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Abstract: Background and Objectives: Diabetes mellitus (DM) is connected to both cardiovascular
disease and non-alcoholic fatty liver disease (NAFLD), and is an important component of metabolic
syndrome (MetS). NAFLD can be detected and quantified using the vibration controlled transient
elastography (VCTE) and the controlled attenuation parameter (CAP), whereas traditional and
two-dimensional speckle tracking echocardiography (2D-STE) can reveal subclinical abnormalities in
heart function. We sought to see if there was a link between left cardiac dysfunction and different
levels of hepatic fibrosis in MetS patients with DM and NAFLD. Patients and Methods: We recruited
successive adult subjects with MetS and a normal left ventricular ejection fraction, who were divided
into two groups according to the presence or absence of DM. The presence of NAFLD was established
by CAP and VCTE, while conventional and 2D-STE were used to assess left heart’s systolic and
diastolic function. The mean age of the MetS subjects was 62 ± 10 years, 82 (55%) were men. The
distribution of liver steatosis severity was similar among diabetics and non-diabetics, while liver
fibrosis grade 2 and 3 was significantly more frequent in diabetics (p = 0.02, respectively p = 0.001). LV
diastolic dysfunction was found in 52% of diabetic and in 36% of non-diabetic MetS patients (p = 0.04).
2D-STE identified in the diabetic subjects increased LA stiffness (40% versus 24%, p = 0.03) and
reduced global left ventricular longitudinal strain (47% versus 16%, p < 0.0001). Liver fibrosis grade ≥ 2
was identified as an independent predictor of both subclinical LV systolic dysfunction and of LA
dysfunction in MetS patients with DM (p < 0.0001). Conclusions: The current investigation confirms
the link between liver stiffness and subclinical cardiac dysfunction as detected by 2D-STE in MetS
patients with DM. The novel parameters derived from LA and LV 2D-STE have demonstrated greater
sensitivity compared to the older measurements, and a substantial connection with hepatic fibrosis.

Keywords: metabolic syndrome; diabetes mellitus; non-alcoholic liver disease; strain imaging;
liver elastography; subclinical cardiac dysfunction

1. Introduction

Metabolic syndrome (MetS) represents a combination of many cardiovascular risk
factors (insulin resistance, hypertension, hyperglycemia, central obesity, dyslipidemia).
It is often associated with sedentary people [1] and has been linked to an increased risk
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of developing cardiovascular disease and heart failure (HF) [1–4]. Diabetes mellitus, a
major component of MetS, is linked to morphologic and functional cardiac abnormalities
that enhance the risk of cardiovascular atherosclerotic disease [5,6]. Early detection of
subtle left cardiac dysfunction would indeed allow better risk evaluation of cardiovascular
disease (CVD) in MetS patients with diabetes mellitus and improve prognosis through
timely lifestyle changes and pharmacologic treatment that could stop or postpone the onset
of HF.

The majority of the shortcomings of traditional echocardiogram measures are overcome
by speckle-tracking echocardiography (STE), which enables direct and angle-independent
analysis of myocardial deformation and hence provides sensitive and repeatable markers of
myocardial fiber deformation [7]. Recent studies [8–12] have verified the viability and repro-
ducibility of STE for the investigation of left atrial (LA) and left ventricular (LV) mechanics.

Due to the increasing frequency of the MetS, non-alcoholic fatty liver disease (NAFLD)
became a widespread medical issue. With no alcohol abuse or other possible triggers, this
illness is characterized by lipids storage of lipids, primarily triglycerides, in more than 5%
of the hepatocytes. Uncomplicated steatosis is a benign condition without damage of the
liver cells, inflammation, fibrosis, and represents a component of NAFLD, as is nonalcoholic
steatohepatitis. According to a recently released meta-analysis, cardiac causes account for
the majority of NAFLD patients’ deaths rather than liver disease complications [13].

NAFLD and cardiac dysfunction may be related, according to several research [14,15].
However, the relationship between NAFLD severity as determined by controlled attenua-
tion parameter (CAP) and liver vibration controlled transient elastography (VCTE), and
echocardiography-assessed left cardiac function has not yet been investigated.

