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Abstract: Background and Objectives: Progressive supranuclear palsy (PSP) is a neurodegenerative
disease, a tauopathy, which results in a wide clinical spectrum of neurological symptoms. The
diagnosis is mostly based on clinical signs and neuroimaging; however, possible biomarkers for
screening have been under investigation, and the role of the gut microbiome is unknown. The
aim of our study was to identify potential blood biomarkers and observe variations in the gut
microbiome within a PSP discordant monozygotic twin pair. Materials and Methods: Anthropometric
measurements, neuropsychological tests, and the neurological state were evaluated. Blood was
collected for metabolic profiling and for the detection of neurodegenerative and vascular biomarkers.
Both the gut microbiome and brain MRI results were thoroughly examined. Results: We found a
relevant difference between alpha-synuclein levels and moderate difference in the levels of MMP-2,
MB, Apo-A1, Apo-CIII, and Apo-H. With respect to the ratios, a small difference was observed
for ApoA1/SAA and ApoB/ApoA1. Using a microbiome analysis, we also discovered a relative
dysbiosis, and the MRI results revealed midbrain and frontoparietal cortical atrophy along with
a reduction in overall brain volumes and an increase in white matter lesions in the affected twin.
Conclusions: We observed significant differences between the unaffected and affected twins in some
risk factors and blood biomarkers, along with disparities in the gut microbiome. Additionally, we
detected abnormalities in brain MRI results and alterations in cognitive functions.

Keywords: plasma biomarker; alpha diversity; dementia; risk factor; magnetic resonance; genetics;
environment

1. Introduction

Progressive supranuclear palsy (PSP), also known as Steele–Richardson–Olszewski
syndrome, is a neurodegenerative disease that is characterized by a wide clinical spectrum
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of symptoms, including gait and balance impairment, postural instability, ocular movement
abnormalities (typically vertical supranuclear gaze palsy), facial and cervical dystonia,
severe generalized bradykinesia, frontal dementia, visual impairment from gaze palsy,
spastic/ataxic dysarthria, and dysphagia leading to aspiration. Less specific or inconsistent
features include depression, sleep disturbance, urinary incontinence, constipation, apraxia,
tremor, dystonia, and retrocollis.

The population prevalence for living cases in a community-based series approxi-
mates to about 5–6 cases per 100,000. Due to diagnostic difficulties, the incidence of PSP
is estimated at 1–2 in 100,000 [1]. Survival from the time of symptom onset is around
7.4 years [1]. PSP affects patients over the age of 40 years with an average onset in the
mid-60s with supranuclear gaze palsy or postural instability and consequential falls within
the first year of the onset.

In terms of its neuropathology, PSP is a tauopathy. Tau is a microtubule-associated
protein that provides stability for the axonal cytoskeleton. These proteins are genetically
determined by a single gene located on chromosome 17 [2]. Through an alternative splicing
mechanism, six isoforms of tau exist in the human brain. They are distinguished by the
inclusion or exclusion of the region coded by exon 10 results, and three or four repeats
are present. Due to certain abnormal posttranslational modifications, such as hyperphos-
phorylation, tau forms neurofibrillary tangles. The insoluble tau form is not exclusively
composed of 4R and 3R forms, but there are less of 3R than 4R; however, in Alzheimer’s
disease, this ratio is reversed. It is noteworthy to mention corticobasal degeneration (CBD)
as it is also 4R tauopathy, and they are differentiated by their pathological features; PSP
typically creates tufted astrocytes and globose neurofibrillary tangles, whereas CBD has
astrocytic and ballooned pale neurons and more severely affects cortical regions. Further-
more, in PSP, oligodendroglia coiled bodies often appear in the thalamic and lenticular
fasciculi [3].

The main neuroanatomical regions affected in PSP include the basal ganglia, subtha-
lamic nucleus, substantia nigra, and frontal motor and premotor cortices, which show
profound atrophy. The dentate nucleus and cerebellar outflow pathway are also usually
affected, and atrophy of the superior cerebellar peduncle is also found [2,4]. Accordingly,
brain magnetic resonance imaging (MRI) plays a valuable role in discriminating against
atypical Parkinsonian syndromes, as radiological diagnoses seem to be more specific than
clinical diagnoses [5]. Neuroimaging is an important tool for the diagnosis; the “humming-
bird sign” is a common and traditional indicator of the disease. However, novel methods,
such as volumetric analyses of MRI images, are great methods of assessment as well [6].

It has not yet been possible to identify a clear risk factor; mostly, environmental
factors are known. However, genetic factors may also contribute to the development of
the disease [7]. There are several potential risk factors that have been investigated, such
as lower educational attainment, drinking well water, living near an agricultural area,
and exposure to pesticides, which were shown to increase the risk of developing PSP [8].
Moreover, exposure to metals was also associated with PSP in a study examining veterans.
In addition, the H1 haplotype of the microtubule-associated protein tau (MAPT) gene,
which encodes tau protein, is the most significant genetic risk factor determined so far [9].

The gut microbiome is a key factor in the development and aging of the nervous
system; therefore, the role of the gut–brain axis has already been investigated in neurode-
generative disorders. In most cases of the various neurodegenerative disorders, there were
alterations; dysbiosis in the gut microbiome and a usually elevated pro-inflammatory state
were observed. Altogether, it is known that with greater microbiome diversity, we can
obtain better outcomes with respect to health [10,11]. However, the microbiome of PSP
patients has not been profoundly researched so far.

Our aim was to find potential blood biomarkers in PSP while taking into account the
brain MRI changes in a clinically discordant identical twin pair for PSP. This relationship
has not been studied in twins as of yet.
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2. Materials and Methods
2.1. Study Participants

We contacted 10,007 subjects in the population-based Hungarian Twin Registry [12]
were to find twin pairs with PSP. We found a 76-year-old female monozygotic twin pair;
they were involved in the study and were discordant for PSP. The twin pair had no prior
carotid surgery, acute infection within three weeks of the study, underlying oncologic
disease, inflammatory bowel disease, nor any acute respiratory, cardiac, and renal failure
at the time of the study. The study was approved by the ethical committee (Semmelweis
University TUKEB 217/2021). Both participants signed an informed consent form. The
tenets of the Declaration of Helsinki were followed. Zygosity classification was determined
using a seven-part, self-reported questionnaire [13]. Information about history and risk
factors was obtained using a questionnaire, including height, body weight, body mass
index (BMI), smoking, hypertension, hyperlipidemia, and diabetes. The examinations
were performed at the Semmelweis University Medical Imaging Centre’s Department of
Neuroradiology in Budapest, Hungary.

2.2. Questionnaires

Personal interview-associated questionnaires and self-assessed questionnaires were
completed to determine symptoms and comorbidities such as hypertension, cardiovascular
disease, diabetes, dyslipidemia, and other important influencing factors such as smoking.
Along with measuring body weight and height, BMI was also computed.

Among the neurocognitive and psychological tests, we assessed the neurocognitive
functions of the participants using the Montreal Cognitive Assessment (MoCA), Adden-
brooke Cognitive Examination (ACE), and Mini-Mental State Examination (MMSE) tests;
then, the mental health of the patients was evaluated using the Beck Depression Inventory
(BDI), Zung Self-Rating Depression Scale (ZDS) and Geriatric Depression Scale (GDS). It
should be considered that ACE, MMSE, and MoCA have different cut-off scores in the
literature for cognitive impairment; however, the higher the score, the better. If the MMSE
score is below 24 points, the result is frequently thought to be abnormal. For ACE, 88 and
83 cut-off scores are usually recommended. If we find that the score of the MoCA test is
below 25, a cognitive impairment might be present. The cut-off score for BDI is 9, GDS is 5,
and ZDS is 41. [14–17].

The twin pair underwent a body composition analysis by body impedance analysis
(BIA) using a clinically validated, portable body consistency monitor (OMRON BF500,
Omron Healthcare Ltd., Kyoto, Japan) [18]. Body fat percentage was calculated as [body
fat mass (kg)/body weight (kg)] × 100. Fat-free mass was interpreted as [100% − body
fat percentage (%)]. Waist and hip circumferences were measured using standard cri-
teria. Blood pressure was measured using a TensioMed Arteriograph (TensioMed Ltd.,
Budapest, Hungary).

2.3. Sample Collection

Venous blood was taken one time from the twin pair on the same day in the year 2022.
Blood was collected in serum, EDTA, and ACD-A tubes. We used tubes containing a coagu-
lation accelerator that was suitable for serum extraction. Plasma samples were prepared
by centrifugation twice at 2500× g for 15 min at 22 ◦C (Eppendorf 5804R), aliquoted, and
stored at −80 ◦C before analysis.

2.4. Routine Laboratory Testing

Serum triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL choles-
terol), apolipoprotein A1 (ApoA1), apolipoprotein B100 (ApoB), and lipoprotein (a) (Lp (a))
levels were determined in fasting state using a Beckman Coulter AU680 analyzer at the
Institute of Laboratory Medicine, Semmelweis University.
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2.5. Bead-Based Multiplex Immunoassay

Three bead-based multiplex assays were used to quantify apolipoprotein (Apo) pro-
teins and neurodegenerative and vascular biomarkers. The Human Apo Panel allowed for
the simultaneous quantification of 11 human Apo proteins, including Apo A1, AII, ApoB
100, CII, CIII, D, E, E4, H, J, and M. The Human Neurodegenerative Disease Biomarker
Panel provided the detection of the native proteins α-synuclein (αSyn), tau (TAU), β-
amyloid-40 (Aβ40), β-amyloid-42 (Aβ42), and neurofilament light chain (NFL). The Hu-
man Vascular Inflammation Panel-1 conducted a simultaneous quantification of 12 human
proteins, including myoglobin (MB), calprotectin (MRP8/14), lipocalin A (NGAL), os-
teopontin (OPN), myeloperoxidase (MPO), serum amyloid A (SAA), insulin-like growth
factor-binding protein-4 (IGFBP-4), intercellular adhesion molecule 1 (ICAM-1) (CD54),
vascular cell adhesion protein 1 (VCAM-1) (CD106), matrix metalloproteinase-2 (MMP-2),
matrix metalloproteinase-9 (MMP-9), and cystatin C (LEGENDplex, Biolegend, San Diego,
CA, USA). Plasma samples were diluted at a ratio of 1:8000 for the Apo Panel, 1:2 for the
Neurodegenerative Panel, and 1:100 for the Vascular Inflammation Panel-1. The standards
and samples were measured in two replicates. All assays were performed in accordance
with the manufacturer’s instructions. The signal intensity of microbeads was detected
using a CytoFLEX instrument (Beckman Coulter, Brea, CA, USA). The gate setup included
both A and B beads (gate A + B), and the number of events was adjusted according to the
panel so that 300–600 events were recorded for each analyte. The files were analyzed using
FlowJo v.X.0.7 software (Tree Star Inc., Ashland, OR, USA). A standard curve that was
specific to the kit lot number was constructed for each analyte, and the data were analyzed
using the GraphPad Prism 9 software (GraphPad Software Inc., San Diego, CA, USA); the
final concentrations were obtained after correcting for sample dilution.

