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Abstract: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease
worldwide today. The NLRP3 inflammasome is a polyprotein complex and an important participant
in inflammation. Accumulating studies have shown that the NLRP3 inflammasome participates
in a variety of kidney diseases, including IgAN. This review focuses on the role of the NLRP3
inflammasome in IgAN and summarizes multiple involved pathways, which may provide novel
treatments for IgAN treatment.
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1. Introduction

Immunoglobulin A nephropathy (IgAN) is the most common variety of primary
glomerular disease worldwide today, and the deposition of IgA immune complexes (IgA-
ICs) within glomeruli is the most outstanding characteristic [1–3]. The deposition of
immune complexes can activate mesangial cell proliferation and induce cytokine secretion,
resulting in inflammation and ultimately leading to kidney damage [3,4]. Studies have
shown that approximately one third of IgAN patients progress to end-stage renal disease
(ESRD) within 20 years [1,5].

The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) com-
pose a group of pattern recognition receptors (PRRs) and participate in inducing host
innate immune responses to cellular injury [6]. The NLR family pyrin domain-containing
3 (NLRP3) is one of the best understood members and the core protein of the NLRP3
inflammasome [6,7]. The NLRP3 inflammasome is an approximately 700 kD polypro-
tein complex and an important participant in inflammation, which consists of NLRP3,
apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)
and the protease caspase-1 [6–8]. Active caspase-1 cleaves the cytokines pro-interleukin-1β
(pro-IL-1β) and pro-interleukin-18 (pro-IL-18) into their mature and biologically active
forms IL-1β and IL-18, inducing inflammation and tissue damage [9].

NLRP3 inflammasome activation is a two-step process, consisting of priming and
activation. A priming signal is required for its activation, such as ligands for Toll-like
receptors (TLRs), NLRs or cytokine receptors, which trigger the transcription of nuclear
factor-kappa B (NF-κB) [9,10]. NF-κB promotes the expression of NLRP3 and pro-IL-1β, but
does not upregulate pro-IL-18, ASC or pro-caspase-1 [9,11]. Inflammasome can be activated
via both exogenous pathogen-associated molecular patterns (PAMPs) and endogenous
damage-associated molecular patterns (DAMPs) [10]. It happens when exposed to stimulus
such as reactive oxygen species (ROS), mitochondrial dysfunction, lysosomal damage,
ionic flux, pathogen-associated RNA and bacterial or fungal toxins [9,10,12]. NLRP3
inflammasome activation happens not only in immune cells, such as macrophages and
dendritic cells, but also in kidney cells, such as podocytes, mesangial cells, renal tubular
epithelium, etc. [7,8,13].

Based on the above findings, accumulating studies have shown that the NLRP3 inflam-
masome participates in a variety of kidney diseases, including diabetic nephropathy (DN),
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obesity-related kidney disease, acute kidney injury (AKI), crystal-related nephropathy,
lupus nephritis (LN) and IgAN [7–10,12,14,15]. Previous studies have demonstrated that
IgA-ICs can initiate the activation of the NLRP3 inflammasome in IgAN macrophages and
podocytes [13,16]. Additionally, the markers of NLRP3 inflammasome activation, IL-18
and IL-1β, were elevated in IgAN patients [16–18]. Studies in IgAN mouse models have
indicated that NLRP3 inflammasome-related pathways may be strongly associated with the
progression of IgAN [17,19]. Another study found that colorectal neoplasia differentially
expressed (CRNDE) exacerbates IgAN progression by promoting NLRP3 inflammasome ac-
tivation in macrophages, and the inhibition of CRNDE promoted NLRP3 degradation [20].
These studies revealed that the inhibition of the NLRP3 inflammasome may be a beneficial
strategy for the treatment of IgAN. Therefore, this review focuses on the role of the NLRP3
inflammasome in IgAN and identifying novel treatments for IgAN patients.

2. The NLRP3 Inflammasome and Related Pathways
2.1. The NLRP3 Inflammasome and NF-κB Pathway

Previous studies have demonstrated that NF-κB plays a pivotal role in the patho-
genesis of inflammation, and NF-κB expression is correlated with the poor prognosis of
IgAN patients [21,22]. Varieties of endogenous or exogenous stimuli could trigger the
transcription of NF-κB, which is the main signal inducing the activation of the NLRP3
inflammasome [10,23].