In the current investigation, we sought to determine if left cardiac subclinical dysfunc-
tion and varying degrees of NAFLD in MetS patients with diabetes mellitus are linked in
some way.

2. Materials and Methods

Subject selection. The departments of cardiology and internal medicine at the Victor
Babes University of Medicine and Pharmacy in Timisoara, secondary medical care centers,
conducted this observational research from January 2021 to August 2022. We recruited
successive adult patients with MetS and LV ejection fraction (EF) ≥ 50% who agreed to
have liver elastography performed as part of their assessment. They were split into two
groups based on whether or not they had diabetes mellitus. In addition to 2D—traditional
and STE of the left atrium and left ventricle, all individuals underwent VCTE and CAP.

Participants had to be at least 18 years old and have MetS in order to be considered for
inclusion in the study. Exclusion criteria included: known coronary artery disease, peripheral
artery disease, stroke, atrial flutter/fibrillation, HF with reduced (<50%)/preserved (≥50%)
LVEF, NT-proBNP levels ≥ 220 pg/mL [16], cardiomyopathies; cardiac pacemakers, signifi-
cant valvulopathies; chronic renal failure; chronic hepatic disease as result of drug use, viral
infections, or alcohol abuse (>30 g/day in men, >20 g/day in women), serious systemic
diseases or cancer.

Before the cardiac and liver ultrasound investigations, all patients underwent a clinical
history analysis, a complete physical examination, a 12-lead resting electrocardiogram, and
laboratory testing.

MetS was defined by the 2006 IDF parameters as central obesity (waist circumference≥ 80 cm
in women, ≥94 in males), along with just any two of the following requirements: systolic
blood pressure of at least 130 mmHg or diastolic blood pressure of at least 85 mmHg,
or treatment of hypertension [17], fasting plasma glucose ≥100 mg/dL or treatment of
diabetes mellitus; triglyceride level ≥ 150 mg/dL or treatment for this lipid disorder;
high-density lipoprotein cholesterol level < 40/50 mg/dL (men/women) [17].

Diabetes was diagnosed when the fasting plasma glucose exceeded 126 g/mL, twice
in two nonconsecutive days, when glycated hemoglobin (HbA1c) was ≥6.5% or when
the patient was receiving an oral hypoglycemic medication and/or insulin [18]. The
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patients with prediabetes (fasting plasma glucose 100–126 g/mL and HbA1c 5.7–6.4%)
were included in the non-diabetic group [17].

Hypertension was diagnosed when blood pressure was ≥140/90 mmHg and/or the
patient took hypertension medication [18].

2.1. Vibration Controlled Transient Elastography (VCTE) and Controlled Attenuation
Parameter (CAP) Determinations

The same investigator performed VCTE after a fast of more than 4 h using a Fi-broScan® in-
strument (EchoSens, Paris, France). The 3.5 MHz or 2.5 MHz probe was employed in accordance
with European standards [19]. The CAP cut-offs used to differentiate the grades of steatosis
were: S1 (mild)—274 dB/m, S2 (moderate)—290 dB/m, and S3 (severe)—302 dB/m [19].
In each patient, the examiner took 10 liver stiffness measures (LSM), and the median
value was calculated. Measurements with a median value and an interquartile range inter-
val/median ratio < 30% were considered valid [20]. The LSM was expressed in kilopascals
(kPa). The VCTE cut-offs used to separate the degrees of fibrosis were: F2: 8.2 kPa, F3: 9.7 kPa,
and F4: 13.6 kPa [21].

