hoc analysis of table a

ALL-transected ACL–ALL-transected Mean difference (95% confidence interval)

Pivot shift test
Intact ALL–ACL 0.059 <0.01 1 −6.67 (−10.0, −3.29) m/s2

ALL-transected - <0.01 1 −19.9 (−26.4, −13.4) m/s2

Lachman test
Intact ALL–ACL 0.102 <0.01 1 −4.52 (−9.02, −0.02) mm
ALL-transected - <0.01 1 −10.1 (−15.4, −4.71) mm

1 statistically significant.

4. Discussion

The most important findings of this study were that the ALL could be identified as a
distinct ligamentous structure in all 20 cadaveric knee specimens, and that an isolated ALL
transection had no significant effect on the ALL footprint distance or on functional stability tests.

Regarding the prevalence of ALL, the current study detected ALL in all 20 knees. Several
studies on the ALL in Asian populations have shown varying degrees of incidence [5,10,32–34].
Cho et al. detected the ALL in 51 of 120 Korean knees, and Watanabe found 35 out of 94
in Japanese knees [5,10]. These results contrast with those of studies on Caucasian cohorts,
which showed rates of approximately 80% [2,35]. A previous study suggested that different
cadaver preservation and dissection techniques might affect the identification rate and demon-
strated that ALL prevalence was low in embalmed cadaveric studies and high in fresh-frozen
cadaveric studies [1]. A high prevalence of ALL in our study may have been achieved by
using fresh frozen cadavers and the latest dissection technique. However, more studies are
needed to clarify ALL prevalence in Asian populations.

The exact location of the ALL-femoral footprint is often debated because of the ALL’s
relationship with the proximal fibers of the LCL or anatomical variants of the ligament [2,36].
Claes et al. and Helito et al. described the femoral footprint as being anterior and distal to
the insertion of the LCL [2,37]. Cho et al. and Zhang et al. described it as the region of the
lateral femoral epicondyle [5,11]. Watanabe described it as superficial or posterior to the
LCL attachment site [10]. Caterine et al. located it either anterodistal or posteroproximal
to the insertion site of the LCL [36]. Dodds et al. and Sonnery–Cottet et al. described
the femoral footprint as proximal and posterior to the lateral femoral epicondyle [35].
Our study showed that femoral attachment predominantly has a posteroproximal (70%)
characteristic with proximal (15%), anteroproximal (10%), and posterodistal (5%) variants.

Alterations in the location of the femoral footprint have a significant effect on length
changes during knee flexion [38]. Zens et al. showed that ALL length increased with
increased knee flexion when an antero-distal femoral location was chosen with respect to
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the lateral femoral epicondyle, whereas a posteroproximal location showed that ALL length
decreased with increasing knee flexion [39]. Our study showed that the ALL footprint
distance was the longest at 30◦ of flexion at 47.83 ± 8.0 mm, with patterns showing an
increase from 0◦ to 30◦, then a decrease from 30◦ to 90◦ of flexion (p < 0.01).

The importance of ALL as an anterolateral rotatory stabilizer has been previously
reported [3,17]. Zens et al. observed greater length changes with internal rotation at higher
flexion angles, indicating that the relevance of the ALL in controlling tibial rotation is greater
at 60◦ to 90◦ of flexion compared with 20◦ to 30◦, where the pivot shift occurs [39,40]. ALL
deficiency after ACL reconstruction (ACLR) produces a residual IR instability, leading
to a positive pivot shift test in a clinical setting [41]. Marom et al. showed that lateral
extra-articular tenodesis (LET) performed in conjunction with ACLR-decreased ACL graft
force by up to 80% compared with an isolated ACLR in response to simulated pivoting
maneuvers at 30◦ of flexion, making the LET the primary restraint to multiplanar torques
at 30◦ of flexion [42]. The anterolateral tenodesis protects the ACL graft by offloading the
ACL when the graft is most prone to injury [43]. Using a modified Lemaire technique,
the LET fixed the ALL at 60◦ of knee flexion and neutral rotation. Lemaire’s original
procedure involved tension at 30◦of flexion [44]. Modifications were made to the procedure
in later studies. However, few authors have reported the angle of flexion when fixating
the graft [45,46]. Recently, most studies recommended fixation at the traditional 20◦ to 30◦

of knee flexion [17,47]. Sonnery–Cottet et al. reported tensioning and fixation in the full
extension in their evaluation with a combined ACL and anterolateral procedure [3]. Nitri
et al. suggested fixation of the ALL at 75◦ of flexion on the basis of a biomechanical study
by Parsons et al. [13,48].

Injuries to anterolateral structures often accompany ACL ruptures [16,49]. Sonnery–Cottet et al.
performed serial sectioning of the ACL, ALL, and ITB on one knee, and ITB, ALL, and ACL on the
contralateral knee [17]. The study showed that additional sectioning of the ALL after ACL or ITB
induced a greater increase in rotational laxity at 90◦ compared to the intact ALL–ACL knee. Using a
navigation system, Monaco et al. serially sectioned the ACL and ALL and showed that a combined
lesion of the ALL and ACL resulted in a significant increase in tibial internal rotation compared with
an intact knee and an ACL-deficient knee [50]. Parson et al. noted that the ALL was the primary
stabilizer of internal rotation but later refuted the claim, stating that the ITB has a greater role in
stabilizing tibial internal rotation [13,51].

Our data showed that the footprint distance between the footprints of the ALL in-
creased (though it was statistically insignificant) after the ALL was transected. The transec-
tion of both the ACL and ALL produced a significant increase in the ALL footprint distance
compared with both intact ALL–ACL and ALL-transected knees near 30◦ of flexion [39].
The current study suggests that without an ACL rupture, the ALL is not a primary sta-
bilizer in tibial internal rotation, further supporting the concept that the ALL is not the
primary stabilizer but a secondary supportive stabilizer of the knee in rotational instability
in conjunction with the ACL.

The pivot shift test is one of the most valuable physical examinations to assess knee lax-
ity [30]. Studies show growing evidence of anterolateral complex injury involvement in this
multifactorial pivot shift phenomenon [52]. The considerable variability seen in the pivot
shift is largely due to its subjective nature, which depends highly on the examiner [53,54].
Several studies confirmed that KiRA may be a method to reduce the subjectivity associated
with the pivot shift test [20]. Nakamura et al. showed that it can be used to objectively
detect and quantitatively evaluate the pivot shift phenomenon by the pivot shift test under
anesthesia and suggested that the KiRA may be adequately precise to detect small accel-
eration differences between different pivot shift gradings [55]. Our data also showed a
meaningful difference in acceleration obtained from KiRA during a pivot shift. During the
test, ACL–ALL transected knees had a significant effect on tibial internal rotation, whereas
ALL-transected knees had an increase in tibial acceleration with no significance. A similar
pattern was observed during the Lachman test. Thus, ALL-transected knees did not show
a significant difference compared with intact ALL–ACL knees, but ACL–ALL-transected
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knees made a significant difference compared to the other two conditions, using KiRA in a
quantitative assessment of functional stability tests. These results also suggest that the ALL
may have a secondary supportive stabilizing role in anterolateral rotatory instability of the
knee joint.

Aside from the age and number of specimens, as well as the inherent limitations of
cadaveric studies, the current study has several limitations. The first major limitation was
that the assessment of the knee flexion degrees and the rotational forces applied to the
specimen were performed manually. In addition, the transected ligaments were not blinded
to the examiner, but the pivot shift and Lachman tests were performed as one would in a
clinical setting. In addition, the pivot shift phenomenon is multifactorial [52]. Despite its
inherent weakness, a single-examiner study performed by a knee specialist was one way to
minimize the errors seen in inter-observer reliability. Second, our study did not consider
other structures, such as the ITB and meniscus, which could affect the knee instability of
the specimen. The role of the ITB was minimized because each testing was performed with
an identical state of the ITB. Katakura et al. showed that a tear in the lateral meniscus in an
ACL-injured knee induced greater rotatory instability compared to knees without meniscal
tears [56]. Therefore, we cannot rule out the hidden effect of undiagnosed meniscal tears
when measuring ALL footprint distances and performing pivot shift and Lachman tests.
However, a recent study also shows that contribution of Kaplan fiber injury to anterolateral
rotatory knee laxity may not significantly affect the pivot shift phenomenon [57]. Another
limitation was that the study did not directly compare ALL-transected knees with ACL-
transected knees. Despite the number of studies, most studies combined ACL–ALL or
ALL–ITB, transecting the ACL or ITB before the ALL. Our study was the first to transect
the ALL first, and we believe that it may have shed some additional information on the
topic of anterolateral instability of the knee.

5. Conclusions

The ALL was identified as a distinct ligament structure with a 100% prevalence in this
cadaveric study. The ALL plays a protective role in internal rotational stability. An isolated
ALL transection did not significantly affect the ALL footprint distances or functional
stability tests. Therefore, the ALL is thought to act as a secondary supportive stabilizer for
rotational stability of the knee joint in conjunction with the ACL.
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