2.6. Genotyping Apolipoprotein E Gene

Genomic deoxyribonucleic acid (DNA) was isolated from EDTA blood samples using
a Tissue/Blood DNA Mini Kit [Geneaid; GB300]. Three allele-specific real-time PCR (qPCR)
reactions were performed to investigate the APOE gene polymorphisms (ε2/ε2, ε2/ε3,
ε2/ε4, ε3/ε3, ε3/ε4, ε4/ε4). For all reactions (15 µL), 1× TaqMan® Genotyping Master
Mix (Thermo Scientific, Waltham, MA, USA), 0.5 µM of APOE primers, and an APOE
assay probe were used as an internal control. Therefore, no repeats of genotyping were
needed. A pair of 1 µM of beta actin (ACTB) primers and an ACTB assay probe were
used (Merck) (Stable-1). A total of 5 µL (~5 ng) of genomic DNA was used as the template.
The first step of the PCR amplification protocol involved activation of AmpliTaq Gold
DNA polymerase at 95 ◦C for 10 s, followed by 16 cycles of a touchdown PCR to achieve
higher specificity; denaturation at 95 ◦C for 10 s and annealing/extension at 70 ◦C for
30 s, with each cycle reducing by 0.5 ◦C down to 62 ◦C; and denaturation at 95 ◦C for 10 s
and annealing/extension at 62 ◦C for 30 s for 20 cycles (CFX C1000 Touch 96-well; Bio-Rad,
Hercules, CA, USA). The evaluation took into account the presence of APOE FAM, and
ACTB HEX RFU as well as the allele discrimination results [19] (Supplementary Table S1).

2.7. Stool Sample Collection and Processing, Bioinformatics, and Statistical Analysis

A standardized procedure [20] was followed for the collection and processing of the
stool samples as well as for the bioinformatics and statistical analysis. The participants
received a detailed instruction manual with a flow chart for the purpose of standardized
sampling, in which the importance of the short time between sampling and return; the
prevention of external contamination; and the quantity, proper storage, and packaging of
the sample were highlighted. Samples were stored and frozen prior to processing. For
the hypervariable region V3–V4 of microbial 16S ribosomal RNA, a library extraction
was conducted after DNA extraction. Prior to sequencing on an Illumina MiSeq platform
(Thermo Fischer Scientific, Waltham, MA, USA), the libraries were tagged with individual
index pairs, verified using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA),
and pooled.
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Sequencing data were analyzed using the Nephele cloud platform (NIH, NIAID)
(https://nephele.niaid.nih.gov/index (accessed on 21 June 2023)) [21]. Quality control and
read preprocessing were performed on the platform using the default parameters. The
QIIME2 pipeline [22] was used after quality control for next-generation sequencing (NGS)
read classification with closed reference OUT clustering based on the SILVA database [23].
Default values were set for the other parameters. Shannon entropy was calculated to
estimate the alpha-diversities of the samples and weighted UniFrac distance-based prin-
cipal coordinate analysis (PCoA) was performed to evaluate the distance between their
compositions in the principal component space. Stacked bars were used for comparing the
relative abundances of the most common bacterial taxa of the two samples. Groups (in
each taxonomic level) with relative abundancies of at least 4% in one of the samples or on
average were included in these comparisons.

2.8. MRI Acquisition

Brain MRI imaging was carried out in April 2022 on a Philips Ingenia 1.5 T scanner
(Philips Healthcare, Best, The Netherlands) at the Semmelweis University Medical Imaging
Centre in Budapest, Hungary. In addition, previous brain MRI images were also assessed,
which were taken in February, 2015 on a Siemens Magnetom Verio 1.5 T scanner (Siemens
Healthcare GmbH, Erlangen, Germany) at the Borsod County University Teaching Hospital
in Miskolc; for the PSP twin, an additional brain MRI was performed in October, 2019
on a Philips Ingenia 1.5 T scanner (Philips Healthcare, Best, The Netherlands) at the
Semmelweis University. T1-weighted (T1W), T2-weighted (T2W), trace-weighted diffusion,
apparent diffusion coefficient, proton density, and T2* and T2W dark fluid (FLAIR) images
of the brain were taken. There was no contrast agent used. To assess the white matter
abnormalities (white matter hyperintensities, WMHs), we employed T1W and T2W dark
fluid (FLAIR) images. The following imaging parameters were used in the Philips scanner:
TE/TR 140/9000 ms, flip angle 88◦, 290 × 336 × 336 matrices, 0.8333 × 0.8333 in-plane
resolution, and 0.6 mm slice thickness. Both twin pairs were always scanned on the same
scanner on the same day (except for 2019).