The same researcher used a VIVID 5S, G.E. ultrasonic phased array scope with a 3.5 MHz
probe for conventional echocardiography. The diameters and volumes of the heart cham-
bers were assessed in accordance with the recommendations of the American Society of
Echocardiography [22]. The LV and LA volumes were computed using the biplane Simpson
technique from the 4- and 2-chamber apical images. The LV ejection fraction (EF) was
determined using the method Simpson. The diastolic function of the LV was assessed using
pulsed Doppler echography in the 4- and 2-chamber apical views, with the sample volume
placed at the extremity of the mitral valves. At the termination of the T wave, preceding the
mitral valves opening, the maximal LA volume (LAVmax)was documented in the apical 4-
and 2-chamber incidences. The minimal LA volume (LAVmin) was assessed in the early
stages of ventricular diastole, after the QRS complex, as soon as the mitral valves closed.
The total LA stroke volume (tLASV) was calculated as the difference between LAVmax
and LAVmin. The LA ejection fraction (EF, %) was estimated using the formula 100×
[LAVmax-LAVmin]/LAVmax [23,24].

The 2D-speckle tracking echography (2D-STE) was performed utilizing the Vivid Echo
PAC software 201 (GE Medical System) at 60 to 90 frames/s. At least three successive
cardiac cycles were captured for the duration of a breath-hold in 4- and 2-chamber apical
views. The video analysis was completed offline. The atrial endocardium and epicardium
were tracked mechanically and afterwards adjusted by the examiner. The software split the
atrium into six regions. The peak LA-pool strain was measured just before the mitral valve
opening, and the peak LA-pump strain just before the P wave (Figure 1). LA stiffness was
estimated as the E/A value divided by the peak LA-pool strain [25,26].

For the study of ventricular myocardial deformation, the Echo PAC software 201 was
set at a frequency of 70 to 80 frames/s [23,27]. The program split the ventricle into six parts
(Figure 2). These 6 segments’ 2D-ST images were examined in 4, 3, and 2-chamber apical
incidences. The average of the values recorded in the 18 investigated segments was used to
compute the peak global longitudinal strain (GLS).

Patients with poor echocardiographic image resolution were excluded from the research.
The cut-off parameters for LA dysfunction were: <50% LA ejection fraction, <30% LA

pool strain, <8% LA pump strain, and ≥0.38 LA stiffness [28,29]. E/A ratio < 0.8 and
IVRT > 100 ms were the defining criteria for LV diastolic dysfunction; FEVS < 50% and
peak GLS- < −18% for LV systolic dysfunction [23,27].

2.1.1. Ethics

All research participants provided written informed consent. The study was carried
out in accordance with the Helsinki Declaration’s principles and was authorized by the
Ethics Committee of the “Victor Babes, ” University of Medicine and Pharmacy Timis, oara
(nr. 1a/16 Jane 2016).
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2.1.2. Statistical Analysis

The MedCalc® Statistical Software 20.210 version was used for statistical analysis
(MedCalc Software Ltd., Ostend, Belgium). The mean and standard deviation (SD) for
continuous data were presented. Numbers and percentages were used to represent cat-
egorical variables. The paired t-test was used to compare the differences between the
groups. Pearson’s correlation coefficient was used to assess the relationship between
variables. The variables associated with LA and LV dysfunction were addressed to uni-
variate and multivariate logistic regression analysis. For all tests, p < 0.05 was regarded as
statistically noteworthy.

2.1.3. Reproducibility

The research was carried out by the same echocardiographer, respectively by the
same liver sonographer. The intra-class correlation coefficient (ICC) was calculated for intra-
observer reproducibility and revealed high intra-observer conformity. For echocardiography
the ICC was 0.86 (95% CI 0.79–0.91), and 0.88 (95% CI 0.79–0.92) for hepatic elastography.

3. Results

Of the 212 MetS participants primarily studied, 38 (18%) were excluded due to poor
resolution of echocardiographic images, and 28 (13%) were withdrawn due to validation
failures at CAP and VCTE.

Finally, 150 MetS subjects were included in the research and were divided into
two groups based on the existence of diabetes mellitus. Table 1 shows the demographic
and clinical characteristics of the two groups. The mean age range of the subjects was
62 ± 10 years (31–79 years). Males made up 82 of the participants (55%). There were no sig-
nificant differences among the groups regarding age and gender distribution, hypertension
prevalence, waist circumference, body mass index, smoking status, number of MetS com-
ponents, and medication for lipid disorders and hypertension. The differences between the
levels of serum transaminases, total cholesterol, low density and high-density cholesterol
lipoproteins, and pro NT-brain natriuretic peptides were also not notable. Diabetics had
increased triglyceride, glycosylated hemoglobin, and fasting plasma glucose levels.

Table 1. Clinical and laboratory features of MetS patients.

With DM (n = 72) Without DM (n = 78) p Value

Age (years) 62.8 ± 8.7 60.2 ± 10.7 0.31

Male sex n (%) 38 (53) 44 (56) 0.71

Systemic hypertension (n, %) 62 (80%) 58 (84%) 0.52

Smoking (current, %) 7 (9%) 8 (10%) 0.83

Systolic BP (mmHg) 142.9 ± 15 140.1 ± 19 0.32

Diastolic BP (mmHg) 85.4 ± 11 83.7 ± 11 0.34

Heart rate (beats/min) 77.4 ± 11.3 73.9 ± 11.1 0.05

BMI (kg/m2) 33.6 ± 5.3 32.0 ± 4.8 0.05

Waist circumference (cm) 114 ± 12 110 ± 13 0.05

Total cholesterol (mg/dL) 174 ± 40 183 ± 62 0.24

HDL (mg/dL) 44.4 ± 13.7 45.7 ± 11.8 0.53

LDL (mg/dL) 129.4 ± 31 130.5 ± 30 0.82

Triglyceride (mgl/dL) 172.7 ± 109 134.4 ± 80.4 0.01

FPG (mg/dL) 153 ± 50 108 ± 11 <0.0001

HbA1c (%) 7.1 ± 0.9 5.2 ± 0.7 <0.0001

ASAT (U/L) 24 ± 9 23 ± 5 0.39

ALAT (U/L) 37 ± 7 36 ± 5 0.31

NT-proBNP (pg/mL) 144 ± 66 129 ± 65 0.16
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Table 1. Cont.

With DM (n = 72) Without DM (n = 78) p Value

Number of MetS components 3.9 ± 0.8 3.7 ± 0.6 0.08

Number of components ≥ 4 39 (54%) 34 (44%) 0.22

Duration of diabetes (years) 6.5 ± 4 - -

Diabetes treatment
Oral antidiabetics

Insulin
51 (70%)
18 (25%)

- -

Statins 49 (68%) 57 (73%) 0.50

Fibrates 21 (29%) 17 (21%) 0.25

ACEI/ARB 35 (49%) 43 (55%) 0.46

Beta-blockers 55 (76%) 58 (74%) 0.77

Calcium antagonists 40 (56%) 43 (55%) 0.90

Diuretics 52 (72%) 55 (70%) 0.79
Notes: Data are given as a mean, standard deviation, or as number, percentage. Statistically notable values
(p < 0.05) are shown in bold. Abbreviations: ALAT, alanine amino transferase; ASAT, aspartat amino transferase;
BP, blood pressure; BMI, body mass index; HbA1c, glycosylated hemoglobin; FPG, fasting plasma glucose;
LDL, low density lipoprotein; HDL, high density lipoprotein; MetS, metabolic syndrome; NT-proBNP, N-terminal
pro- brain type natriuretic peptides; U, units; ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin-1
receptor blockers.

The diabetic MetS subjects presented the following dispersal of steatosis severity
assessed by CAP: 8 (11%)—S1, 25 (35%)—S2, and 39 (54%)—S3. S2 and S3 were significantly
more frequent than in non-diabetic MetS patients, as shown in Table 2. The distribution of
fibrosis stages F2 and F3 was also notably higher in diabetic versus non-diabetic patients
(p = 0.02 and p = 0.001, respectively).

Table 2. Assessment of hepatic fibrosis and steatosis.

