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Abstract: Background and Objectives: Outcome data from wearable devices are increasingly used in
both research and clinics. Traditionally, a dedicated device is chosen for a given study or clinical
application to collect outcome data as soon as the patient is included in a study or undergoes a
procedure. The current study introduces a new measurement strategy, whereby patients’ own devices
are utilized, allowing for both a pre-injury baseline measure and ability to show achievable results.
Materials and Methods: Patients with a pre-existing musculoskeletal injury of the upper and lower
extremity were included in this exploratory, proof-of-concept study. They were followed up for a
minimum of 6 weeks after injury, and their wearable outcome data (from a smartphone and/or a
body-worn sensor) were continuously acquired during this period. A descriptive analysis of the
screening characteristics and the observed and achievable outcome patterns was performed. Results:
A total of 432 patients was continuously screened for the study, and their screening was analyzed.
The highest success rate for successful inclusion was in younger patients. Forty-eight patients were
included in the analysis. The most prevalent outcome was step count. Three distinctive activity data
patterns were observed: patients recovering, patients with slow or no recovery, and patients needing
additional measures to determine treatment outcomes. Conclusions: Measuring outcomes in trauma
patients with the Bring Your Own Device (BYOD) strategy is feasible. With this approach, patients
were able to provide continuous activity data without any dedicated equipment given to them. The
measurement technique is especially suited to particular patient groups. Our study’s screening log
and inclusion characteristics can help inform future studies wishing to employ the BYOD design.

Keywords: digital outcome assessment; fracture; traumatology

1. Introduction

The use of wearable activity monitors is steadily increasing worldwide [1]. Over the
recent 10 years, this general trend is reflected in medicine by a variety of publications on
activity tracking via wearable systems with objective outcome evaluation. To date, Patient-
Reported Outcome Measures (PROMs) are widely accepted to assess both functional
outcome and health status following an orthopedic trauma injury. However, despite their
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advantages in generating patient-reported outcomes for comparisons, these scoring tools
suffer certain biases, influenced by the patient’s cooperation and compliance, quality of
reply, and recall [2,3]. Especially during the evaluation of the pre-injury physical function
and patient’s condition, recall bias can significantly influence the reliability of obtained
scores [4]. Furthermore, all scoring systems are subjected to timepoints and intervals for
recording of the corresponding data, making daily assessments over longer periods of time
not feasible. Thus, objectively measuring a patient’s outcome with wearable technology is
an evolving field in orthopedic trauma surgery, with increasing interest for research and
clinical purposes [5–7].

A recent review of the existing biomedical literature between 2010 and 2019 in PubMed
and Embase—related to orthopedic trauma surgery and outcome assessment with wearable
activity monitors—has confirmed the increasing presence of these systems [7]. The authors
identified one hundred and thirty-six relevant publications with an increasing number of
reports per year. The most commonly applied wearable technologies were accelerometry,
followed by plantar pressure insoles. Accordingly, plantar placement was one of the
most common locations for application of wearable sensors, followed by the waist and
extremities. Hip and fragility fractures were generally the most studied fracture types,
followed by other lower extremity fractures. Commonly reported outcome metrics were
step count, activity time, and sleep duration. However, despite this increasing trend of
using wearable activity monitors, no clear standards or best practice guidelines regarding
the optimal outcome metric, technology, and measurement technique have been established
so far [7,8].

A recent survey among AO Trauma surgeons has confirmed that wearable outcome
measures are gaining popularity not only in the research field, but also to monitor patient
activity and recovery in a clinical setting. Almost 20% of the surveyed surgeons were
already using wearable systems as part of their clinical treatment pathway. Apart from
wireless heart rate and oxygen saturation measurements, the most prevalently employed
wearable technology was accelerometry in conjunction with smartphones (75.4%). The most
commonly measured wearable activity metric was general patient activity. Interestingly,
almost 20% of the surveyed surgeons were still unsure about the selection of the best
measurement technique to obtain meaningful outcome data [6].

Both the clinical and review data have demonstrated that the prevalent measurement
strategy for wearable activity monitoring considers patients equipped with dedicated wear-
able devices (i.e., smartwatches/bands), which are selected by the clinician or researcher
and then used by the patient (DD strategy). This allows for generation of a uniform dataset
for comparisons within one study focusing on activities according to the inclusion criteria
post injury [7,9]. Another potential strategy is to use devices for performance measurement
that the patient already has (i.e., “Bring Your Own Device” or BYOD strategy). The BYOD
strategy has the potential to increase compliance and obtain pre-injury activity data [1].
However, to our knowledge, no orthopedic trauma studies exist on the BYOD strategy, or
such comparing between the BYOD and DD strategies. This gap in the medical literature
poses an open research question of high relevance to researchers and clinicians in the field
of traumatology [5,6].

Therefore, the aim of the current study is to introduce proof-of-concept clinical out-
come data for the BYOD measurement strategy based on data obtained with wearables
already used by the patient before injury. Screening and inclusion characteristics, as well as
obtainable outcomes, are reported, especially concerning a pre-injury baseline measure.

2. Materials and Methods

The study was conducted in accordance with the Declaration of Helsinki and approved
by the Ethics Committees of the University of Tuebingen and the University of California
San Francisco (UCSF: Protocol code 20-30783, date of approval 22 July 2020; BG: Protocol
code 790/2020BO2, date of approval 18 November 2020). Informed consent was obtained
from all subjects involved in the study.
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Patients were screened for study inclusion in two centers: a University of Califor-
nia San Francisco fracture clinic (UCSF) and the BG Unfallklinik, University Hospital
Tuebingen, on behalf of the Eberhard-Karls-University, Tuebingen (BG).

At UCSF, all patients presented to the clinic were screened for eligibility. The inclusion
criteria included a recent fracture treated surgically and a planned follow-up at the clinic
for a period of six months after the surgery. Additionally, the patients had to be aged
18 years or older; and they had to own at least a personal smartphone/wearable that they
knew how to operate. The exclusion criteria included non-English speakers and patients
with mental health issues who could not provide consent for medical procedures.

At BG, patients were screened during their in-patient surgical stay or within three
weeks after the surgery or the injury event as per availability. All patients over the age
of 18 years with a pre-existing wearable (smartphone or body-worn sensor) and any
musculoskeletal injury of the upper and/or lower extremity were included. Patients who
were unable to provide informed consent, abused drugs, were pregnant, or enrolled in
another clinical study were excluded.

Only patients with a minimum of 6 weeks of wearable outcome data were analyzed
for the current analysis. Patient age, sex, injured extremity, and all available activity data
were recorded both pre and post injury. In addition, descriptive statistics of the UCSF
screening log, and UCSF and BG treatment data was performed. Wearable outcome data
were plotted for 2-week, 6-week and 3-month follow-up intervals. For the first 6 weeks, all
values were continuously normalized to the average activity carried out 7 days before the
injury with GraphPad Prism software (GraphPad Prism Version 9; GraphPad Software Inc.,
San Diego, CA, USA).

3. Results

Overall, 48 patients were included in this preliminary, prospective, proof-of-concept
study. The average patient age was 45.9 years (range 21–67 years); 13 female and 44 male
patients were included. Twelve patients suffered from upper extremity injuries, thirty-
three from lower extremity injuries, seven from injuries of the pelvis, and five from
combined injuries.

3.1. Screening Characteristics

Continuous inclusion was performed at UCSF, and a screening log was kept, noting
the reasons for study exclusion. Overall, 432 Patients were screened, of which 27 agreed to
be included in the study (6%). Data from 18 patients were available for the final analysis.
The age of the patients included in the study was significantly different from those excluded
from it (38.6 ± 15.2 years versus 55.6 ± 22.5 years, p = 0.0187); 8% of all the screened patients
did not have a smartphone available or did not know how to use one. In addition, the age
in this group was significantly higher than in all other screened patients (72.1 ± 18.9 years
versus 54 ± 22.3 years, p = 0.0028). Another 11% of all the screened patients refused to
participate. All other exclusions (75%) were due to the inclusion and exclusion criteria of
the study, being unrelated to the availability of a wearable device or willingness to use
one (Figure 1). Of the patients with available smartphones, 56% were already collecting
wearable activity data before the injury event.
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ing log. 

3.2. Wearable Outcome Data 
The most commonly used technology brought by the patients to the study was based 

on smartphones (100%), followed by wrist-worn wearable technology in conjunction with 
smartphones (n = 9; 18.8%). Of the used systems, 70.8% (n = 34) were based on Apple 
technology (Apple Inc, Cupertino, CA, USA), and 29.2% (n = 14) were based on Google 
technology (Google LLC, Mountain View, CA, USA). Step count was the only metric pro-
vided by all wearable systems. The outcome data of this parameter were longitudinally 
mapped for all patients, and daily averages were calculated at the 2-week, 6-week, and 3-
month follow-up timepoints for the parameter step count (Figure 2). 

 
Figure 2. Patient average step count during the injury recovery process at 2 weeks, 6 weeks and 3 
months post injury. The X-axis shows the time from injury in weeks, while the Y-axis shows the 
average step count per day. Boxes show 1st and 3rd quartile with median, and antennae show 10th 
and 90th percentile; outliers are identified by dots. 

Figure 1. Study flow chart presenting number of patients who were screened, enrolled, and available
for final data analysis, together with reasons for exclusion at UCSF from the continuous screening log.

3.2. Wearable Outcome Data

The most commonly used technology brought by the patients to the study was based
on smartphones (100%), followed by wrist-worn wearable technology in conjunction with
smartphones (n = 9; 18.8%). Of the used systems, 70.8% (n = 34) were based on Apple
technology (Apple Inc, Cupertino, CA, USA), and 29.2% (n = 14) were based on Google
technology (Google LLC, Mountain View, CA, USA). Step count was the only metric
provided by all wearable systems. The outcome data of this parameter were longitudinally
mapped for all patients, and daily averages were calculated at the 2-week, 6-week, and
3-month follow-up timepoints for the parameter step count (Figure 2).
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Figure 2. Patient average step count during the injury recovery process at 2 weeks, 6 weeks and
3 months post injury. The X-axis shows the time from injury in weeks, while the Y-axis shows the
average step count per day. Boxes show 1st and 3rd quartile with median, and antennae show 10th
and 90th percentile; outliers are identified by dots.
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When including only patients with pre-injury data available (n = 30), the complete
recovery could be tracked and normalized to the daily averages of the available activity
outcome parameters for all patients prior to the injury. Data were capped at 100%. This was
performed for both step count (Figure 3a), as well as for the other most common metrics
provided (Figure 3b). For Apple users, the second most common value provided was “dis-
tance”, whereas for Android-based systems it was “cardiopoints”. Three distinct recovery
patterns were seen. Furthermore, the timepoint of recovery in patients recovering during
the study could be shown as early as during the first 6 weeks after injury. These patterns
were irrespective of upper or lower extremity injury and spine or pelvic injury location.
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Figure 3. (a) shows the pre- and post-injury patient recovery process, as continuously tracked by
the daily step-count over 6 weeks. (b) shows the pre- and post-injury patient recovery process, as
continuously tracked by the most common other available smartphone activity outcomes (Apple:
Distance; Android: Cardiopoints) over 6 weeks. All values were normalized to the average individual
activity 7 days prior to injury and capped at 100% for better visualization. The X-axis shows the time
in days (0 = day of injury), while the Y-axis shows the normalized activity metric. The horizontal
lines show the lower 20% and upper 80% border. The green line represents a drawn trend line of
patients recovering during the first 6 weeks.

4. Discussion

This work is the first to present the feasibility of utilizing a patient’s own wearable
activity monitor to track outcomes in orthopedic trauma surgery, introducing a new mea-
surement strategy to orthopedic traumatology: “Bring Your Own Device”. Interestingly,
despite a low-powered, proof-of-concept design, different outcome patterns could be
observed in this group of trauma patients. Additionally, the measurement strategy can
differentiate between patients on the path to recovery and patients not recovering in a
timely fashion. Of note, only 19% of the patients refused to participate during screening
due to reasons related to the availability of a wearable device or hesitation towards sharing
activity data.

Concerning the pre-study enrollment characteristics, the age of patients refusing or
unable to participate in the study due to smartphone-related issues was significantly higher
than that of the active study participants. Despite the increasing use of wearables by the
general public, as well as in clinics and for research purposes [1,6,7], increasing age is asso-
ciated with less availability and a limited use of smartphones and wearable systems [10,11].
Concerning the feasibility of the bring-your-own-device measurement strategy, our results
confirm that this is an influential factor in determining study participation. For the time
being, clinicians and investigators should consider employing this strategy in fracture cases
predominantly encountered in younger patients, or expect higher exclusion rates as seen
in our screening log. However, the increasing use of wearables in the aging population
and in the coming-of-age current wearable users will likely reduce this limitation in the
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future. General statistics on the distribution of wearable systems in the United States
population already reveal a trend of their increasing use over the recent 6 years in both age
groups of 50 to 64 years and over 65 years. Current studies, specifically investigating the
distribution characteristics of smartphones, tablets, and medical applications, have already
demonstrated higher distribution rates among the aging and elderly populations [12].
The ownership rates of smartphones according to the United States Health Information
National Trends Survey were reported to be over 70% in the age group of 56 to 65 years
and approximately 60% in the age group of 66 to 75 years. Only in the population aged
over 75 years a significant rate drop below 40% was observed. Accordingly, while almost
50% of the younger participants answered that the smartphone had already helped in
tracking their health, only 20% reported this use in the older population. This is certainly
comparable to the availability characteristics observed in our study. Generally, the age of
the included patients was significantly younger compared with excluded patients. Further-
more, the average age of patients not owning or unable to use a smartphone or another
wearable device was considerably higher, being just over 72 years. Research projects aiming
at increasing the use of wearable devices and interactions among the elderly population
have already reported promising results [11]. In addition, training programs enhancing
the competency of smartphone use in the elderly have demonstrated positive effects [13].
This trend towards an increased use of wearable technologies to monitor different health
conditions in the aging population will likely increase in various fields over the coming
years [14,15]. Apart from the age-related availability, no other meaningful trends could be
observed from our enrollment statistics.

For all included patients, the smartphone was by far the most available outcome
measurement among the wearables, followed by wrist-worn wearable devices. This is
in seeming contrast to the current literature in orthopedic trauma surgery, where the ma-
jority of wearable activity metrics are tracked via accelerometry or mobile gait analysis
technologies [7]. The latter is a predominant effect of the design of the studies, where the
rate of dedicated devices used to measure activity and distribution according to medical-
grade systems is quite high, as opposed to dedicated smartphone applications. The use
of smartphones and wrist-worn wearable devices in the current study was in accordance
with a recent survey analysis performed by the AO Foundation among orthopedic trauma
surgeons focusing on current and planned clinical applications of wearable systems. It
has been concluded that wearable outcome data were increasingly implemented in the
treatment of patients with musculoskeletal injuries, and that the most widely distributed
devices to measure general patient activity were smartphones and accelerometry-based
wearable systems [6]. However, the technologies and applications employed by the sur-
vey participants revealed a high diversity in responses, confirming that clear standards
regarding measurement strategies have yet to be defined.

Most commonly, smartphones and wearable devices are used with dedicated apps
to measure physical activity and well-being in patients and healthy individuals [16–19].
This technology allows for various measurement times and outcomes and is considered
equally or more reliable than some commercially available wrist-worn systems [20,21].
By selecting a specific wearable device or app that is consistently used within a study, or
at a clinical center, comparable outcome datasets are generated, while limiting the study
to post-inclusion data [7,9]. Furthermore, when using dedicated devices in addition to
personal devices, a patient might have compliance issues, commonly seen when using
additional systems [22–24]. This additional compliance issue is theoretically reduced
by using a wearable device which is already implemented in the patient’s daily routine.
However, an issue could exist when the collection of wearable device data is influenced by
the injury (e.g., when a wrist-worn wearable device is not worn in radius fracture patients).
Assuming that the characteristics of smartphones during activity measurements are not
changed by most injuries, the standard error would remain comparable pre and post injury.
By normalizing the individual patient recovery data to the pre-injury activity state and
assuming a non-considerable change in use by the patient, compliance would not affect the
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BYOD measurement strategy as could be the case in a dedicated device study. A limited
survey analysis showing the comparable use of smartphones in survey participants with
or without traumatic brain injury supports this hypothesis [25]. Ultimately, comparative
studies of both measurement strategies are necessary to investigate this effect.

A key element of the BYOD strategy is that pre-injury patient activity data is available
to the clinician and researcher. This is not possible by wearable activity outcome mea-
surement strategies that assign a dedicated device to the patient upon study inclusion.
Our screening characteristics show that roughly half of the patients (56%) were measuring
“pre-injury” activity parameters. In these patients, it is possible to track their rehabilitation
process prospectively and to also track their return to their previous physical activity
state. Our results show the feasibility of this preclinical “activity biopsy”. A return to the
pre-injury activity status as early as during the first 6 weeks post injury could be shown.
Referencing pre-injury data could allow identification of inadequate recovery and identify
necessity of early intervention. Likewise, patients with continuously high wearable activity
values could receive additional monitoring measures to track their rehabilitation. Rou-
tine clinical measures or score-based outcomes are less likely to reliably assess a patient’s
recovery trajectory. Even established patient-reported outcome measures are limited in
their capacity to objectively assess pre-injury patient status and thus track the recovery
process back to a norm value for the patient [4,26]. These scoring systems are mainly
limited by recall bias and are highly dependent on patient participation and answering
characteristics; thus, the reported outcome is either tracked prospectively without having
an available patient specific baseline, or by comparing it to established norm values with
all associated limitations.

The only activity outcome available over all platforms in our study was the daily
step count. This metric has been shown in a recent review of orthopedic trauma literature
as a primary outcome parameter in fracture studies using wearable systems. It has been
further described as a relevant parameter to track neurologic and pneumatological disease
progression and is associated with all-cause mortality [7,27–29]. The distinct value of this
parameter to determine fracture healing has yet to be fully understood; its broad availability
and use in wearable research literature does, however, ensure comparability in future
research efforts. Despite measurement differences between different operating systems and
devices, cross-platform effects are minimized by normalizing the activity outcome data to a
pre-injury baseline. Furthermore, centralized data collection apps offering cross-platform
conversion are becoming increasingly available and will allow comparisons of absolute
values across operating systems and devices in future studies [30]. Interestingly, while the
other collected outcome parameters differed between the operating systems of Apple and
Google, the observed “return to normal function” curves provided similar shapes to each
other and also to the step count when normalized. In the early post-trauma phase and
proof-of-concept setting, these activity outcome parameters seemed comparably feasible
for tracking of the recovery process. The true effect of different hardware and operating
systems on the results obtained with the BYOD strategy still has to be determined in future
studies focusing on this specific aspect. Certainly, comparability between operating systems,
or even phones from different generations by the same manufacturer, is limited, mainly due
to differences in the operating software versions installed or different hardware used by one
manufacturer in different-generation wearables. Differences in this regard will decrease
comparability between patients using different devices to track their activity recovery
process. As previously discussed, a number of data-harvesting solutions already exist,
which try to account for these variations based on large amounts of wearable data already
collected. Ultimately, this limitation is also an advantage of the technique, as the analysis
of the recovery process and activity is based on the individual data stream, including the
pre-injury wearable activity data. By employing the BYOD strategy, the between-patient
comparability is limited as opposed to traditional dedicated device studies, but the within-
patient comparability is enabled, allowing for a complete tracking of the patient recovery
process in reference to the pre-injury performance.
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The study has several limitations due partly to its preliminary, proof-of-concept design.
The overall patient number was low, especially considering the heterogenous inclusion of
musculoskeletal injuries of the upper and lower extremities, and pelvis. However, despite
these limitations, a first proof of concept for the introduced measurement strategy is pro-
vided, and meaningful outcome patterns, irrespective of the patient’s injury, are described.
Another limitation lies in the heterogeneity of the systems used, as well as the outcome
parameters provided within one study. This limitation is inherent to the introduced mea-
surement strategy that relies on whatever wearables patients bring to the study. Of note,
step count—a scientifically and clinically relevant activity parameter [3]—was available
across platforms. However, this limitation also represents an advantage of the measuring
technique, as the analysis of both the recovery process and activity is based on the individ-
ual data stream, thus ensuring continuity and comparability to the pre-injury data. This
would not be possible when using a dedicated device only handed out after the injury or
upon the start of the study. That is why it is the advantage and limitation of the technique
that needs to be accounted for. Further studies, having already been set up, will have to
determine the effects of using different devices and weigh the disadvantages against the
advantages of being able to collect pre-injury patient data for recovery tracking. Finally,
this investigation was set up as a feasibility study of the measurement technique at two
centers in different regions—one recruiting continuously and one recruiting by availability.
This certainly introduces a selection bias to the study. Accordingly, the availability of
patients and devices for analysis has only been reported for the study center with contin-
uous enrollment. The low enrollment rate reflects the strict application of the inclusion
criteria focusing only on patients with operative therapy and fluency in English. Of note,
only a small percentage of patients refused to participate due to the unavailability of, or
their unwillingness to use, a smartphone. Fracture-entity-specific studies with continuous
enrollment will have to further investigate the general availability of pre-injury activity
data in different medical systems, as the inclusion and screening characteristics, activity
measures, wearable systems, and availability of pre-injury activity data could have been
influenced by the geographic location and regional specifics of the two study centers in
Germany and the USA. Despite these limitations, the aim of our study was to demonstrate
the general proof of concept to obtain objective, individual pre-injury, and clinical outcome
activity data from wearable devices already used by the patients during their everyday life.

5. Conclusions

With the “Bring Your Own Device” strategy, providing continuous, daily outcome data
in orthopedic trauma patients is feasible. Its major advantage is that patients can use their
own device and that pre-injury activity baseline data can be used to assess the individual
patient recovery process. The technique is currently more suitable for younger patients
due to the age-related distribution characteristics of wearable devices and smartphones;
however, the growing distribution of digital technology among the elderly, as well as
existing dedicated training programs, will likely increase the useability of this approach
in all age groups. Further research is needed to determine the advantages of this new
strategy compared to traditional outcome measurement techniques and those employing
a dedicated wearable device. Specifically, questions about the effects of using different
devices, software, and outcome metrics within one study need to be addressed.
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