2.9. Image Processing

The 3D T1-weighted images and FLAIR images, originally in DICOM (Digital Imag-
ing and Communications in Medicine) format, were converted to NIfTI (Neuroimaging
Informatics Technology Initiative; http://nifti.nimh.nih.gov/ (accessed on 18 January 2023)
format using a DCM2NII converter (http://www.mricro.com (accessed on 18 January
2023), mricron; Chris Rorden, Columbia, SC, USA). This format was then employed for all
subsequent image processing [24].

For white matter hyperintensity analysis, we used the volBrain’s DeepLesionBrain
(DLB) pipeline (https://www.volbrain.upv.es (accessed on 8 February 2023)). VolBrain is
an MRI brain volumetry software that operates automatically and can offer brain structure
volumes without human involvement; it was developed by José V. Manjón (IBIME, UPV,
Valencia, Spain) and Pierrick Coupé (LaBRI UMR 5800, Université de Bordeaux, CNRS,
Bordeaux, France). VolBrain employs an entirely automated pipeline for volumetric brain
analysis based on multi-atlas label fusion technology, which can provide accurate volumet-
ric information at various levels of detail in a short time [25]. WMH segmentation starts
with image denoising, which is followed by inhomogeneity correction, spatial registration,
intensity normalization, and intracranial cavity extraction by employing the Montreal Neu-
rological Institute algorithm (MNI). The tissue is then segmented using a multi-template
fusion atlas strategy, originating from a library that was produced by manually segment-
ing 43 patients by an expert radiologist using multimodal MRI data. Voxels surpassing
a specific threshold are lesion candidates; the volBrain program automatically handles
thresholding and voxel processing. The identified lesions are allocated into four anatomical
regions: paraventricular, deep white, juxtacortical, and infratentorial, which are further
divided into cerebellar and medullar regions. The number, volume, and distribution of
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each lesion are recorded. The process concludes with the generation of an automated report
containing the lesion load, number of lesions per class, and screenshots of the processed
images. Additionally, DLB provides the probability of disconnection caused by the de-
tected lesions for 64 white matter tracts and estimates a disconnectome map based on the
HCP1065 atlas [26]. Figures 1–3 demonstrate MRI FLAIR sequence segmentation using
volBrain DLB.
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Figure 3. Segmented T1W MRI imaging of the 77-year-old female monozygotic twin pair in 2022
using DLB; most of the analyzed tracts of the affected twin (A) have been affected by lesions (first
row), and more than a third of the analyzed tracts were completely unaffected by lesions in the
unaffected pair (B) (second row). The degree of WMH impact on each tract is visualized through a
heat map, with yellow and red indicating increasing severity. Image from the Semmelweis University
Medical Imaging Centre. A: anterior; P: posterior; L: left; R: right.

3. Results

Table 1 displays the basic patient data of the twin pair. The affected twin was the
firstborn twin. Both twins had a high school diploma, both performed intellectual work
throughout their lives, and both were married. The unaffected twin lived in a close family,
whereas the affected twin lived in a multigenerational family. Both stayed in a big city
during their lives. No alcohol was consumed. Both twins were breastfed for over 6 months.

Table 1. Descriptive analysis and risk factors of the twin pair. Differences are shown with asterisk (*).

Unaffected Twin Affected Twin Difference

Birth weight (g) 3500 3500 -
Sport activity
throughout the life

Yes
(Running) No *

Coffee consumption Yes
(1 cup/day) No *

Smoking Never Yes
(21.5 packs a years) *

Hypertension Yes
(40 years)

Yes
(20 years)

Cardiovascular disease No No -

Diabetes No Yes
(4 years) *

Dyslipidemia No No -
Cancer No Breast cancer *
Year at menopause 55 60 *

Birth control pills No Yes
(30 years) *

COVID infection No
Yes
(In the 2nd wave
in 2022)

*

However, remarkable differences were found between the two twins (as shown in
Table 1). The affected twin did not regularly exercise and did not drink coffee but was a
heavy smoker, suffered from diabetes and breast cancer, suffered from a COVID infection,
and took contraceptives compared with her unaffected twin. The disease started to show
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signs about 3–4 years before our examinations according to the patient and her relatives,
but there were no symptoms in the other twin as of yet.

A body composition analysis demonstrated a lower body mass index, body fat per-
centage, and visceral fat in the affected twin (Table 2). In addition, the affected twin had
elevated blood pressure, but no remarkable differences were found in the serum lipid levels
between the twins.

Table 2. Clinical parameters and blood biomarkers of the twin pair.

Unaffected Twin Affected Twin

BMI (kg/m2) 29.4 21.7
Body fat (%) 38.4 30.5
Visceral fat scale (1–30) 12 7
Body muscle (%) 27.2 27.9
SBP (mmHg) 151 167
DBP (mmHg) 79 82
Total cholesterol (mmol/L) 5.1 4.9
LDL-C (mmol/L) 3.47 3.36
HDL-C (mmol/L) 1.55 1.30
Triglyceride (mmol/L) 1.1 1.2
ApoA1 (mg/dL) 1.79 1.5
ApoB (mg/dL) 1 0.98
Lp(a) 0.03 0.03
ApoE genotype 3/3 3/3
Apo-AII (mg/dL) 119.85 115.27
Apo-CII (mg/dL) 73.23 59.35
Apo-CIII (mg/dL) 17.50 15.72
Apo-D (mg/dL) 24.68 21.36
Apo-E (mg/dL) 71.26 61.65
Apo-H (mg/dL) 23.96 13.59
Apo-J (mg/dL) 45.27 42.14
Apo-M (mg/dL) 15.35 11.82
Aβ40 (pg/mL) 462.02 416.79
Aβ42 (pg/mL) 77.00 70.75
TAU (pg/mL) 48.79 36.83
NFL (pg/mL) 71.11 67.73
αSyn (pg/mL) 11.42 42.95
ICAM1 (ng/mL) 5.71 4.63
VCAM1 (ng/mL) 0.84 0.62
MMP2 (ng/mL) 76.08 36.59
MMP9 (ng/mL) 26.60 21.94
NGAL (ng/mL) 45.74 48.98
CysC (ng/mL) 162.33 130.66
MB (ng/mL) 42.09 10.48
MPO (ng/mL) 417.61 479.68
MRP8/14 (ng/mL) 2.62 2.51
OPN (ng/mL) 12.38 12.66
SAA (ng/mL) 45.75 46.74
MMP9/MMP2 0.3497 0.5997
Aβ42/Aβ40 0.1667 0.1697
TAU/Aβ42 0.6336 0.5205
ApoA1/SAA 0.5015 0.3150
ApoA1 22.00 14.00
ApoA1/SAA 4.8091 2.9950
ApoB/ApoA1 0.56 0.65
HDL/SAA 3.39 2.78
HDL/ApoD 6.28 6.09
HDL/ApoM 10.10 11.00
HDL/ApoJ 3.42 3.09

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL-C: high-density lipopro-
tein cholesterol; LDL-C: low-density lipoprotein cholesterol; ApoA1: apolipoprotein AI, ApoB: apolipoprotein
B; Lp(a): lipoprotein (a); ApoE: apolipoprotein E; Apo-AII: apolipoprotein AII; Apo-CII: apolipoprotein CII;
Apo-CIII: apolipoprotein CIII; Apo-D: apolipoprotein D; Apo-H: apolipoprotein H; Apo-J: apolipoprotein J;
Apo-M: apolipoprotein M; Aβ40: amyloid-40; Aβ42: β-amyloid-42; TAU: tau protein; NFL: neurofilament light
chain; αSyn: α-synuclein; ICAM1: intercellular adhesion molecule 1; VCAM1: vascular cell adhesion molecule-1;
MMP2: matrix metalloproteinase-2; MMP9: matrix metalloproteinase-9; NGAL: lipocalin A; CysC: cystatin C; MB:
myoglobin; MPO: myeloperoxidase; MRP8/14: calprotectin; OPN: osteopontin; SAA: serum amyloid A.
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Considering the LegendPlex data, there was no relevant difference between the two
members of the twin pair in the levels of Apo-D, Apo-M, OPN, Apo-J, Aβ42, NFL, ICAM-1,
NGAL, MRP8/14, SAA, and Apo-AII. There was a small difference in the levels of MMP9,
Aβ40, TAU, VCAM-1, CysC, Apo-B100, Apo-CII, and Apo-E; a moderate difference in the
levels of MMP2, MB, Apo-A1, Apo-CIII, and Apo-H; and an extremely high level difference
in the level of αSyn (Table 2). Regarding the ratios, there was no difference between the
two members of the twin pair in the levels of TAU/Aβ42 and Aβ42/Aβ40 while there
was a small difference in the levels of ApoA1/SAA and ApoB/ApoA1. There was no
significant difference between the two members of the twin pair in the levels of triglyceride,
total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), ApoB, ApoA1, and their ratio. However, it is known that there is
a higher cross-reactivity in the LegendPlex analysis that affects Apo-A1 and Apo-B100;
therefore, these particular parameters were determined traditionally using a routine fasting
state method.

A neurological assessment was conducted on the affected twin, which revealed gait
loss, vertical gaze palsy, consecutive visual impairment, facial dystonia, dysarthria, bradyki-
nesia, rigor, and retrocollis. The patient also reported urinary incontinence and sleep
disturbances. In contrast, the other twin did not exhibit any symptoms or complaints and
was clinically negative for PSP or any other neurodegenerative disease.

Table 3 displays the results of the neuropsychological examination. According to these
tests, the twin pair presented prominent differences in the ACE, MMSE, and MoCA test
results. Conversely, when it came to mental health questionnaires such as BDI, GDS, and
ZDS, there were no notable variations, and none indicated concern for depression.

Table 3. Cognitive examination and mental state tests. Remarkable differences are shown with
asterisk (*).

Unaffected Twin Affected Twin

Handedness Right Right

Addenbrooke
Cognitive

Examination

Attention 18 points 13 points
Memory 29 points 21 points
Fluency 10 points 2 points
Language 27 points 25 points
Visuospatial skills 5 points 0 point
Total points 89 points * 61 points *

Mini-Mental State Examination 30 points * 22 points *
Montreal Cognitive Assessment 28 points * 13 points *
Beck Depression Inventory 2 points 4 points
Geriatric Depression Scale 0 point 1 point
Zung Self-Rating Depression Scale 27 points 28 points

In the ACE analysis, we observed a decrease in total points indicating global cognitive
deficiency and dementia. Additionally, there was a larger reduction in the sub-scores of
attention, memory, fluency, and visuospatial skills. The MMSE result was also reduced in
the affected twin, which indicated mild dementia. According to the MoCA test, a moderate
cognitive impairment was present (Table 3).

Concerning neuroimaging, we detected a left cerebellar lacunar stroke and signs of
PSP (midbrain atrophy) in the affected twin; signs of normal-pressure hydrocephalus (NPH)
were also observed. However, the latest brain MRI certified questionable signs of a possible
beginner PSP, a narrow oedematous signal disorder in the cerebellar tonsils, and possible
signs of normal-pressure hydrocephalus in the unaffected twin (Figures 1 and 2).

Based on the DLB analysis using the HCP1065 atlas, out of the 64 analyzed white
matter tracts in the affected twin pair, 60 tracts were affected by lesions (disconnection prob-
ability of above 55%), excluding left and right fornices and the cingulum parahippocampal
tracts. On the other hand, in the unaffected twin pair, more than 33% of the analyzed tracts
were unaffected by lesions (disconnection probability of 0%).
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The white matter hyperintensity analysis using volBrain’s DLB pipeline demonstrated
remarkable differences between the twins, especially in the total, periventricular, and
juxtacortical WMH lesion volume, which were higher in the affected twin (Table 4).

Table 4. White matter hyperintensity parameters of the twin pair.

Variable Unaffected Twin Affected
Twin

Total lesions count 24 36
Total lesions volume (cm3) 3.9192 30.0650
Periventricular lesions count 9 8
Periventricular lesions volume (cm3) 3.3902 29.4052
Deep white lesions count 12 17
Deep white lesions volume (cm3) 0.3136 0.3823
Juxtacortical lesions count 2 8
Juxtacortical lesions volume (cm3) 0.0362 0.2238
Infratentorial cerebellar lesions count 1 2
Infratentorial cerebellar lesions volume (cm3) 0.1793 0.0403
Infratentorial medullary lesions count 0 1
Infratentorial medullary lesions volume (cm3) 0 0.0132

The brain volumetric analysis showed a remarkable decrease in brain volumes in the
affected twin, mainly in total gray matter and frontal lobe volume, except for the temporal
lobe volume (Table 5).

Table 5. Brain volumetric parameters of the twin pair.

Volumes Unaffected
Twin

Affected
Twin

Total white matter volume (cm3) 403.59 387.12
Total gray matter volume (cm3) 664.13 623.45
Total brainstem volume (cm3) 20.34 16.14
Frontal lobe volume (cm3) 168.08 155.58
Temporal lobe volume (cm3) 103.83 103.51
Parietal lobe volume (cm3) 97.28 89.20
Occipital lobe volume (cm3) 80.16 76.79

The volumetric analysis of the cerebrospinal fluid (CSF) volume in the twins showed
a noteworthy increase in the CSF volume of the affected twin, which was indicative of
atrophy in multiple brain regions, and a pronounced dilation of the third and fourth
ventricles (Table 6).

Table 6. Cerebrospinal fluid (CSF) volume of the twin pairs.

CSF Volume Unaffected
Twin

Affected
Twin

Total CSF volume (cm3) 220.89 272.12
Inferior lateral ventricle
volume (cm3) 4 7.30

Lateral ventricle volume (cm3) 64.49 94.48
3rd ventricle volume (cm3) 2.93 3.85
4th ventricle volume (cm3) 3.55 5.27
External CSF volume (cm3) 145.92 161.23

Alpha diversity, which is a measure of the diversity of the microbiome in a single
sample, was calculated, and the results showed that the affected twin had a smaller Shannon
diversity (7.04) than the unaffected twin (8.51). Beta diversity, which provides more
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information about the alikeness or dissimilarity of more communities, was also evaluated.
The principal coordinate analysis (PCoA) constructed using weighted UniFrac distances
showed that the samples were not particularly similar based on their microbial composition
(Figure 4).
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The microbiome composition assessment was accomplished. The plots revealed the
relative abundances (in %) of the most common taxa in the two samples (taxa occurring
with at least 4% in one of the samples, or at least 4% on average). The lower plots showed
the relative abundance differences (in %) between the unaffected and affected twin.

At the phylum level, we found that Firmicutes was the dominant phylum in both
samples. The unaffected twin had higher Firmicutes and Proteobacteria content, while the
sample of the affected twin had more Bacteroidota and Verrucomicrobiota. (Figure 5).
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We examined our microbiome data at the genus level as well and found that the
unaffected twin’s sample had more bacteria belonging to the Bacteroides, Anaerostipes
genera, Lachnospiraceae family, and Enterobacteriales order. The latter three were rare in the
sample of the twin with the disease, wherein the sample had a much higher content of
Akkermansia, Oscillospiraceae, and Odoribacter. (Figure 6).
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4. Discussion

To the best of our knowledge, this is the first study analyzing the risk factors, genetic
and biomarker changes, and gut microbiome in PSP in a twin pair. The identification of
environmental and modifiable risk factors and potential new plasma biomarkers creates an
opportunity to diagnose the condition early, intervene, and delay the onset of PSP or slow
disease progression. Although the study analysis was only performed on one twin pair,
who share nearly 100% of their genes, we found remarkable differences in lifestyle factors
during their lifespan (e.g., lack of regular exercise, coffee consumption, and heavy smoking),
blood neurodegenerative and vascular biomarkers (especially in case of αSyn, as well as
MMP-2, MB, Apo-A1, Apo-CIII, Apo-H levels), neuropsychological tests (ACE, MoCA,
MMSE), and brain MRI findings (cerebellar lacunar stroke, midbrain atrophy, signs of
NPH, WMH lesions and brain volume changes) in the affected twin. Moreover, differences
regarding the gut microbiome were also observed.

To date, few articles have focused on environmental and lifestyle risk factors for PSP.
In the review of Park et al., exposures to toxins related to diet, metals, well water, and
hypertension were associated with an increased risk of PSP, while higher education and
statins were protective [27]. We found important differences by analyzing the risk factors of
the twins during their lifespan. There was no difference in education, working conditions,
marital status, social conditions, and breastfeeding. However, lack of regular exercise,
regular coffee consumption, and heavy smoking was found in the affected twin, which was
not yet known as a risk factor of PSP. Previous studies did not certify an association between
PSP and smoking habits [27–29] except in the univariate analysis of the ENGENE-PSP
study, which did not reach statistical significance in the multivariate analysis (OR = 1.10;
95% CI = 0.99–1.22; p = 0.08) [30]. The PSP-affected twin had hypertension, which correlates
with the previous findings [27,31]. In addition, the affected twin had been living with
diabetes for four years, previously underwent breast cancer surgery, experienced a COVID
infection, and had taken contraceptives.

A body composition analysis demonstrated a lower body mass index, body fat per-
centage, and visceral fat in the PSP-affected twin, which was associated with fatigue due to
disease progression.

No remarkable differences were found in the serum lipid levels between the twins,
which correlates with a previous multicenter study [31].

Blood protein biomarkers are being increasingly used to reliably differentiate PSP
from healthy controls and patients with relevant differential diagnoses [32,33]. Serum
uric acid seems to be lower in PSP, whereas methyl malonate and homocysteine seem to
be elevated [34]. According to Chouliaras et al. [32], patients with PSP have a high NFL
but no significant increase in other biomarkers such as P-tau181, Aβ42/40, and GFAP
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(glial fibrillar acidic protein) [35], which was partially found in our case, as TAU and
Aβ42/40 were decreased in the twin diagnosed with PSP. However, p-tau181 and GFAP
were associated with baseline cognitive function in PSP [33]. Baseline NFL was found to be
a predictor of disease progression in PSP. Considering the blood neurodegenerative and
vascular biomarker findings, we found small, negligible differences in the levels of MMP-9,
Aβ40, TAU, VCAM-1, CysC, Apo-B100, Apo-CII, and Apo-E; a moderate difference in
the levels of MMP-2, MB, Apo-A1, Apo-CIII, and Apo-H; and an extremely high-level
difference in the level of αSyn. There was a small difference in the levels of ApoA1/SAA
and ApoB/ApoA1. The aforementioned biomarkers may become potential biomarkers if
further investigations confirm it on a larger sample size.

Many studies have reported various structural neuroimaging findings in T1- weighted,
T2-weighted, and FLAIR images, including midbrain atrophy, atrophy of the superior
cerebellar peduncle, and frontal and parietal cortical atrophy, which were present in the
affected twin. Moreover, dilatation of the third and fourth ventricles and the aqueduct
of Sylvius was also observed, which was present in the twin pair, with dominance in the
affected twin. In addition, atrophy of the subthalamic nucleus is the most typical trait of
PSP. The most characteristic pathological finding is the atrophy of the midbrain, which is
demonstrated by the hummingbird sign as a result of rostral midbrain atrophy observed
on mid-sagittal images, which was observed in the affected twin [6,36]. Interestingly, MRI
signs of possible beginner PSP were suspected in the MRI imaging for the unaffected twin
despite them being clinically asymptomatic, including narrow edematous signal disorder
in the cerebellar tonsils and possible signs of NPH. The WMH analysis demonstrated
remarkable differences between the twins, especially in the total, periventricular, and
juxtacortical WMH lesion volume, which were higher in the PSP-affected twin. In addition,
a remarkable decrease in brain volumes, mainly in total gray matter and frontal lobe volume
except for temporal lobe volume, was observed. In the affected twin, a left cerebellar lacunar
stroke was also observed, which referred to a vascular (possibly atherosclerotic) origin.

Neurocognitive decline and dementia are common findings in PSP and often determine
the individual’s quality of life. From a broad reduction in overall global cognition to a more
specific frontal behavioral changes, symptoms such as decreased verbal fluency, impaired
abstract thought, and reduced motor functions are observed in patients with PSP [37].
Apathy, dysphoria, and anxiety may also be present [38]. In our case study, the patient
with PSP did not show any signs of depression; in contrast, she suffered from cognitive
decline. Regarding the ACE test, the affected twin had a reduction in the cognitive domains
of attention, memory, fluency, and visuospatial skills, which are well-known indicators of
PSP. On the other hand, MMSE, the most broadly used screening method for the evaluation
of cognitive impairment, only showed mild dementia, while the MoCA test implicated a
moderate decline in cognition. Fiorenzato et al. [14] reflected that the MoCA test is more
sufficient and sensitive in the workup of PSP than MMSE, meaning that our results are in
agreement with their findings. The ACE test showed the classical diagnostic signs of lost
functions with respect to cognition.

The connection between the nervous system and the gut, known as the gut–brain
axis, has been under investigation recently, especially regarding neurodegenerative disor-
ders because of dementia’s incidence growing every day worldwide. In the last decade,
several studies have been trying to explore the correlation between the gut microbiota
and cognitive decline, and there has still not been a crystal clear explanation regard-
ing this relationship; however, many studies suggest that gut microbiota can modulate
brain function [10,39]. For example, Alzheimer’s disease (AD) was associated with higher
Akkermansia and lower Firmicutes levels [40]. A reduced volume of Lachnospiraceae and
Rikenellaceae family members was also correlated with AD [41,42]. In contrast, other studies
showed similar Lachnospiraceae content in PSP patients compared with healthy controls [43].
The clinically affected twin’s sample has less Lachnospiraceae but more Rikenellaceae (Alistipes)
than the asymptomatic twin. Tian et al. applied a fecal microbiome transplantation (FTM)
on PSP-Richardson’s syndrome patients in order to reduce dysbiosis [44]. The authors
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reported improvement in the symptoms of the patients as well as reduced intestinal in-
flammation and a healthier intestinal barrier due to the increase of short-chain fatty acid
(SCFA)-producing bacteria; they also reported more Bacteroidota and fewer Firmicutes in
the PSP patients compared with the control ones and associated SCFA-producing taxa
(e.g., Faecalibacterium, Blautia, Roseburia) for health as well. The healthy twin’s sample had
a higher ratio of these SCFA-producing bacteria than the twin with PSP dementia. The
PSP-affected twin had more Oscillospiraceae and Odoribacter, and these bacterial species
have the potential for producing SCFAs; Oscillospira sp. can produce butyrate [45], whereas
Odoribacter laneus can synthesize propionate by reducing succinate [46]. This result indicates
that these bacteria can have anti-inflammatory effects, while the amount of them and the
higher relative abundance of Akkermansia are all associated with the microbiome of older
individuals [47]. Our results suggest that the microbiomes of this pair are notably different;
the affected twin seemed to have older characteristics than the microbiome of the possibly
healthy twin sibling. The affected twin was not seriously dysbiotic but showed some signs
that were associated with AD and PSP (lower anti-inflammatory environment).

The main limitation is that this is a case study, and the findings must be considered with
caution and cannot be generalized. Although we received similar data (especially observing
the cognitive tests and MRI results) in comparison with the general population and with
healthy and affected individuals, our sample amount was small; further investigations are
important. Discordant twin examination was not possible as this was the only discordant
MZ pair in the registry where PSP was present as a rare condition. A second limitation
is that other existing conditions (such as vascular dementia), chronic diseases, and drug
therapies in our subjects might also bias the results.

5. Summary and Conclusions

In our single case, taking into account the study design, we found remarkable differ-
ences in some risk factors (less exercise, heavy smoking), in the level of blood neurodegen-
erative and vascular biomarkers (α-synuclein, MMP-2, MB, Apo-A1, Apo-CIII, Apo-H),
and in the gut microbiome in PSP-related twin subjects, which was correlated with rele-
vant neuropsychological tests and typical brain MRI abnormalities. Further investigations
are necessary to reveal these findings in a larger sample, and explicit conclusions cannot
be drawn.
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CSF Cerebrospinal fluid
CysC Cystatin C
DBP Diastolic blood pressure
DICOM Digital Imaging and Communications in Medicine
DLB DeepLesionBrain
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
FLAIR Fluid-attenuated inversion recovery
FTM Fecal microbiome transplantation
GDS Geriatric Depression Scale
GFAP Glial fibrillar acidic protein
GM Gray matter
HDL-C High-density lipoprotein cholesterol
ICAM1 Intercellular adhesion molecule 1
IGFBP-4 Insulin-like growth factor-binding protein-4
LDL-C Low-density lipoprotein cholesterol
Lp(a) Lipoprotein (a)
MAPT Microtubule-associated protein tau
MB Myoglobin
MMP-2 Matrix metalloproteinase-2
MMP-9 Matrix metalloproteinase-9
MMSE Mini-Mental State Examination
MNI Montreal Neurologic Institute
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MoCA Montreal Cognitive Assessment (MoCA)
MPO Myeloperoxidase
MRI Magnetic resonance imaging
MRP 8/14 Calprotectin
NFL Neurofilament light chain
NGAL Lipocalin A
NGS Next-generation sequencing
NIfTI Neuroimaging Informatics Technology Initiative
NPH Normal pressure hydrocephalus
OPN Osteopontin
PCoA Principal coordinate analysis
PCR Polymerase chain reaction
PSP Progressive supranuclear palsy
RNA Ribonucleic acid
SAA Serum amyloid A
SBP Systolic blood pressure
SCFA Short-chain fatty acid
T1W T1-weighted
T2W T2-weighted
TAU Tau protein
VCAM1 Vascular cell adhesion molecule-1
WM White matter
WMH White matter hyperintensity
ZDS Zung Depression Scale
αSyn α-Synuclein
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