With DM (n = 72) Without DM (n = 78) p Value

CAP, dB/m 292.42 ± 43.6 299.36 ± 60.7 <0.0001

Steatosis stage
S0 0 (0%) 0 (0%) 1
S1 8 (11%) 37 (47%) <0.0001
S2 25 (35%) 14 (18%) <0.02
S3 39 (54%) 27 (35%) <0.02

LSM, kPa 11.53 ± 5.94 8.00 ± 3.58 <0.0001

Fibrosis stage
F0-1 27 (38%) 57 (73%) <0.0001
F2 28 (39%) 17 (22%) 0.02
F3 15 (21%) 3 (4%) 0.001
F4 2 (2%) 1 (1%) 0.61

Notes: Data are given as a mean, standard deviation, or as number, percentage. Statistically important values
(p < 0.05) are presented in bold. Abbreviations: F, fibrosis; S, steatosis; CAP, controlled attenuation parameterliver;
LSM, stiffness measurements.

Table 3 displays echocardiography data. There were no considerable differences in
the traditional measurements of LV function and structure between the two groups, with
the exception of LV diastolic dysfunction, which was more common in diabetes subjects.
We also discovered no alterations in LA diameters, volumes, or ejection fractions between
diabetic and non-diabetic MetS patients.

The 2D-STE, on the other hand, detected subtle LV systolic and subtle LA dysfunc-
tion in the diabetic patients, revealed by significant lower LV global longitudinal strains,
decreased LA reservoir and pump strains, as well as by increased LA stiffness.
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Table 3. LV echocardiography results in MetS patients.

With DM (n = 72) Without DM (n = 78) p Value

Traditional echocardiography

LV End DD (mm) 49.14 ± 3.22 48.73 ± 2.97 0.41

LV End SD (mm) 30.37 ± 2.54 29.87 ± 2.72 0.24

LA diameter (mm) 3.14 ± 0.33 3.24 ± 0.35 0.07

LVEF (%) 51.5 ± 0.6 51.6 ± 0.5 0.26

LVFS (%) 37.99 ± 2.93 38.10 ± 3.55 0.83

LV diastolic dysfunction (n, %) 38 (52%) 28 (36%) 0.04

LA volumes (mL)
Maxim 27.4 ± 5.3 26.9 ± 5.5 0.57
Minim 11.55 ± 4.0 12.56 ± 3.7 0.11

LA ejection fraction (%) 56.2 ± 4.2 56.9 ± 3.8 0.28

2D-STE

LAS-pool (%) 43.9 ± 4.3 45.4 ± 3.7 0.02

LAS-pump (%) 17.4 ± 2.2 18.3 ± 1.8 <0.01

LA stiffness 0.34 ± 0.12 0.28 ± 0.15 <0.01

LAsf ≥ 0.38 29 (40%) 19 (24%) 0.03

GLS (%) 20.1 ± 2.4 21.6 ± 2.1 0.0001

GLS ≤ 18% 34 (47%) 13 (16%) <0.0001
Notes: Data are given as a mean, standard deviation, or as number, percentage. Statistically important values
(p < 0.05) are presented in bold. Abbreviations: GLS, global longitudinal strain. MetS, metabolic syndrome;
DM, diabetes mellitus; EF, ejection fraction; End SD, end systolic diameter; End DD, end diastolic diameter;
FS, fractional shortening; LV, left ventricle; LA, left atrium; 2D-STE, two dimensional speckle tracking echography;
LAS, left atrial longitudinal strain.

LV diastolic dysfunction, identified by traditional echocardiography, was found
in 38 diabetic (53%) and in 40 (51%) nondiabetic patients, p = 0.04. Subtle LV systolic
dysfunction, defined by GLS < 18%, was found in 47 (65%) diabetic patients and
in 34 (44% non-diabetic subjects p < 0.0001). Subtle LA dysfunction, identified by
LA stiffness > 0.38 was found in 29 (40%) diabetic MetS patients and in 15 (19%) non-
diabetic patient, p = 0.03. The diabetic MetS patients had a 1.5 times higher risk of LV
systolic dysfunction (95% CI 1.10 to 2.02, p < 0.01), and a two-fold higher risk of LA
dysfunction (95% CI 1.22 to 3.57, p < 0.01)

Both in univariate and in multivariate logistic regression analysis, liver fibrosis ≥ 2
was an independent predictor of subtle LV and subtle LA dysfunction in diabetic MetS
patients with NAFLD (Table 4).

Table 4. Independent predictors of LV systolic dysfunction in MetS patients with DM.

Parameter
Univariate Analysis Multivariate Analysis

β SE p β SE p

Liver steatosis ≥ S2 2.17 0.62 <0.001

Liver fibrosis ≥ F2 3.60 0.81 <0.0001 3.14 0.43 <0.0001

Independent predictors of LA stiffness ≥ 0.38 in MetS patients with DM

Parameter
Univariate analysis Multivariate analysis

β SE β SE

Liver fibrosis ≥ F2 3.60 0.81 <0.0001 3.14 0.43 <0.0001
Notes: Statistically notable values are presented in bold (p < 0.05). The adjusted parameter in multivariate
analysis was diabetes mellitus. Abbreviations: LV, left ventricle; LA, left atrium; MetS, metabolic syndrome;
DM, diabetes mellitus.
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We found significant associations between liver fibrosis ≥ 2 with both subtle LV
systolic dysfunction and subtle LA dysfunction in diabetic MetS patients. Subclinical LV
systolic dysfunction, assessed by reduced global longitudinal strain (%), was significantly
linked with liver stiffness (kPa), p < 0.001 (Figure 3). LA dysfunction, assessed by increased
LA stiffness (%) was also significantly associated with liver stiffness (kPa), as shown
in Figure 4.
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Figure 4. Correlation between LSM and LA stiffness in diabetic MetS subjects. Abbreviations:
MetS, metabolic syndrome; LAsf, left atrial stiffness; LSM, liver stiffness measurement.

4. Discussion

MetS has gained a significant interest in the past few decades as a result of its rising
incidence rate among the overall population. MetS affects approximately one-fourth of the
world’s population [2], and it is anticipated that the number of people affected by MetS
will continue to rise in line with the incidence of obesity and type 2 diabetes. In general, the
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research have indicated that persons with MetS are at a greater risk of suffering CVD events.
The largest systematic review and meta-analysis (n = 951,083) established a double increase
in the risk of cardiovascular disease morbidity and mortality, and a 1.5-fold increase in the
risk of all-cause mortality associated with MetS [1].

In medical practice, NAFLD constitutes a large segment of liver disease. The general
population has a NAFLD prevalence of 10–30%, with greater rates in industrialized and
developing nations. NAFLD has been linked to insulin resistance and the metabolic
syndrome. One probable explanation for this connection is that NAFLD patients frequently
have abnormal glucose metabolism, are overweight or obese, and have hypertension [30].

Patients with NAFLD have a much greater risk of dying from ischemic cardiovascular
disease (12% to 16%) than those without this condition (1% to 3%) [15,28]. This finding
suggests a substantial link between the level of severity of NAFLD and the chance of dying
from cardiovascular disease. This connection might be explained by a variety of processes,
one of which being insulin resistance [3]. Cardiac insulin resistance leads to altered energy
absorption, since the heart consumes energy from glucose and fatty acids [31]. Changes in
myocardial structure and function are a result from changed energy absorption.

MetS patients share the same altered myocardial energy uptake mechanism. Obesity,
high blood pressure, and diabetes were found to cause fibrotic changes in the LV and
LA ventricular myocardial walls [32,33]. As myocardial fibrosis progresses, LV diastolic
compliance declines and LV filling pressures rise, both of which exert an effect on LV and
LA function.

The most serious diabetes-related complications and the leading cause of death in
diabetic patients are cardiac complications [34], with evidence indicating a wide range of
changes in diabetic hearts, including cardiomyocyte hypertrophy, myocardial interstitial
fibrosis, and cardiomyocyte apoptosis [8,35,36]. It has been demonstrated that functional
remodeling occurs before structural remodeling, resulting in dilatation of the heart cham-
bers.

Our study included MetS adults, with and without diabetes mellitus, without estab-
lished cardiovascular disease. No subject had LV heart failure, neither with reduced, or
with preserved LVEF, according to the clinical examination records, conventional echocar-
diography data, and the NT-proBNP levels.

Participants in our study were thoroughly examined utilizing liver VCTE and CAP to
identify and quantify NALD, along with conventional and speckle-tracking echography to
evaluate cardiac structure and function.

Liver steatosis grade S2 and S3 were significantly more frequent than in non-diabetic
MetS patients, as shown in Table 2, as well as liver fibrosis F2 and F3.

Although the LA and LV diameters, volumes, and ejection percentages did not differ
substantially between MetS participants with and without DM, the 2D-STE revealed LA
and LV deformation features that were significantly worse in the presence of DM, indicating
subclinical dysfunction (p < 0.04). According to previous research, the pattern of myocardial
deformation is highly related to the severity of myocardial fibrosis determined by cardiac
MRI or histopathologic samples [37].

Despite evidence that patients with NAFLD are at risk of cardiac structural abnormali-
ties, no link between myocardial and hepatic fibrosis has been demonstrated. This is the
first study to show this link using the deformation patterns of the left heart in diabetics
with MetS. In multivariate regression analysis, liver fibrosis grade ≥ 2 was significantly
associated with LA stiffness ≥ 0.38 (p < 0.0001), and with subclinical LV systolic dysfunction
(p < 0.0001) in MetS patients with NAFLD and DM.

Early diagnosis of heart and liver dysfunction in MetS patients with diabetes is crucial
because adequate lifestyle changes and pharmacological therapy may be able to prevent
or postpone the onset of heart failure and liver cirrhosis, respectively. These approaches
have the potential to reduce morbidity and mortality rates, as well as the costs of providing
health care [38,39].
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The fact that patients with prediabetes (fasting plasma glucose 100–126 g/mL and
HbA1c 5.7–6.4%) were included in the non-diabetic group” might have influenced somehow
the results of the study.

Limitations. All patients had their liver steatosis and fibrosis assessed non-invasively,
without performing a liver biopsy, which is the gold standard procedure. We did not
analyze in a separate group the MetS subjects with prediabetes. They were included in the
nondiabetic group.

5. Conclusions

Our findings imply that liver assessment by CAP and VCTE, as well as heart function
assessment by 2D-STE, should be routinely done in diabetic individuals with MetS, as they
might detect subclinical abnormalities. The innovative parameters derived from the LA
and LV deformation patterns demonstrated to be more sensitive than the traditional ones,
and were found to be significantly linked with liver stiffness in these subjects.
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Petrović, M. Left Atrial Strain as a Predictor of Left Ventricular Diastolic Dysfunction in Patients with Arterial Hypertension.
Medicina 2022, 58, 156. [CrossRef]

27. Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global
Longitudinal Strain to Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11, 260–274. [CrossRef]

28. Pathan, F.; D’Elia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking
Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 59–70.e8. [CrossRef]

29. Parvanescu, T.; Vitel, A.; Sporea, I.; Mare, R.; Buz, B.; Bordejevic, D.A.; Tomescu, M.C.; Arnautu, S.F.; Morariu, V.I.; Citu, I.M.
Significant Association between Left Ventricular Diastolic Dysfunction, Left Atrial Performance and Liver Stiffness in Patients
with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Diabetes Metab. Syndr. Obes. 2021, 14, 1535–1545. [CrossRef]

30. Kosmalski, M.; Ziółkowska, S.; Czarny, P.; Szemraj, J.; Pietras, T. The Coexistence of Nonalcoholic Fatty Liver Disease and Type 2
Diabetes Mellitus. J. Clin. Med. 2022, 11, 1375. [CrossRef]

31. Fotbolcu, H.; Yakar, T.; Duman, D.; Karaahmet, T.; Tigen, K.; Cevik, C.; Kurtoglu, U.; Dindar, I. Impairment of the left ventricular
systolic and diastolic function in patients with non-alcoholic fatty liver disease. Cardiol. J. 2010, 17, 457–463.

32. Muranaka, A.; Yuda, S.; Tsuchihashi, K.; Hashimoto, A.; Nakata, T.; Miura, T.; Tsuzuki, M.; Wakabayashi, C.; Watanabe, N.;
Shimamoto, K. Quantitative assessment of left ventricular and left atrial functions by strain rate imaging in diabetic patients with
and without hypertension. Echocardiography 2009, 26, 262–271. [CrossRef]

http://doi.org/10.1016/j.diabres.2008.10.018
http://doi.org/10.4250/jcu.2012.20.2.90
http://doi.org/10.1002/hep.28431
http://doi.org/10.1161/ATV.0000000000000153
http://doi.org/10.4254/wjh.v7.i10.1369
http://doi.org/10.1002/ejhf.1741
http://doi.org/10.1093/eurheartj/ehy339
http://doi.org/10.1016/j.jhep.2015.04.006
http://doi.org/10.1053/j.gastro.2019.01.042
http://doi.org/10.1093/ehjci/jev014
https://www.intechopen.com/chapters/51931
http://doi.org/10.1586/erc.09.165
http://doi.org/10.1016/j.echo.2016.03.013
http://doi.org/10.3390/medicina58020156
http://doi.org/10.1016/j.jcmg.2017.11.017
http://doi.org/10.1016/j.echo.2016.09.007
http://doi.org/10.2147/DMSO.S300450
http://doi.org/10.3390/jcm11051375
http://doi.org/10.1111/j.1540-8175.2008.00805.x


Medicina 2023, 59, 328 12 of 12

33. Vitel, A.; Sporea, I.; Mare, R.; Banciu, C.; Bordejevic, D.A.; Parvanescu, T.; Citu, I.M.; Tomescu, M.C. Association between
Subclinical Left Ventricular Myocardial Systolic Dysfunction Detected by Strain and Strain-Rate Imaging and Liver Steatosis and
Fibrosis Detected by Elastography and Controlled Attenuation Parameter in Patients with Metabolic Syndrome. Diabetes Metab.
Syndr. Obes. 2020, 13, 3749–3759. [CrossRef]

34. Li, S.; Wang, J.; Zhang, B.; Li, X.; Liu, Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study.
Diabetes Metab. J. 2019, 43, 319–341. [CrossRef]

35. Tanaka, H.; Tatsumi, K.; Matsuzoe, H.; Matsumoto, K.; Hirata, K.-I. Impact of diabetes mellitus on left ventricular longitudinal
function of patients with non-ischemic dilated cardiomyopathy. Cardiovasc. Diabetol. 2020, 19, 84–94. [CrossRef]

36. Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological
mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [CrossRef]

37. Zhu, L.; Wang, Y.; Zhao, S.; Lu, M. Detection of myocardial fibrosis. Where we stand. Front. Cardiovasc. Med. 2022, 9, 1–13.
[CrossRef]

38. Hallsworth, K.; Hollingsworth, K.G.; Thoma, C.; Jakovljevic, D.; MacGowan, G.A.; Anstee, Q.M.; Taylor, R.; Day, C.P.; Trenell, M.I.
Cardiac structure and function are altered in adults with non-alcoholic fatty liver disease. J. Hepatol. 2013, 58, 757–762. [CrossRef]

39. Sporea, I.; Mare, R.; Popescu, A.; Nistorescu, S.; Baldea, V.; Sirli, R.; Braha, A.; Sima, A.; Timar, R.; Lupusoru, R. Screening for
Liver Fibrosis and Steatosis in a Large Cohort of Patients with Type 2 Diabetes Using Vibration Controlled Transient Elastography
and Controlled Attenuation Parameter in a Single-Center Real-Life Experience. J. Clin. Med. 2020, 9, 1032. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2147/DMSO.S268916
http://doi.org/10.4093/dmj.2018.0060
http://doi.org/10.1186/s12933-020-01063-y
http://doi.org/10.1136/gutjnl-2020-320622
http://doi.org/10.3389/fcvm.2022.926378
http://doi.org/10.1016/j.jhep.2012.11.015
http://doi.org/10.3390/jcm9041032

	Introduction 
	Materials and Methods 
	Vibration Controlled Transient Elastography (VCTE) and Controlled Attenuation Parameter (CAP) Determinations 
	Ethics 
	Statistical Analysis 
	Reproducibility 


	Results 
	Discussion 
	Conclusions 
	References