Studies have illustrated that activation of the NF-κB/NLRP3 pathway might partici-
pate in the pathogenesis of inflammation in IgAN, and inhibiting NLRP3 activation can
alleviate the inflammation [4,17,19,24–27]. For example, He L. et al. found that triptolide
could down-regulate serum levels of IL-1β and IL-18 and may exert an anti-inflammatory
effect by suppressing NLRP3 and TLR4 expression on IgAN rats [27]. Another study on
rats found that artemisinin and hydroxychloroquine combination therapy exert protective
effects on IgAN by inhibiting NF-κB signaling and NLRP3 inflammasome activation [25].
A recent study also discovered that IgAN mice benefited from compound K (a major ab-
sorbable intestinal bacterial metabolite of ginsenosides) and Icariin (a major constituent of
flavonoids isolated from plants of the genus Epimedium) by inhibiting the NF-κB/NLRP3
pathway, respectively [17,26].

In summary, these findings indicate that the NF-κB/NLRP3 pathway is essential
in the pathogenesis of IgAN, and the inhibition of its activation may be an effective
therapeutic method.

2.2. The NLRP3 Inflammasome and Autophagy

Autophagy, a vital intracellular process that degrades dysfunctional proteins and
organelles (e.g., mitochondria) via lysosome-mediated degradation, clears damaged in-
tracellular pathogens and regulates the diverse immune system such as antigen presenta-
tion [28–30]. Autophagy has now been identified as an important regulator of the NLRP3
inflammasome [30–33]. Previous studies have shown that inflammatory signals lead to
an induction of autophagy, which plays a negative role in the activation of the NLRP3
inflammasome and promotes cell survival and restores tissue homeostasis after damage in
autoimmune diseases, including IgAN [16,26,28].

Accumulating evidence has indicated that the regulation of inflammasomes and
autophagy may be the key for the treatment of multiple diseases, including kidney
disease [30–33]. Qu et al. showed that cisplatin may induce kidney injury by inhibit-
ing autophagy and activating NLRP3 inflammasomes [34]. Additionally, in their later
study, they found that astragaloside IV could alleviate cisplatin-induced AKI by inducing
autophagy and limiting the expression of the NLRP3 inflammasome [35]. Recent reviews
also outlined that autophagy inhibits inflammatory responses induced in AKI through the
inhibition of inflammasome activation, suggesting that the enhancement of autophagy,
such as the use of autophagy activators, might be a potential target for the treatment of
AKI [33,36].
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The relation between NLRP3 and autophagy also plays a vital role in the develop-
ment of IgAN. In mouse models of progressive IgAN, researchers showed that resveratrol
inhibits the NLRP3 inflammasome activation by augmenting autophagy and preserving
mitochondrial integrity [37]. Additionally, in cultured macrophages, Tris dibenzylide-
neacetone dipalladium (Tris DBA), a small-molecule palladium complex, was found to
inhibit the activation of the NLRP3 inflammasome and regulate the autophagy/NLRP3
inflammasome axis through SIRT1 and SIRT3 [16]. In addition, a recent study in Taiwan
found that compound K inhibited the activation of the renal NLRP3 inflammasome in
treated IgAN mice, and increased induction of autophagy in IgA-IC-primed macrophages,
revealing the protective mechanisms of autophagy in IgAN [26]. In their later study in vitro
and vivo, LCC18, a benzamide-linked small molecule, was found to improve renal function
and reduce proteinuria in IgAN by blocking the priming of the NLRP3 inflammasome and
inhibiting its activation through autophagy induction, further confirming the positive effect
of autophagy in IgAN [38].

Collectively, these results suggested that inhibiting NLRP3 activation through au-
tophagy induction may be a potential novel therapeutic approach for IgAN.

2.3. The NLRP3 Inflammasome and Mitochondrial Reactive Oxygen Species

Previous studies have indicated that the most typical mechanism for activating the
NLRP3 inflammasome is the production of ROS, especially mitochondrial ROS
(mtROS) [10,39–41]. Mitochondrial dysfunction has long been considered a necessary
factor in triggering NLRP3-mediated inflammation, and overproduction of mtROS is a key
factor in NLRP3 inflammasome activation [39,41]. Excessive mtROS production induces
thioredoxin (TRX) separation from thioredoxin-interacting protein (TXNIP), and then the
latter binds to NLRP3 and activates the NLRP3 inflammasome [39,42].

A growing number of studies have revealed the role of blocking mtROS in kidney
diseases, such as ischemic and cisplatin-induced AKI, DN, etc. [39,43–47]. A previous
study found that Mito TEMPO, a mitochondria-targeted antioxidant, can inhibit mtROS
overproduction and NLRP3 inflammasome activation, and it verified that the NLRP3
inflammasome can be activated via the mROS-TXNIP-NLRP3 signal pathway, providing
a potential therapeutic target for ischemic AKI [43]. Han et al. also found that oral
administration of the mitochondria-targeted antioxidant MitoQ reduced mtROS levels,
thereby inhibiting the TXNIP/NLRP3/IL-1β signaling pathway, leading to the alleviation
of kidney injury in DN mice [39].

The ROS signaling pathway has also been shown to be involved in IgAN [19,48]. It has
been well-recognized that albuminuria is a risk factor of IgAN, and albuminuria triggers
mitochondrial dysfunction and mtROS generation, resulting in renal tubular inflammation
through mtROS-meditated activation of the NLRP3 inflammasome [24,49]. A previous
study found that IgA ICs could induce the activation of the NLRP3 inflammasome through
ROS in macrophages [48]. Yang et al. found in induced accelerated progressive IgAN
mice that antroquinonol (a pure active compound from Antrodia camphorata mycelium)
promoted the Nrf2 antioxidant pathway, inhibited NLRP3 inflammasome activation and
significantly improved renal function [50]. Additionally, in IgA-IC-primed macrophages,
they discovered that antroquinonol inhibited NLRP3 inflammasome activation by reducing
ROS production [50]. Hua et al. also found that osthole inhibited ROS production, activa-
tion of NF-κB and the NLRP3 inflammasome, exerting its reno-protective effects on the
progression of IgAN both in vitro and in vivo [19]. Based on these findings, ROS inhibition
may be a potential choice to inhibit NLRP3 activation and reduce inflammation in IgAN.

2.4. The NLRP3 Inflammasome and Exosomes

Exosomes are small extracellular vesicles (30–150 nm) secreted by all healthy and
abnormal cells and are abundant in all bodily fluids [51,52]. Exosomes contain specific pro-
tein, lipid, RNA and DNA compositions that are derived from the endocytosis membrane
and can transmit signals to recipient cells, playing a key role in intercellular communica-
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tions [51,53,54]. Exosomes play significant roles in inflammation and immune response, and
they are considered promising biomarkers for diagnosis and therapy in various diseases,
including kidney diseases such as LN, AKI, DN and IgAN [51,55–60].

Emerging evidence has revealed the relationship between exosomes and the NLRP3
inflammasome [61–64]. Recent studies have shown that exosomes can influence the course
of NLRP3 inflammasome-associated diseases by secreting different substances that affect
key molecules in the canonical pathway [61,62]. Dai et al. discovered that exosomes relieve
myocardial ischemia/reperfusion injury by inactivating the TLR4/NF-κB/NLRP3 inflam-
masome signaling pathway in a neonatal rat model induced by ischemia/reperfusion [63].
In another rat model, Tang et al. found that exosomal miR-320b can directly target NLRP3
and inhibit pyroptosis, thereby protecting the myocardium from ischemia/reperfusion
injury by inhibiting pyroptosis [65].

Recent research also focused on the mechanism by which exosomes mediate inflamma-
tion in IgAN [4,25]. Bai et al. found that artemisinin and hydroxychloroquine combination
therapy could significantly promote the secretion of exosomes in the renal tissue of IgAN
rats and inhibit the expressions of NF-κB signal and NLRP3 inflammasome-related pro-
tein [25]. Subsequently, Li et al. found that Zhen-wu-tang (a well-known traditional
Chinese formula) regulated exosome secretion, which influenced the NF-KB/NLRP3 sig-
naling pathway in the human mesangial cell proliferation model, and it could also reinforce
the secretion of exosomes in an IgAN rat model [4]. These results have provided new
evidence that enhancing the secretion of exosomes to inhibit the NF-κB/NLRP3 signaling
pathway is a promising approach for IgAN treatment.

Moreover, a recent study in IgAN patients found that supplementation of probi-
otics can significantly improve gut dysbiosis and ameliorate IgAN by inhibiting the
NLRP3/ASC/Caspase-1 signaling pathway [66]. A summary of the main publications
about treatments related to pathways between IgAN and the NLRP3 inflammasome is
shown in Table 1. Figure 1 illustrates the related pathways between IgAN and the NLRP3
inflammasome and the plausible mechanism of treatments.
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Figure 1. Schematic representation for the related pathways between IgAN and the NLRP3 inflam-
masome and the plausible mechanism of treatments. IgA-ICs, IgA immune complexes; IgAN, IgA
nephropathy; Tris DBA, Tris dibenzylideneacetone dipalladium; ROS, reactive oxygen species.
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Table 1. Studies about treatments related to pathways between IgAN and NLRP3 inflammasome.

Treatments Related Pathways Models Year

Zhen-wu-tang [4] Regulates exosomes to inhibit
NF-κB/NLRP3 pathway

IgAN rat model and human
renal tubular epithelial cells

(HK-2)
2020

Tris DBA [16]
Inhibits the activation of NLRP3

inflammasome through SIRT1- and
SIRT3-mediated autophagy

IgAN mouse model and
cultured macrophage cells 2020

Icariin [17]
Ameliorates IgA nephropathy by

inhibition of NF-κB/NlRP3
pathway

IgAN rat model and BMDCs 2016

Osthole [19] Inhibits ROS generation and
NF-κB/NLRP3 pathway

Progressive IgAN mouse
model, cultured macrophage

cells and mesangial cells
2013

Artemisinin and
hydroxychloroquine

combination therapy [25]

Suppress NF-κB signaling and
NLRP3 inflammasome activation by

exosomes

IgAN rat model and human
renal tubular epithelial cells

(HK-2)
2019

Compound K [26]
Inhibits NF-κB/NLRP3

inflammasome and enhance
autophagy and SIRT1

IgAN mouse model 2020

Triptolide [27] Down-regulates NLRP3 and TLR4
expression IgAN rat model 2015

Resveratrol [37]

Inhibits NLRP3 inflammasome
activation by augmenting
autophagy and preserving

mitochondrial integrity

IgAN mouse model 2015

LCC18 [38]

Inhibits the MAPKs/COX-2
axis-mediated priming of the

NLRP3 inflammasome and inhibits
NLRP3 inflammasome activation

through autophagy induction

IgAN mouse model and
cultured macrophage cells 2021

Probiotics [66]
Improve gut dysbiosis and inhibit

the NLRP3/ASC/Caspase-1
signaling pathway

IgAN patients and IgAN
mouse model 2022

IgAN, IgA nephropathy; Tris DBA, Tris dibenzylideneacetone dipalladium; BMDCs, macrophages and bone-
marrow-derived dendritic cells; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; MAPK, mitogen-activated
protein kinases; COX, cyclooxygenase-2; ASC, apoptosis-associated speck-like protein that contains a caspase
recruitment domain.

Other studies have also shown that the renin–angiotensin–aldosterone system (RAAS)
and endoplasmic reticulum stress (ERS) can regulate the NLRP3 inflammasome and play
an important part in the development of renal diseases, including DN, obesity-related
kidney disease and AKI [8,67–70]. The relationship between the NLRP3 inflammasome
and RAAS and ERS is expected to be found in IgAN.

3. Conclusions

In this review, we summarized information regarding multiple pathways between
IgAN and the NLRP3 inflammasome, including the NF-κB/NLRP3 pathway, autophagy,
mtROS production and exosomes. These studies suggest that NLRP3 could be a promising
therapeutic target for the design of a novel therapeutic treatment for IgAN. In the future,
these pathways need to be completely understood and are worthy of further investigation
in humans.
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