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Abstract: Background: Acute respiratory distress syndrome (ARDS) commonly develops in trau-
matic brain injury (TBI) patients and is a risk factor for poor prognosis. We designed this study to
evaluate the performance of several machine learning algorithms for predicting ARDS in TBI patients.
Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database
were eligible for this study. ARDS was identified according to the Berlin definition. Included TBI
patients were divided into the training cohort and the validation cohort with a ratio of 7:3. Several
machine learning algorithms were utilized to develop predictive models with five-fold cross vali-
dation for ARDS including extreme gradient boosting, light gradient boosting machine, Random
Forest, adaptive boosting, complement naïve Bayes, and support vector machine. The performance of
machine learning algorithms were evaluated by the area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, accuracy and F score. Results: 649 TBI patients from the MIMIC-
III database were included with an ARDS incidence of 49.5%. The random forest performed the best
in predicting ARDS in the training cohort with an AUC of 1.000. The XGBoost and AdaBoost ranked
the second and the third with an AUC of 0.989 and 0.815 in the training cohort. The random forest
still performed the best in predicting ARDS in the validation cohort with an AUC of 0.652. AdaBoost
and XGBoost ranked the second and the third with an AUC of 0.631 and 0.620 in the validation
cohort. Several mutual top features in the random forest and AdaBoost were discovered including
age, initial systolic blood pressure and heart rate, Abbreviated Injury Score chest, white blood cells,
platelets, and international normalized ratio. Conclusions: The random forest and AdaBoost based
models have stable and good performance for predicting ARDS in TBI patients. These models
could help clinicians to evaluate the risk of ARDS in early stages after TBI and consequently adjust
treatment decisions.

Keywords: traumatic brain injury; acute respiratory distress syndrome; machine learning; prognosis
factors

1. Introduction

Traumatic brain injury (TBI) is a widely concerning health issue causing a huge burden
to society. It has been estimated that 69 million people suffer TBI annually around the
world [1]. The poor prognosis of TBI is not only attributable to the severity of intracranial
injury and concomitant trauma of the extracranial region but is also caused by various
complicated organ dysfunctions such as acute kidney injury, coagulopathy, respiratory
failure and acute respiratory distress syndrome (ARDS) [2]. Previous studies have shown
that ARDS was a common pulmonary complication in TBI patients with the incidence
ranging from 1% to 60% [2,3]. ARDS also has been confirmed as a risk factor for poor
prognosis including higher mortality, poorer neurological outcome and longer length of
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hospital stay in some studies [4–7]. Studies have explored risk factors for ARDS in TBI
patients including younger age, male sex, admission tachycardia, underlying respiratory
and vascular diseases, pneumonia, head AIS, early crystalloids, early platelet transfusion
and intracranial hypertension [6–8]. While one recent meta-analysis indicated age, male
gender, white race, head AIS, Marshall CT score, GCS on admission, and increased intracra-
nial pressure during hospitalizations were not significant predictors for ARDS in TBI [9].
Exploring potential risk factors for ARDS after TBI and identifying patients with a higher
risk for ARDS in the early stage after injury is important for clinicians to devise optimal
treatment strategies including setting appropriate parameters on the ventilator. Trying
to avoid the development or progression of ARDS in clinical practice may improve the
prognosis of TBI patients. There is no study developing a model to evaluate the risk of
ARDS in TBI patients. Machine learning algorithms perform well on predicting outcome
events for patients based on their advantages in dealing with complex data and nonlinear
relationships. We designed this study to evaluate the performance of different machine
learning algorithms when predicting ARDS in TBI patients.

2. Methods and Materials
2.1. Patients

This study included patients derived from the Medical Information Mart for Intensive
Care-III (MIMIC-III) database. Produced by the computational physiology laboratory of
Massachusetts Institute of Technology (MIT) (Cambridge, MA, USA), this freely available
database collects electronic medical records of patients hospitalized in the Beth Israel
Deaconess Medical Center (BIDMC) (Boston, MA, USA) between 2001 and 2012 and re-
ceives ethical approval from the institutional review boards of MIT and BIDMC. Patients
in the MIMIC-III were deidentified and anonymized to protect personal privacy. Our
study extracted patients diagnosed with TBI from the MIMIC-III based on ICD-9 codes
(80000-80199; 80300-80499; 8500-85419). Some of the TBI patients were excluded from
this study if they met the following criteria: (1) Age < 18; (2) Lacked records of Glasgow
Coma Scale (GCS) on admission; (3) Lacked records of vital signs and laboratory tests;
(4) Abbreviated Injury Score (AIS) head < 3; (5) Lacked records of arterial oxygen pres-
sure (PaO2) and corresponding fraction of inspired oxygen (FiO2) (Figure 1). A total of
649 TBI patients were finally included in our study. The study was designed and conducted
to comply with the ethical standards of the Helsinki declaration. The study design was
approved by the ethical committee of West China hospital (2021-1598).

2.2. Study Variables

Age, gender and underlying diseases including diabetes, hypertension, hyperlipi-
demia, coronary heart disease, liver disease, chronic renal disease, and malignancy were
included. Initial vital signs including systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), heart rate, and respiratory rate were recorded. Glasgow Coma Score (GCS),
Abbreviated Injury Score (AIS) of chest, and Injury Severity Score (ISS) were collected
to reflect the severity of injuries. Laboratory tests analyzed from the first blood sample
since admission were selected as features including white blood cells (WBCs), platelets,
red blood cells (RBCs), hemoglobin, glucose, blood urea nitrogen, serum creatinine, serum
sodium, serum potassium, serum chloride, serum calcium, prothrombin time, and inter-
national normalized ratio (INR). Initial ventilation related parameters including PaO2,
FiO2, PaO2/FiO2 ratio were extracted. Intracranial injury locations were fetched including
epidural hematoma (EDH), subdural hematoma (SDH), subarachnoid hemorrhage (SAH),
and intraparenchymal hemorrhage (IPH). Medical treatments during the first day since
admission were collected, including RBC transfusion, platelet transfusion, anticoagulant
use, antiplatelet use and vasopressor use. Records of mechanical ventilation and neurosur-
gical operation were collected. A total of 40 features were finally included in the process of
developing machine learning models. The outcome of this study was the development of
ARDS which was diagnosed based on the Berlin definition [10].
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Figure 1. Flowchart of patients’ inclusion. MIMIC, Medical Information Mart for Intensive Care; 
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fraction of inspired oxygen. 
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Figure 1. Flowchart of patients’ inclusion. MIMIC, Medical Information Mart for Intensive Care;
GCS, Glasgow Coma Score; AIS, Abbreviated Injury Score; PaO2, arterial oxygen pressure; FiO2,
fraction of inspired oxygen.

2.3. Statistical Analysis

The normality of collected variables was determined by the Kolmogorov–Smirnov
test. Variables with normal distribution and non-normal distribution were presented as
mean ± standard deviation and median (interquartile range), respectively. Categorical
variables were shown as counts (percentage). Differences of collected continuous variables
between ARDS group and non-ARDS group were analyzed by the Student’s t-test and
Mann–Whitney U test. Differences in collected categorical variables between two groups
were analyzed by the Chi-square test or the Fisher exact test. p < 0.05 was considered as
being statistically significant.

2.4. Machine Learning Algorithms

TBI patients included from the MIMIC-III dataset were randomly divided into the
training set and the validation set with a ratio of 7:3. There were six machine learning
algorithms that were trained with five-fold cross validation in the training set to predict
ARDS including extreme gradient boosting (XGBoost), light gradient boosting machine
(light GBM), random forest, adaptive boosting (AdaBoost), complement naïve Bayes, and
support vector machine (SVM). The optimal parameters of each machine learning algo-
rithm were automatically explored during the cross-validation process. Trained machine
learning predictive models were then verified in the validation set by evaluating multiple
indexes including area under the receiver operating characteristics curve (AUC), accuracy,
sensitivity, specificity, positive predicted value (PPV), negative predicted value (NPV) and
F1 score. The Shapley Additive explanation (SHAP) method was utilized for evaluation of
the feature importance in machine learning predictive models and visualized explanation
of predictive models. All statistical analyses and figures were performed using the Extreme
smart analysis—an online statistical analysis platform based on the Python (Amsterdam,
The Netherlands).
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3. Results
3.1. Comparison between Final Included Patients and Those Lacking Records of PaO2 and FiO2

A total of 2031 patients were excluded from this study due to the following criteria:
(1) age < 18 (n = 32); (2) lacked records of GCS on admission (n = 65); (3) lacked records of
vital signs and laboratory tests (n = 116); (4) AIS head < 3 (n = 187); (5) lacked records of
PaO2 and corresponding FiO2 (n = 1631) (Figure 1). Finally, 649 TBI patients were included
with the ARDS incidence being 49.5%. A large number of TBI patients (1631/2680, 60.86%)
were excluded due to a lack of records of PaO2 and corresponding FiO2. The comparison
between these patients and final included patients were shown in Supplementary Table S1.
Compared with these excluded patients, final included patients were mainly severe TBI
(GCS: 6 (3–9), median (quartiles)) and had younger age (59.3 vs. 66.8, p < 0.001). The
incidence of RBC transfusion (p < 0.001), antiplatelet transfusion (p < 0.001), vasopressor
use (p < 0.001), mechanical ventilation (p < 0.001) and neurosurgery (p < 0.001) were higher
in the final included patients. They also had higher mortality than those excluded patients
(29.4% vs. 13.1%, p < 0.001). These differences indicated the included population of this
study was mainly severe TBI.

3.2. Baseline Characteristics of Included TBI Patients

Among included patients, the age of the ARDS group was higher than the non-ARDS
group (p = 0.027) (Table 1). Comorbidities did not significantly differ between the ARDS
group and the non-ARDS group. The ARDS group had higher AIS chest (p < 0.001) and
ISS (p = 0.009) than the non-ARDS group. The GCS did not show significant difference
between the two groups (p = 0.724). Laboratory tests showed that platelets (p = 0.004)
were lower in the ARDS group while prothrombin time (p = 0.002) and INR (<0.001) were
higher in the ARDS group. The initial PaO2 (p < 0.001) was lower in the ARDS group
while the initial FiO2 did not show significant difference between two groups (p = 0.874).
The initial PaO2/FiO2 ratio of the non-ARDS group and the ARDS group were 356 and
248, respectively. The percentage of mild, moderate and severe ARDS among overall
ARDS patients was 43.5%, 39.7% and 16.7%, respectively (Figure 2). Compared with the
non-ARDS group, the ARDS group was more likely to receive platelet transfusion during
the first day (p = 0.0027). Finally, the ARDS group had a longer length of ICU stay (<0.001)
and length of hospital stay (<0.001).
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Table 1. Characteristics of included TBI patients.

Variables Overall Patients
(n = 649)

Non-ARDS Group
(n = 328, 50.5%)

ARDS Group
(n = 321, 49.5%) p

Age (year) 59.3 (38.8–77.4) 57.2 (31.9–76.1) 62.7 (44.0–78.1) 0.027
Male gender, n (%) 424 (65.3%) 208 (63.4%) 216 (67.3%) 0.300
Comorbidities

Diabetes, n (%) 93 (14.3%) 47 (14.3%) 46 (14.3%) 1.000
Hypertension, n (%) 187 (28.8%) 85 (25.9%) 102 (31.8%) 0.099
Hyperlipidemia, n (%) 47 (7.2%) 25 (7.6%) 22 (6.9%) 0.706
Coronary heart disease, n (%) 54 (8.3%) 27 (8.2%) 27 (8.4%) 0.934
Liver disease, n (%) 21 (3.2%) 10 (3.0%) 11 (3.4%) 0.786

Chronic renal disease, n (%) 24 (3.7%) 11 (3.4%) 13 (4.1%) 0.638
Malignancy, n (%) 42 (6.5%) 16 (4.9%) 26 (8.1%) 0.095
Vital signs on admission
Systolic blood pressure (mmHg) 130 (113–146) 131 (114–147) 130 (112–144) 0.584
Diastolic blood pressure (mmHg) 64 ± 17 64 ± 17 64 ± 16 0.811
Heart rate (s−1) 84 (71–97) 84 (73–95) 84 (71–98) 0.959
Respiratory rate (s−1) 17 (14–20) 17 (14–20) 17 (14–20) 0.299
GCS 6 (3–9) 6 (3–9) 6 (3–9) 0.724
AIS chest 0 (0–3) 0 (0–0) 0 (0–3) <0.001
ISS 20 (16–29) 18 (16–25) 22 (16–29) 0.009
Laboratory tests
WBC (109/L) 13.40 (10.00–18.10) 13.30 (9.90–17.30) 13.50 (10.10–18.80) 0.348
Platelet (109/L) 228 (175–288) 238 (190–292) 221 (166–277) 0.004
RBC (109/L) 4.07 (3.60–4.51) 4.07 (3.63–4.48) 4.09 (3.55–4.53) 0.874
Hemoglobin (g/dL) 12.70 (11.20–14.00) 12.80 (11.30–13.90) 12.60 (11.10–14.30) 0.713
Glucose (mg/dL) 149 (121–186) 143 (118–186) 153 (123–185) 0.246
Blood urea nitrogen (mg/dL) 16 (12–22) 16 (12–22) 16 (12–22) 0.275
Serum creatinine (mg/dL) 0.90 (0.70–1.10) 0.90 (0.70–1.10) 0.90 (0.70–1.10) 0.522
Serum sodium (mmol/L) 140 (137–142) 139 (137–142) 140 (138–142) 0.053
Serum potassium (mmol/L) 3.90 (3.60–4.30) 3.90 (3.60–4.20) 3.90 (3.60–4.30) 0.195
Serum chloride (mmol/L) 105 (102–109) 105 (101–109) 105 (102–109) 0.787
Serum calcium (mmol/L) 1.17 (1.06–8.20) 1.19 (1.06–8.20) 1.17 (1.05–8.20) 0.561
Prothrombin time (s) 13.20 (12.60–14.30) 13.00 (12.60–14.00) 13.30 (12.70–14.70) 0.002
INR 1.20 (1.10–1.30) 1.10 (1.10–1.30) 1.20 (1.10–1.40) <0.001
PaO2 on the first day (mmHg) 228 (141–329) 255 (196–364) 179 (104–289) <0.001
FiO2 on the first day (%) 100 (50–100) 100 (50–100) 100 (50–100) 0.874
PaO2/FiO2 ratio on the first day (mmHg) 304 (190–428) 356 (248–452) 248 (143–361) <0.001
Intracranial injury types
Epidural hemorrhage, n (%) 174 (26.8%) 103 (31.4%) 71 (22.1%) 0.008
Subdural hemorrhage, n (%) 339 (52.2%) 187 (57.0%) 152 (47.4%) 0.014
Subarachnoid hemorrhage, n (%) 296 (45.6%) 161 (49.1%) 135 (42.1%) 0.072
Intraparenchymal hemorrhage, n (%) 146 (22.5%) 76 (23.2%) 70 (21.8%) 0.677
Treatments
RBC during the first 24 h, n (%) 87 (13.4%) 51 (15.5%) 36 (11.2%) 0.105
Platelet during the first 24 h, n (%) 73 (11.2%) 28 (8.5%) 45 (14.0%) 0.027
Anticoagulants during the first 24 h, n (%) 156 (24.0%) 79 (24.1%) 77 (24.0%) 0.977
Antiplatelets during the first 24 h, n (%) 5 (0.7%) 2 (0.6%) 3 (0.9%) 0.636
Vasopressor during the first 24 h, n (%) 88 (13.6%) 46 (14.0%) 42 (13.1%) 0.726
Mechanical ventilation, n (%) 591 (91.1%) 299 (91.2%) 292 (91.0%) 0.931

Neurosurgery, n (%) 259 (39.9%) 129 (39.3%) 130 (40.5%) 0.761
Length of ICU stay (days) 5.7 (2.4–12.1) 3.8 (1.9–8.4) 7.3 (3.8–14.7) <0.001
Length of hospital stay (days) 10.1 (4.9–18.5) 7.9 (4.0–15.7) 12.4 (6.2–23.0) <0.001
30-day mortality, n (%) 191 (29.4%) 95 (29.0%) 96 (29.9%) 0.792

GCS, Glasgow Coma Scale; AIS, Abbreviated Injury Score; ISS, Injury Severity Score; WBC, white blood cell; RBC,
red blood cell; INR, international normalized ratio; PaO2, arterial oxygen pressure; FiO2, fraction of inspired
oxygen. Bold values indicated p < 0.05.
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3.3. Performance of Machine Learning Algorithms for Predicting ARDS in TBI

The random forest performed the best on predicting ARDS in the training cohort with
an AUC value of 1.000 (Table 2) (Figure 3A). The accuracy, sensitivity, specificity, PPV, NPV,
F1 score of the random forest in the training cohort was 0.998, 1.000, 1.000, 1.000, 0.997 and
1.000, respectively. The XGBoost and AdaBoost ranked second and third with an AUC
of 0.989 and 0.815. The random forest still performed the best in predicting ARDS in the
validation cohort with an AUC value of 0.652 (Table 3) (Figure 3B). The accuracy, sensitivity,
specificity, PPV, NPV, and F1 score of the random forest in the validation cohort was 0.542,
0.719, 0.579, 0.767, 0.526, 0.716, respectively. The AdaBoost and XGBoost ranked second
and third with an AUC of 0.631 and 0.620. Generally, the random forest performed well
and stably in predicting ARDS both in the training cohort and the validation cohort. The
AdaBoost is second only to the random forest while the XGBoost showed significantly
different performance between the training cohort and the validation cohort.

Table 2. Performance of machine learning algorithms for predicting the ARDS in the training cohort
of TBI patients.

Classification Models AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1 Score

XGBoost 0.989
(0.983–0.995) 0.952 0.947 0.960 0.959 0.946 0.953

Light GBM 0.710
(0.669–0.752) 0.675 0.676 0.682 0.681 0.677 0.674

Random Forest 1.000 0.998 1.000 1.000 1.000 0.997 1.000

AdaBoost 0.815
(0.782–0.849) 0.736 0.724 0.752 0.742 0.736 0.731

CNB 0.618
(0.572–0.663) 0.592 0.694 0.495 0.574 0.624 0.626

SVM 0.509
(0.462–0.556) 0.538 0.253 0.822 0.629 0.534 0.305

XGBoost, extreme gradient boosting; Light GBM, light gradient boosting machine; AdaBoost, adaptive boosting;
CNB, complement naïve Bayes; SVM, support vector machine; PPV, positive predictive value; NPV, negative
predictive value.
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Table 3. Performance of machine learning algorithms for predicting ARDS in the validation cohort of
TBI patients.

Classification Models AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1 Score

XGBoost 0.620
(0.483–0.757) 0.581 0.654 0.622 0.574 0.589 0.597

Light GBM 0.534
(0.395–0.673) 0.527 0.436 0.727 0.534 0.517 0.448

Random Forest 0.652
(0.517–0.786) 0.542 0.719 0.579 0.767 0.526 0.716

AdaBoost 0.631
(0.493–0.768) 0.599 0.594 0.714 0.606 0.596 0.587

CNB 0.589
(0.448–0.730) 0.567 0.577 0.668 0.555 0.584 0.547

SVM 0.513
(0.371–0.654) 0.524 0.607 0.563 0.619 0.523 0.541

XGBoost, extreme gradient boosting; Light GBM, light gradient boosting machine; AdaBoost, adaptive boosting;
CNB, complement naïve Bayes; SVM, support vector machine; PPV, positive predictive value; NPV, negative
predictive value.

3.4. Important Features in Machine Learning Algorithms for Predicting ARDS in TBI

Feature importance derived from random forest and AdaBoost are shown in
Figures 4A and 4B, respectively. The SHAP value of all patients’ output in the random
forest model and the AdaBoost model are presented in Figure 4C,D. The common important
features in the random forest and the AdaBoost were analyzed. Figure 5A showed 15 com-
mon features were discovered among the top 20 features in these two algorithms including
platelet, INR, AIS chest, heart rate, DBP, WBC, age, serum chloride, hemoglobin, SBP, SDH,
respiratory rate, serum sodium, GCS, and RBC. Figure 5B showed seven common features
were discovered among the top ten features in these two algorithms including platelet, INR,
AIS chest, heart rate, WBC, age, SBP.
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Figure 5. (A) Venn diagrams of the top 20 features in random forest and adaboost. There were
15 common features in these two algorithms including platelet, INR, AIS thoracic, heart rate, DBP,
WBC, age, serum chloride, hemoglobin, SBP, SDH, respiratory rate, serum sodium, GCS, and RBC.
(B) Venn diagrams of the top ten features in random forest and adaboost. There were seven common
features in these two algorithms including platelet, INR, AIS thoracic, heart rate, WBC, age, and SBP.
INR, international normalized ratio; AIS, Abbreviated Injury Score; DBP, diastolic blood pressure;
WBC, white blood cell; SBP, systolic blood pressure; SDH, subdural hematoma; GCS, Glasgow Coma
Scale; RBC, red blood cell; CHD, coronary heart disease.

4. Discussion

The incidence of ARDS in the study was 49.5%, which was similar to the previously
reported incidence of ARDS in TBI ranging from 1% to 60% [2,3,9]. The actual incidence
of ARDS in TBI patients from the MIMIC-III database may be lower than 49.5% because a
large number of TBI patients that lacked relevant records were excluded from this study.
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The significant variation in the reported incidence of ARDS in TBI may be attributable
to the difference of injury severity, treatment strategy and healthcare level in different
medical centers. Compared with the non-ARDS group, the ARDS group in the study had a
longer length of ICU stay and length of hospital stay. The 30-day mortality did not show
statistical significance between these two groups. This fact is contradictory to the finding of
one meta-analysis which indicated the survival proportion was significantly higher in TBI
patients without ARDS than those with ARDS [9]. The insignificance of survival between
these two groups in our study may be caused by the exclusion of a large number of mild
TBI patients. Due to the high prevalence of ARDS and poor its prognosis, exploring risk
factors for ARDS and evaluating the risk of developing ARDS in the early phase after TBI
is necessary to decrease the possibility of developing ARDS and to improve the prognosis
of TBI patients.

In this study, the random forest and AdaBoost achieved good and stable performances
in predicting ARDS, both in the training cohort and the validation cohort among several
machine learning algorithms. Trained based on the bagging method, the random forest
is an ensemble classifier composed of multiple decision trees. It integrates all classified
voting results of individual trees and judges the category with the most votes as the
final output. The boosting method means combining many weak classifiers to produce a
powerful classifier to improve the predictive accuracy of the final model. As a classical
boosting algorithm, Adaboost has a high detection rate and is not prone to over fitting.
A total of seven mutual features were discovered among the top ten features in random
forest and adaboost including platelet, INR, AIS chest, heart rate, WBC, age, and SBP. The
platelet and INR are essential components of the coagulation test. Previous studies showed
coagulative disorders are prevalent in TBI with the incidence of coagulopathy ranging
from 13% to 54% [11–15]. Actually, the coagulation system plays an important role in the
pathophysiological process of ARDS [16,17]. The imbalance between inflammation and
coagulation leads to an inflammatory response, formation of microthrombi and diffused
deposition of fibrin in pulmonary capillary bed and alveoli [18,19]. As a key element in
ARDS development, the process of immune-thrombosis formation involves many kinds
of cells including platelets, neutrophils, endothelial cells [18]. Correspondingly, the WBC
is another important feature for predicting ARDS in our developed random forest and
adaboost models.

In addition to the coagulation indexes and WBC, heart rate and SBP which may
collectively reflect the tissue perfusion were also important features in machine learning
based models. The shock status would undoubtedly decrease the transport of blood and
oxygen to pulmonary tissue and accelerate lung injury. Finally, AIS chest and age were
important features in machine learning based models. One previous study confirmed rib
fracture as a risk factor for ARDS after mild TBI [20]. The thoracic trauma may cause direct
mechanical damage to the pulmonary tissue or increase the risk of pneumonia by restricting
respiratory amplitude. One epidemiological research study with a large sample size found
younger age was significantly associated with the higher risk of ARDS in isolated severe
TBI patients, while another study showed that elderly trauma patients had a higher risk of
ARDS than non-elderly trauma patients [7,21]. The influence of age on ARDS occurrence
and the corresponding mechanism in TBI patients is still worth investigating. Composed of
these above-mentioned important features, random forest or adaboost based models may
be effective in predicting the risk of ARDS in TBI patients.

This study has several limitations. Firstly, this was a single center database study, and
a large number of patients were excluded due to a lack of records of included variables.
This selection bias could not be avoided. Most of the excluded patients were mild to
moderate TBI. Therefore, this study mainly investigated the incidence of ARDS in severe
TBI and the predictive models may be more suitable for use in severe TBI. