Monitoring of the Forgotten Immune System during Critical Illness—A Narrative Review
Abstract
:1. Introduction
2. Why Monitor the Immune System during Critical Illness?
3. Old Markers, any New Information?
3.1. Leukogram and Neutrophil/Lymphocyte Ratio
3.2. Soluble Biomarkers
4. Can We Monitor the Immune System in Depth? The Clinical Application of Flow Cytometry
4.1. Limitations and Challenges to the Use of Flow Cytometry
4.2. New Techniques for in Depth Monitoring
5. What Are the More Promising Immune Cell Associated Markers?
5.1. T-Cell Associated Markers
5.2. Monocyte Associated Markers
5.3. Neutrophil Associated Markers
5.4. Combination of Markers
6. Future Perspectives and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Surbatovic, M.; Vojvodic, D.; Khan, W. Immune Response in Critically Ill Patients. Mediat. Inflamm. 2018, 2018, 9524315. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immun. 2010, 125, S3-23. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Marsh, S. Steroid use in critical care. BJA Educ. 2018, 18, 129–134. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; Benbenishty, J.S.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID. JAMA 2021, 326, 499–518. [Google Scholar] [PubMed]
- Maslove, D.M.; Tang, B.; Shankar-Hari, M.; Lawler, P.R.; Angus, D.C.; Baillie, J.K.; Baron, R.M.; Bauer, M.; Buchman, T.G.; Calfee, S.C.; et al. Redefining critical illness. Nat. Med. 2022, 28, 1141–1148. [Google Scholar] [CrossRef]
- Ojcius, D.; Saïd-Sadier, N. Alarmins, inflammasomes and immunity. Biomed. J. 2012, 35, 437. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012, 249, 158–175. [Google Scholar] [CrossRef]
- Colín-Castro, C.A.; Franco-Cendejas, R.; Rocha-González, H.I.; Cruz-Arenas, E.; Leyva-García, N.; Sánchez-Sánchez, R.; Leyva-Gomez, G.; Gomez, R.; Munoz, B.; Cortés, H.; et al. Association of TLR4 gene polymorphisms with sepsis after a burn injury: Findings of the functional role of rs2737190 SNP. Genes Immun. 2021, 22, 24–34. [Google Scholar] [CrossRef]
- Duan, Z.; Gu, W.; Zhang, L.; Du, D.; Hu, P.; Huang, J.; Qing, L.; Wang, Z.; Hao, J.; Jiang, J.-X. Clinical Relevance of the TLR4 11367 Polymorphism in Patients with Major Trauma. Arch. Surg.-Chic. 2009, 144, 1144–1148. [Google Scholar] [CrossRef][Green Version]
- Seree-aphinan, C.; Vichitkunakorn, P.; Navakanitworakul, R.; Khwannimit, B. Distinguishing Sepsis From Infection by Neutrophil Dysfunction: A Promising Role of CXCR2 Surface Level. Front. Immunol. 2020, 11, 608696. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cao, K.; Zhao, Y.; Du, J. Targeting Neutrophils in Sepsis: From Mechanism to Translation. Front. Pharmacol. 2021, 12, 644270. [Google Scholar] [CrossRef] [PubMed]
- Scozzi, D.; Liao, F.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The role of neutrophil extracellular traps in acute lung injury. Front. Immunol. 2022, 13, 953195. [Google Scholar] [CrossRef] [PubMed]
- Gando, S.; Nanzaki, S.; Morimoto, Y.; Kobayashi, S.; Kemmotsu, O. Out-of-hospital cardiac arrest increases soluble vascular endothelial adhesion molecules and neutrophil elastase associated with endothelial injury. Inten. Care Med. 2000, 26, 38–44. [Google Scholar] [CrossRef]
- Messing, M.; Jan-Abu, S.C.; McNagny, K. Group 2 Innate Lymphoid Cells: Central Players in a Recurring Theme of Repair and Regeneration. Int. J. Mol. Sci. 2020, 21, 1350. [Google Scholar] [CrossRef][Green Version]
- Thomas, B.J.; Kan-o, K.; Loveland, K.L.; Elias, J.A.; Bardin, P.G. In the Shadow of Fibrosis: Innate Immune Suppression Mediated by Transforming Growth Factor-β. Am. J. Res. Cell Mol. 2016, 55, 759–766. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Al-Ahmed, S.H.; Muhammad, J.; Khan, A.; Sule, A.A.; Tirupathi, R.; Mutair, A.A.; Alhumaid, S.; Al-Omari, A.; Dhawan, M.; et al. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Nato Adv. Sci. Inst. S. 2021, 9, 436. [Google Scholar] [CrossRef]
- Mira, J.C.; Brakenridge, S.C.; Moldawer, L.L.; Moore, F.A. Persistent Inflammation, Immunosuppression and Catabolism Syndrome. Crit Care Clin. 2017, 33, 245–258. [Google Scholar] [CrossRef][Green Version]
- Ong, D.S.Y.; Bonten, M.J.M.; Spitoni, C.; Lunel, F.M.V.; Frencken, J.F.; Horn, J.; Schultz, M.J.; van der Poll, T.; Klouwenberg, P.M.C.K.; Cremer, O.L.; et al. Epidemiology of Multiple Herpes Viremia in Previously Immunocompetent Patients With Septic Shock. Clin. Infect Dis. 2017, 64, 1204–1210. [Google Scholar] [CrossRef][Green Version]
- Yao, R.Q.; Ren, C.; Zheng, L.Y.; Xia, Z.F.; Yao, Y.M. Advances in Immune Monitoring Approaches for Sepsis-Induced Immunosuppression. Front. Immunol. 2022, 13, 891024. [Google Scholar] [CrossRef]
- Hawkins, R.B.; Raymond, S.L.; Stortz, J.A.; Horiguchi, H.; Brakenridge, S.C.; Gardner, A.; Efron, P.A.; Bihorac, A.; Segal, M.; Moore, F.A.; et al. Chronic Critical Illness and the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front. Immunol. 2018, 9, 1511. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression. J. Trauma Acute Care 2012, 72, 1491–1501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Walton, A.H.; Muenzer, J.T.; Rasche, D.; Boomer, J.S.; Sato, B.; Brownstein, B.H.; Pachot, A.; Brooks, T.L.; Deych, E.; Shannon, W.D.; et al. Reactivation of Multiple Viruses in Patients with Sepsis. PLoS ONE 2014, 9, e98819. [Google Scholar] [CrossRef][Green Version]
- Ingels, C.; Derese, I.; Wouters, P.J.; den Berghe, G.V.; Vanhorebeek, I. Soluble RAGE and the RAGE Ligands HMGB1 and S100A12 in Critical Illness. Shock 2015, 43, 109–116. [Google Scholar] [CrossRef][Green Version]
- Schrijver, I.T.; Théroude, C.; Roger, T. Myeloid-Derived Suppressor Cells in Sepsis. Front. Immunol. 2019, 10, 327. [Google Scholar] [CrossRef][Green Version]
- Zhang, W.; Fang, X.; Gao, C.; Song, C.; He, Y.; Zhou, T.; Yang, X.; Shang, Y.; Xu, J. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Darden, D.B.; Dong, X.; Brusko, M.A.; Kelly, L.; Fenner, B.; Rincon, J.C.; Dirain, M.L.; Ungaro, R.; Nacionales, D.C.; Gauthier, M.; et al. A Novel Single Cell RNA-seq Analysis of Non-Myeloid Circulating Cells in Late Sepsis. Front. Immunol. 2021, 12, 696536. [Google Scholar] [CrossRef]
- Kakoullis, L.; Pantzaris, N.D.; Platanaki, C.; Lagadinou, M.; Papachristodoulou, E.; Velissaris, D. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J. Crit. Care 2018, 47, 30–35. [Google Scholar] [CrossRef]
- Calfee, C.S.; Janz, D.R.; Bernard, G.R.; May, A.K.; Kangelaris, K.N.; Matthay, M.A.; Ware, L.B. Distinct Molecular Phenotypes of Direct vs Indirect ARDS in Single-Center and Multicenter Studies. Chest 2015, 147, 1539–1548. [Google Scholar] [CrossRef][Green Version]
- Wiedemann, H.P.; Wheeler, A.P.; Bernard, G.R.; Thompson, B.T.; Hayden, D.; Connors, A.F.; Hite, R.D.; Harabin, A.L. Comparison of Two Fluid-Management Strategies in Acute Lung Injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar] [CrossRef]
- Famous, K.R.; Delucchi, K.; Ware, L.B.; Kangelaris, K.N.; Liu, K.D.; Thompson, B.T.; Calfee, C.S. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am. J. Res. Crit. Care 2016, 195, 331–338. [Google Scholar] [CrossRef][Green Version]
- Sinha, P.; Churpek, M.M.; Calfee, C.S. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. Am. J. Res. Crit. Care 2020, 202, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Lubana, S.S.; Dabrowski, D. Isolated Chronic and Transient Neutropenia. Cureus 2019, 11, e5616. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Husain, E.H.; Mullah-Ali, A.; Al-Sharidah, S.; Azab, A.F.; Adekile, A. Infectious Etiologies of Transient Neutropenia in Previously Healthy Children. Pediatr. Infect. Dis. J. 2012, 31, 575–577. [Google Scholar] [CrossRef]
- Drewry, A.M.; Samra, N.; Skrupky, L.P.; Fuller, B.M.; Compton, S.M.; Hotchkiss, R.S. Persistent Lymphopenia After Diagnosis of Sepsis Predicts Mortality. Shock 2014, 42, 383–391. [Google Scholar] [CrossRef][Green Version]
- Lagunas-Rangel, F.A. Neutrophil-to-Lymphocyte ratio and Lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J. Med. Virol. 2020, 92, 1733–1734. [Google Scholar] [CrossRef][Green Version]
- El-Menyar, A.; Mekkodathil, A.; Al-Ansari, A.; Asim, M.; Elmenyar, E.; Rizoli, S.; Al-Thani, H. Platelet-Lymphocyte and Neutrophil-Lymphocyte Ratio for Prediction of Hospital Outcomes in Patients with Abdominal Trauma. Biomed. Res. Int. 2022, 2022, 5374419. [Google Scholar] [CrossRef]
- Çil, E.; Karadeniz, G.; Yenigün, S.; Çoraplı, G. Evaluation of the relationships between procalcitonin and neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in patients with pneumonia. Eur. Rev. Med. Pharmacol. 2022, 26, 3200–3205. [Google Scholar]
- Lu, Z.; Chen, X.; Ge, H.; Li, M.; Feng, B.; Wang, D.; Guo, F. Neutrophil-Lymphocyte Ratio in Patients with Hypertriglyceridemic Pancreatitis Predicts Persistent Organ Failure. Gastroenterol. Res. Pract. 2022, 2022, 8333794. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, R.; Yu, X.; Yang, R.; Xu, H.; Mao, Z.; Wang, Y. The neutrophil-lymphocyte count ratio as a diagnostic marker for bacteraemia: A systematic review and meta-analysis. Am. J. Emerg. Med. 2019, 37, 1482–1489. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Med. J. 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Teixeira-Pinto, A.M.; Carneiro, A.H.; Portuguese Community-Acquired Sepsis Study Group SACiUCI. C-reactive protein, an early marker of community-acquired sepsis resolution: A multi-center prospective observational study. Crit. Care 2011, 15, R169. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silvestre, J.; Póvoa, P.; Coelho, L.; Almeida, E.; Moreira, P.; Fernandes, A.; Mealha, R.; Sabino, H. Is C-reactive protein a good prognostic marker in septic patients? Inten. Care Med. 2009, 35, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.; Póvoa, P.; Almeida, E.; Fernandes, A.; Mealha, R.; Moreira, P.; Sabino, H. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit. Care 2007, 11, R92. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Patnaik, R.; Azim, A.; Mishra, P. Should serial monitoring of procalcitonin be done routinely in critically ill patients of ICU: A systematic review and meta-analysis. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 458. [Google Scholar]
- Pereira, J.M.; Laszczyńska, O.; Azevedo, A.; Basílio, C.; Sousa-Dias, C.; Mergulhão, P.; Paiva, J.A. Early prediction of treatment failure in severe community-acquired pneumonia: The PRoFeSs score. J. Crit. Care 2019, 53, 38–45. [Google Scholar] [CrossRef]
- Su, L.; Han, B.; Liu, C.; Liang, L.; Jiang, Z.; Deng, J.; Yan, P.; Jia, Y.; Feng, D.; Xie, L. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: A prospective cohort study. BMC Infect. Dis. 2012, 12, 157. [Google Scholar] [CrossRef][Green Version]
- Boeck, L.; Graf, R.; Eggimann, P.; Pargger, H.; Raptis, D.A.; Smyrnios, N.; Thakkar, N.; Siegemund, M.; Rakic, J.; Tamm, M.; et al. Pancreatic Stone Protein A Marker of Organ Failure and Outcome in Ventilator-Associated Pneumonia. Chest 2011, 140, 925–932. [Google Scholar] [CrossRef]
- Keel, M.; Härter, L.; Reding, T.; Sun, L.K.; Hersberger, M.; Seifert, B.; Bimmler, D.; Graf, R. Pancreatic stone protein is highly increased during posttraumatic sepsis and activates neutrophil granulocytes. Crit. Care Med. 2009, 37, 1642–1648. [Google Scholar] [CrossRef]
- Fidalgo, P.; Nora, D.; Coelho, L.; Povoa, P. Pancreatic Stone Protein: Review of a New Biomarker in Sepsis. J. Clin. Med. 2022, 11, 1085. [Google Scholar] [CrossRef]
- Donadello, K.; Scolletta, S.; Covajes, C.; Vincent, J.L. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012, 10, 2. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ozger, H.S.; Karakus, R.; Kuscu, E.N.; Bagriacik, U.E.; Oruklu, N.; Yaman, M.; Turkoglu, M.; Erbas, G.; Atak, A.Y.; Senol, E. Serial measurement of cytokines strongly predict COVID-19 outcome. PLoS ONE 2021, 16, e0260623. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.E.; Binde, C.; Leegaard, M.; Tonby, K.; Dyrhol-Riise, A.M.; Kvale, D.; Amundsen, E.K.; Holten, A.R. Diagnostic accuracy and added value of infection biomarkers in patients with possible sepsis in the Emergency Department. Shock 2022, 58, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.J.; Calfee, C.S.; Liu, K.D.; Reilly, J.P.; Kangelaris, K.N.; Shashaty, M.G.S.; Lazaar, A.L.; Bayliffe, A.I.; Gallop, R.J.; Miano, T.A.; et al. Plasma sTNFR1 and IL8 for prognostic enrichment in sepsis trials: A prospective cohort study. Crit. Care 2019, 23, 400. [Google Scholar] [CrossRef][Green Version]
- Aneja, A.; Landy, D.C.; Mittwede, P.N.; Albano, A.Y.; Teasdall, R.J.; Isla, A.; Kavolus, M. Inflammatory cytokines associated with outcomes in orthopedic trauma patients independent of New Injury Severity score: A pilot prospective cohort study. J. Orthop. Res. 2022, 40, 1555–1562. [Google Scholar] [CrossRef]
- Potjo, M.; Theron, A.J.; Cockeran, R.; Sipholi, N.N.; Steel, H.C.; Bale, T.V.; Meyer, P.W.A.; Anderson, R.; Tintinger, G.R. Interleukin-10 and interleukin-1 receptor antagonist distinguish between patients with sepsis and the systemic inflammatory response syndrome (SIRS). Cytokine 2019, 120, 227–233. [Google Scholar] [CrossRef]
- Stortz, J.A.; Mira, J.C.; Raymond, S.L.; Loftus, T.J.; Ozrazgat-Baslanti, T.; Wang, Z.; Ghita, G.L.; Leeuwenburgh, C.; Segal, M.S.; Bihorac, A.; et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J. Trauma Acute Care 2018, 84, 342–349. [Google Scholar] [CrossRef]
- Makabe, H.; Kojika, M.; Takahashi, G.; Matsumoto, N.; Shibata, S.; Suzuki, Y.; Inoue, Y.; Endo, S. Interleukin-18 levels reflect the long-term prognosis of acute lung injury and acute respiratory distress syndrome. J. Anesth. 2012, 26, 658–663. [Google Scholar] [CrossRef]
- Gomes, A.M.C.; Farias, G.B.; Dias-Silva, M.; Laia, J.; Trombetta, A.C.; Godinho-Santos, A.; Rosmaninho, P.; Santos, D.F.; Conceição, C.M.; Costa-Reis, R.; et al. SARS-CoV2 pneumonia recovery is linked to expansion of innate lymphoid cells type 2 expressing CCR. Eur. J. Immunol. 2021, 51, 3194–3201. [Google Scholar] [CrossRef]
- Lauw, F.N.; Simpson, A.J.H.; Prins, J.M.; Smith, M.D.; Kurimoto, M.; van Deventer, S.J.H.; Speelman, P.; Chaowagul, W.; White, N.J.; van der Poll, T. Elevated Plasma Concentrations of Interferon (IFN)-γ and the IFN-γ—Inducing Cytokines Interleukin (IL)-18, IL-12, and IL-15 in Severe Melioidosis. J. Infect. Dis. 1999, 180, 1878–1885. [Google Scholar] [CrossRef]
- Venet, F.; Cour, M.; Rimmelé, T.; Viel, S.; Yonis, H.; Coudereau, R.; Amaz, C.; Abraham, P.; Monard, C.; Casalegno, J.S.; et al. Longitudinal assessment of IFN-I activity and immune profile in critically ill COVID-19 patients with acute respiratory distress syndrome. Crit. Care 2021, 25, 140. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Mikhael, E.S.; Abdelkader, A.; Mansour, L.; Essawy, R.E.; Sayed, R.E.; Eladawy, A.; Mukhtar, A. Interleukin-17 as a predictor of sepsis in polytrauma patients: A prospective cohort study. Eur. J. Trauma Emerg. S. 2018, 44, 621–626. [Google Scholar]
- Krychtiuk, K.A.; Stojkovic, S.; Lenz, M.; Brekalo, M.; Huber, K.; Wojta, J.; Heinz, G.; Demyanets, S.; Speidl, W.S. Predictive value of low interleukin-33 in critically ill patients. Cytokine 2018, 103, 109–113. [Google Scholar] [CrossRef]
- Calfee, C.S.; Delucchi, K.L.; Sinha, P.; Matthay, M.A.; Hackett, J.; Shankar-Hari, M.; McDowell, C.; Laffey, J.G.; O’Kane, C.M.; McAuley, D.F.; et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir. Med. 2018, 6, 691–698. [Google Scholar] [CrossRef][Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rabello, L.S.C.F.; Póvoa, P.; Silva, J.R.L.; Azevedo, L.C.P.; da Ramos, F.J.S.; Lisboa, T.; Soares, M.; Salluh, J.I.F. Patterns of C-reactive protein ratio predicts outcomes in healthcare-associated pneumonia in critically ill patients with cancer. J. Crit. Care 2017, 42, 231–237. [Google Scholar] [CrossRef]
- Salluh, J.I.F.; Souza-Dantas, V.C.; Póvoa, P. The current status of biomarkers for the diagnosis of nosocomial pneumonias. Curr. Opin. Crit. Care 2017, 23, 391–397. [Google Scholar] [CrossRef]
- Lelubre, C.; Anselin, S.; Boudjeltia, K.Z.; Biston, P.; Piagnerelli, M. Interpretation of C-Reactive Protein Concentrations in Critically Ill Patients. Biomed. Res. Int. 2013, 2013, 124021. [Google Scholar] [CrossRef][Green Version]
- Petel, D.; Winters, N.; Gore, G.C.; Papenburg, J.; Beltempo, M.; Lacroix, J.; Fontela, P.S. Use of C-reactive protein to tailor antibiotic use: A systematic review and meta-analysis. BMJ Open 2018, 8, e022133. [Google Scholar] [CrossRef][Green Version]
- Becze, Z. The Molecular Basis of Procalcitonin Synthesis in Different Infectious and Non-Infectious Acute Conditions. J. Hum. Virol. Retrovirol. 2016, 3, 85. [Google Scholar] [CrossRef][Green Version]
- Lam, S.W.; Bauer, S.R.; Fowler, R.; Duggal, A. Systematic Review and Meta-Analysis of Procalcitonin-Guidance Versus Usual Care for Antimicrobial Management in Critically Ill Patients. Crit. Care Med. 2018, 46, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Rule, J.A.; Hynan, L.S.; Attar, N.; Sanders, C.; Korzun, W.J.; Lee, W.M. Procalcitonin Identifies Cell Injury, Not Bacterial Infection, in Acute Liver Failure. PLoS ONE 2015, 10, e0138566. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Datebase Syst. Rev. 2017, 2019, CD007498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bouadma, L.; Luyt, C.E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef]
- Pepper, D.J.; Sun, J.; Rhee, C.; Welsh, J.; Powers, J.H.; Danner, R.L.; Kadri, S.S. Procalcitonin-Guided Antibiotic Discontinuation and Mortality in Critically Ill Adults A Systematic Review and Meta-analysis. Chest 2019, 155, 1109–1118. [Google Scholar] [CrossRef]
- Zilahi, G.; McMahon, M.A.; Povoa, P.; Martin-Loeches, I. Duration of antibiotic therapy in the intensive care unit. J. Thorac. Dis. 2016, 8, 3774–3780. [Google Scholar] [CrossRef][Green Version]
- Mazlan, M.Z.; Ismail, M.A.H.; Ali, S.; Salmuna, Z.N.; Shukeri, W.F.W.M.; Omar, M. Efficacy and safety of the point-of-care procalcitonin test for determining the antibiotic treatment duration in patients with ventilator-associated pneumonia in the intensive care unit: A randomised controlled trial. Anaesthesiol. Intensive Ther. 2021, 53, 207–214. [Google Scholar] [CrossRef]
- Eggimann, P.; Que, Y.A.; Rebeaud, F. Measurement of pancreatic stone protein in the identification and management of sepsis. Biomark Med. 2019, 13, 135–145. [Google Scholar] [CrossRef][Green Version]
- Prazak, J.; Irincheeva, I.; Llewelyn, M.J.; Stolz, D.; de Romualdo, L.G.G.; Graf, R.; Reding, T.; Klein, H.J.; Eggimann, P.; Que, Y.A. Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: A systematic review and individual patient level meta-analysis. Crit. Care 2021, 25, 182. [Google Scholar] [CrossRef]
- Klein, H.J.; Csordas, A.; Falk, V.; Slankamenac, K.; Rudiger, A.; Schönrath, F.; Biefer, H.R.C.; Starck, C.T.; Graf, R. Pancreatic Stone Protein Predicts Postoperative Infection in Cardiac Surgery Patients Irrespective of Cardiopulmonary Bypass or Surgical Technique. PLoS ONE 2015, 10, e0120276. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wilson, J.G.; Calfee, C.S. ARDS Subphenotypes: Understanding a Heterogeneous Syndrome. Crit. Care 2020, 24, 102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Calfee, C.S.; Delucchi, K.; Parsons, P.E.; Thompson, B.T.; Ware, L.B.; Matthay, M.A. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2014, 2, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Strand, V.; Boklage, S.H.; Kimura, T.; Joly, F.; Boyapati, A.; Msihid, J. High levels of interleukin-6 in patients with rheumatoid arthritis are associated with greater improvements in health-related quality of life for sarilumab compared with adalimumab. Arthritis Res Ther. 2020, 22, 250. [Google Scholar] [CrossRef] [PubMed]
- Galván-Román, J.M.; Rodríguez-García, S.C.; Roy-Vallejo, E.; Marcos-Jiménez, A.; Sánchez-Alonso, S.; Fernández-Díaz, C.; Alcaraz-Serna, A.; Mateu-Albero, T.; Rodríguez-Cortes, P.; Sánchez-Cerrillo, I.; et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: An observational study. J. Allergy Clin. Immun. 2021, 147, 72–80.e8. [Google Scholar] [CrossRef]
- Cruz, A.S.; Mendes-Frias, A.; Oliveira, A.I.; Dias, L.; Matos, A.R.; Carvalho, A.; Capela, C.; Pedrosa, J.; Castro, A.G.; Silvestre, R. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front. Immunol. 2021, 12, 613422. [Google Scholar] [CrossRef]
- Spadaro, S.; Park, M.; Turrini, C.; Tunstall, T.; Thwaites, R.; Mauri, T.; Ragazzi, R.; Ruggeri, P.; Hansel, T.T.; Caramori, G.; et al. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J. Inflamm. 2019, 16, 1. [Google Scholar] [CrossRef]
- Sarma, A.; Christenson, S.; Mick, E.; Deiss, T.; DeVoe, C.; Pisco, A.; Ghale, R.; Jauregui, A.; Byrne, A.; Moazed, F.; et al. COVID-19 ARDS is characterized by a dysregulated host response that differs from cytokine storm and is modified by dexamethasone. Res. Square. 2021, rs.3.rs-141578, Update in: Nat. Commun. 2021, 12, 5152. [Google Scholar]
- Botafogo, V.; Pérez-Andres, M.; Jara-Acevedo, M.; Bárcena, P.; Grigore, G.; Hernández-Delgado, A.; Damasceno, D.; Comans, S.; Blanco, E.; Romero, A.; et al. Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube. Front. Immunol. 2020, 11, 166. [Google Scholar] [CrossRef][Green Version]
- van der Pan, K.; de Bruin-Versteeg, S.; Damasceno, D.; Hernández-Delgado, A.; van der Sluijs-Gelling, A.J.; van den Bossche, W.B.L.; de Laat, I.F.; Díez, P.; Naber, B.A.E.; Diks, A.M.; et al. Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood. Front. Immunol. 2022, 13, 935879. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Pires, A.R.; Matoso, P.; Ferreira, C.; Nunes-Cabaço, H.; Correia, L.; Valadas, E.; Poças, J.; Pacheco, P.; Veiga-Fernandes, H.; et al. HIV-2 infection is associated with preserved GALT homeostasis and epithelial integrity despite ongoing mucosal viral replication. Mucosal Immunol. 2018, 11, 236–248. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McCausland, M.; Lin, Y.D.; Nevers, T.; Groves, C.; Decman, V. With great power comes great responsibility: High-dimensional spectral flow cytometry to support clinical trials. Bioanalysis 2021, 13, 1597–1616. [Google Scholar] [CrossRef] [PubMed]
- Fabri, A.; Kandara, K.; Coudereau, R.; Gossez, M.; Abraham, P.; Monard, C.; Cour, M.; Rimmelé, T.; Argaud, L.; Monneret, G.; et al. Characterization of Circulating IL-10-Producing Cells in Septic Shock Patients: A Proof of Concept Study. Front. Immunol. 2021, 11, 615009. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.P.; Chu, C.M.; Kao, K.C.; Huang, S.H.; Chuang, D.Y. High Interleukin-10 Expression in Type 2 T Helper Cells in Septic Patients. Immunol. Investig. 2017, 46, 385–394. [Google Scholar] [CrossRef]
- McKinnon, K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef]
- Antcliffe, D.B.; Wolfer, A.M.; O’Dea, K.P.; Takata, M.; Holmes, E.; Gordon, A.C. Profiling inflammatory markers in patients with pneumonia on intensive care. Sci. Rep. 2018, 8, 14736. [Google Scholar] [CrossRef][Green Version]
- Sawada, T.; Katayama, M.; Takatani, S.; Ohiro, Y. Early detection of drug-resistant Streptococcus pneumoniae and Haemophilus influenzae by quantitative flow cytometry. Sci. Rep. 2021, 11, 2873. [Google Scholar] [CrossRef]
- Sędek, Ł.; Flores-Montero, J.; van der Sluijs, A.; Kulis, J.; Marvelde, J.; Philippé, J.; Böttcher, S.; Bitter, M.; Caetano, J.; van der Velden, V.H.J.; et al. Impact of Pre-Analytical and Analytical Variables Associated with Sample Preparation on Flow Cytometric Stainings Obtained with EuroFlow Panels. Cancers 2022, 14, 473. [Google Scholar] [CrossRef]
- Demaret, J.; Saison, J.; Venet, F.; Malcus, C.; Poitevin-Later, F.; Lepape, A.; Ferry, T.; Monneret, G. Assessment of a novel flow cytometry technique of one-step intracellular staining: Example of FOXP3 in clinical samples. Cytom. Part B Clin. Cytom. 2013, 84B, 187–193. [Google Scholar] [CrossRef]
- Venet, F.; Lepape, A.; Monneret, G. Clinical review: Flow cytometry perspectives in the ICU - from diagnosis of infection to monitoring of injury-induced immune dysfunctions. Crit. Care 2011, 15, 231. [Google Scholar] [CrossRef][Green Version]
- Rubio, I.; Osuchowski, M.F.; Shankar-Hari, M.; Skirecki, T.; Winkler, M.S.; Lachmann, G.; Rosée, P.L.; Monneret, G.; Venet, F.; Bauer, M.; et al. Current gaps in sepsis immunology: New opportunities for translational research. Lancet Infect. Dis. 2019, 19, e422–e436. [Google Scholar] [CrossRef] [PubMed]
- Monneret, G.; Gossez, M.; Aghaeepour, N.; Gaudilliere, B.; Venet, F. How Clinical Flow Cytometry Rebooted Sepsis Immunology. Cytom. Part A 2019, 95, 431–441. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Zhang, L.; Jiang, W.; Shen, L.; Fan, G. Clinical applications of monitoring immune status with 90 immune cell subsets in human whole blood by 10-color flow cytometry. Int. J. Lab. Hematol. 2021, 43, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, I.; Sönnerborg, I.; Strunz, B.; Friberg, D.; Cornillet, M.; Hertwig, L.; Ivarsson, M.A.; Björkström, N.K. 29-Color Flow Cytometry: Unraveling Human Liver NK Cell Repertoire Diversity. Front. Immunol. 2019, 10, 2692. [Google Scholar] [CrossRef] [PubMed]
- Stark, H.L.; Wang, H.C.; Kuburic, J.; Alzhrani, A.; Hester, J.; Issa, F. Immune Monitoring for Advanced Cell Therapy Trials in Transplantation: Which Assays and When? Front. Immunol. 2021, 12, 664244. [Google Scholar] [CrossRef]
- Hartmann, F.J.; Bendall, S.C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 2020, 16, 87–99. [Google Scholar] [CrossRef]
- Tremblay, J.A.; Peron, F.; Kreitmann, L.; Textoris, J.; Brengel-Pesce, K.; Lukaszewicz, A.C.; Quemeneur, L.; Vedrine, C.; Tan, L.K.; Venet, F.; et al. A stratification strategy to predict secondary infection in critical illness-induced immune dysfunction: The REALIST score. Ann. Intensive Care 2022, 12, 76. [Google Scholar] [CrossRef]
- Waeckel, L.; Venet, F.; Gossez, M.; Monard, C.; Rimmelé, T.; Monneret, G. Delayed persistence of elevated monocytic MDSC associates with deleterious outcomes in septic shock: A retrospective cohort study. Crit. Care 2020, 24, 132. [Google Scholar] [CrossRef][Green Version]
- Gouel-Chéron, A.; Allaouchiche, B.; Floccard, B.; Rimmelé, T.; Monneret, G. Early daily mHLA-DR monitoring predicts forthcoming sepsis in severe trauma patients. Intensive Care Med. 2015, 41, 2229–2230. [Google Scholar] [CrossRef]
- Bourbon, E.; Sesques, P.; Gossez, M.; Tordo, J.; Ferrant, E.F.; Safar, V.; Wallet, F.; Aussedat, G.; Maarek, A.; Bouafia-Sauvy, F.; et al. HLA-DR expression on monocytes and outcome of anti-CD19 CAR-T cell therapy for large B-cell lymphoma. Blood Adv. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Berres, M.; Schnyder, B.; Yagmur, E.; Inglis, B.; Stanzel, S.; Tischendorf, J.J.W.; Koch, A.; Winograd, R.; Trautwein, C.; Wasmuth, H.E. Longitudinal monocyte Human leukocyte antigen-DR expression is a prognostic marker in critically ill patients with decompensated liver cirrhosis. Liver Int. 2009, 29, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Danikas, D.D.; Karakantza, M.; Theodorou, G.L.; Sakellaropoulos, G.C.; Gogos, C.A. Prognostic value of phagocytic activity of neutrophils and monocytes in sepsis. Correlation to CD64 and CD14 antigen expression. Clin. Exp. Immunol. 2008, 154, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.F.; Wu, C.C.; Liu, S.H.; Chen, K.F. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: A systematic review and meta-analysis. Ann. Intensive Care 2019, 9, 5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guinault, D.; Nicolau-Travers, M.L.; Silva, S.; Cointault, O.; Daniau, B.; Bello, A.D.; Peres, M.; Rousset, D.; Rieunier, J.; Lavayssiere, L.; et al. Expression of Exhaustion Markers on CD8+ T-Cell Patterns Predict Outcomes in Septic Patients Admitted to the ICU*. Crit. Care Med. 2021, 49, 1513–1523. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Guo, R.; Li, H.; Cui, N. Early Expression of Functional Markers on CD4+ T Cells Predicts Outcomes in ICU Patients With Sepsis. Front. Immunol. 2022, 13, 938538. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef]
- Mouillaux, J.; Allam, C.; Gossez, M.; Uberti, T.; Delwarde, B.; Hayman, J.; Rimmelé, T.; Textoris, J.; Monneret, G.; Peronnet, E.; et al. TCR activation mimics CD127lowPD-1high phenotype and functional alterations of T lymphocytes from septic shock patients. Crit. Care 2019, 23, 131. [Google Scholar] [CrossRef][Green Version]
- Hohlstein, P.; Gussen, H.; Bartneck, M.; Warzecha, K.T.; Roderburg, C.; Buendgens, L.; Trautwein, C.; Koch, A.; Tacke, F. Prognostic Relevance of Altered Lymphocyte Subpopulations in Critical Illness and Sepsis. J. Clin. Med. 2019, 8, 353. [Google Scholar] [CrossRef][Green Version]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 randomized clinical trial. J. Insight 2018, 3, e98960. [Google Scholar] [CrossRef]
- Silva, S.L.; Albuquerque, A.S.; Matoso, P.; Charmeteau-de-Muylder, B.; Cheynier, R.; Ligeiro, D.; Abecasis, M.; Anjos, R.; Barata, J.T.; Victorino, R.M.M.; et al. IL-7-Induced Proliferation of Human Naive CD4 T-Cells Relies on Continued Thymic Activity. Front. Immunol. 2017, 8, 20. [Google Scholar] [CrossRef][Green Version]
- Delwarde, B.; Peronnet, E.; Venet, F.; Cerrato, E.; Meunier, B.; Mouillaux, J.; Lepape, A.; Pachot, A.; Rimmelé, T.; Monneret, G.; et al. Low Interleukin-7 Receptor Messenger RNA Expression Is Independently Associated With Day 28 Mortality in Septic Shock Patients*. Crit. Care Med. 2018, 46, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Filipe-Santos, O.; Lepape, A.; Malcus, C.; Poitevin-Later, F.; Grives, A.; Plantier, N.; Pasqual, N.; Monneret, G. Decreased T-Cell Repertoire Diversity in Sepsis. Crit. Care Med. 2013, 41, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yao, Y.; Zhang, X.; Chen, F.; Meng, X.; Chen, X.; Wang, C.; Liu, Y.; Tian, X.; Shou, S.; et al. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front. Immunol. 2022, 13, 829210. [Google Scholar] [CrossRef] [PubMed]
- Tirlangi, P.; Kumar, P.; Dk, M.; Soneja, M.; Rm, P.; Halkur, S.; Bhat, R.; Vuyyuru, S.; Kapil, A.; Wig, N. Programmed Cell Death-1/Programmed Death-Ligand 1 expression and its association with mortality among patients with sepsis and hospital-acquired infections: Sepsimmune study. J. Infect. 2022, 85, e49–e51. [Google Scholar] [PubMed]
- McBride, M.A.; Patil, T.K.; Bohannon, J.K.; Hernandez, A.; Sherwood, E.R.; Patil, N.K. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Front. Immunol. 2021, 11, 624272. [Google Scholar] [CrossRef]
- Trombetta, A.C.; Farias, G.B.; Gomes, A.M.C.; Godinho-Santos, A.; Rosmaninho, P.; Conceição, C.M.; Laia, J.; Santos, D.F.; Almeida, A.R.M.; Mota, C.; et al. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Front. Immunol. 2021, 12, 691725. [Google Scholar] [CrossRef]
- Frugier, A.; Malcus, C.; Baume, M.; Poitevin-Later, F.; Lukaszewicz, A.C.; Venet, F.; Monneret, G.; Gossez, M. Accréditation de la mesure de l’expression des molécules HLA-DR à la surface des monocytes (mHLA-DR) par cytométrie en flux. Ann. Biol. Clin. 2022, 80, 190–198. [Google Scholar]
- Bodinier, M.; Peronnet, E.; Brengel-Pesce, K.; Conti, F.; Rimmelé, T.; Textoris, J.; Vedrine, C.; Quemeneur, L.; Griffiths, A.D.; Tan, L.K.; et al. Monocyte Trajectories Endotypes Are Associated With Worsening in Septic Patients. Front. Immunol. 2021, 12, 795052. [Google Scholar] [CrossRef]
- Döcke, W.D.; Randow, F.; Syrbe, U.; Krausch, D.; Asadullah, K.; Reinke, P.; Volk, H.D.; Kox, W. Monocyte deactivation in septic patients: Restoration by IFN-γ treatment. Nat. Med. 1997, 3, 678–681. [Google Scholar] [CrossRef]
- Benlyamani, I.; Venet, F.; Coudereau, R.; Gossez, M.; Monneret, G. Monocyte HLA-DR Measurement by Flow Cytometry in COVID-19 Patients: An Interim Review. Cytom. Part A 2020, 97, 1217–1221. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Meisel, C.; Fux, M.; Schefold, J.C. Assessment of immune organ dysfunction in critical illness: Utility of innate immune response markers. Intensive Care Med. Exp. 2017, 5, 49. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tawfik, D.M.; Dereux, C.; Tremblay, J.A.; Boibieux, A.; Braye, F.; Cazauran, J.B.; Rabodonirina, M.; Cerrato, E.; Guichard, A.; Venet, F.; et al. Interferon gamma as an immune modulating adjunct therapy for invasive mucormycosis after severe burn—A case report. Front. Immunol. 2022, 13, 883638. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.J.M.L. Neutrophil CD64: A diagnostic marker for infection and sepsis. Clin. Chem. Lab. Med. 2009, 47, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Dimoula, A.; Pradier, O.; Kassengera, Z.; Dalcomune, D.; Turkan, H.; Vincent, J.L. Serial Determinations of Neutrophil CD64 Expression for the Diagnosis and Monitoring of Sepsis in Critically Ill Patients. Clin. Infect. Dis. 2014, 58, 820–829. [Google Scholar] [CrossRef][Green Version]
- Wang, X.; Li, Z.Y.; Zeng, L.; Zhang, A.Q.; Pan, W.; Gu, W.; Jiang, J.X. Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: A meta-analysis. Crit. Care 2015, 19, 245. [Google Scholar] [CrossRef]
- Morris, A.C.; Datta, D.; Shankar-Hari, M.; Stephen, J.; Weir, C.J.; Rennie, J.; Antonelli, J.; Bateman, A.; Warner, N.; Judge, K.; et al. Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. Intensive Care Med. 2018, 44, 627–635. [Google Scholar] [CrossRef][Green Version]
- Langelier, C.; Kalantar, K.L.; Moazed, F.; Wilson, M.R.; Crawford, E.D.; Deiss, T.; Belzer, A.; Bolourchi, S.; Caldera, S.; Fung, M.; et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl. Acad. Sci. USA 2018, 115, E12353–E12362. [Google Scholar] [CrossRef][Green Version]
- Neves-Costa, A.; Moita, L.F. Modulation of inflammation and disease tolerance by DNA damage response pathways. FEBS J. 2017, 284, 680–698. [Google Scholar] [CrossRef]
Biomarker | Function | Relation with Outcome | References |
---|---|---|---|
C-reactive protein | Bacteria opsonization | High levels not associated with prognosis Decrease in the first 72 h of infection associated with prognosis | Refs. [42,43,44] |
Procalcitonin | Immune function unknown | Increased in sepsis and in ischemia High levels associated with mortality in sepsis and pneumonia | Refs. [45,46,47] |
Pancreatic stone protein | Immune function unknown | Increased in sepsis, particularly bacterial sepsis Increased also in pancreatitis and trauma | Refs. [48,49,50] |
suPAR | Cell adhesion and migration Immune activation | Increased in sepsis and associated with prognosis | Ref. [51] |
IL-6 | Pro-inflammatory | Elevated in sepsis and trauma Associated with mortality in COVID-19 Associated with developing multiple organ dysfunction in trauma | Refs. [52,53] |
IL-8 | Neutrophil recruitment, endothelial activation | Associated with mortality in sepsis Prediction of AKI after trauma | Refs. [54,55] |
IL-10 | Anti-inflammatory | Elevated in sepsis Higher levels in sepsis than in SIRS Elevation associated with prognosis in sepsis | Refs. [56,57] |
IL-18 | Neutrophil recruitment | Associated with prognosis in ARDS and sepsis | Ref. [58] |
IL-1RA | Antagonist for IL-1 | Elevated in sepsis and trauma | Ref. [56] |
IP-10 (CXCL10) | Chemoattractant for CXCR3 + cells | Associated with severity and prognosis in COVID-19 | Ref. [59] |
Interferon γ | Antiviral and antibacterial response | Associated with more severe outcome in sepsis Low levels in the chronic critical phase associated with higher infection risk | Ref. [60] |
Interferon α | Antiviral and antibacterial response | Associated with severity and ARDS progression in COVID-19 | Ref. [61] |
IL-17 | Neutrophil recruitment | Elevated in sepsis and linked with prognosis | Ref. [62] |
IL-33 | Promotes shift toward type II immunity | Associated with prognosis in critically ill Low levels linked with hepatic dysfunction | Ref. [63] |
sTNFr1 | Receptor for TNF | Elevated in the inflammatory phenotype of ARDS Associated with prognosis in ARDS | Refs. [54,64] |
Cell | Marker | Immune Function | Cohorts Studied | Possible Clinical Use | References |
---|---|---|---|---|---|
Monocytes | HLA-DR | Antigen presentation | Septic shock Trauma Major Surgery Decompensated cirrhosis | Trajectories identify patients with increased infectious risk Persistent decreased levels associated with prognosis | Refs. [107,108,109,110,111] |
Neutrophils | CD64 | Neutrophil activation and phagocytic activity | Sepsis | High levels associated with infectious inflammation Associated with mortality in sepsis | Refs. [112,113] |
CXCR2 | Neutrophil migration | Sepsis | Higher in infected patients with sepsis | Ref. [10] | |
T cells | CD8: PD-1 | Decrease cell activation | Sepsis COVID-19 | High levels associated with mortality in sepsis and increased risk of secondary infection | Ref. [114] |
CD4: PD-1 | Decrease cell activation | Sepsis COVID-19 | High levels associated with mortality in sepsis and increased risk of secondary infection | Refs. [115,116] | |
CD4: CD127 | IL-7 receptor | Sepsis | Low levels associated with prognosis | Ref. [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, M.A.; Gomes, A.M.C.; Fernandes, S.M. Monitoring of the Forgotten Immune System during Critical Illness—A Narrative Review. Medicina 2023, 59, 61. https://doi.org/10.3390/medicina59010061
Serrano MA, Gomes AMC, Fernandes SM. Monitoring of the Forgotten Immune System during Critical Illness—A Narrative Review. Medicina. 2023; 59(1):61. https://doi.org/10.3390/medicina59010061
Chicago/Turabian StyleSerrano, Maria A., André M. C. Gomes, and Susana M. Fernandes. 2023. "Monitoring of the Forgotten Immune System during Critical Illness—A Narrative Review" Medicina 59, no. 1: 61. https://doi.org/10.3390/medicina59010061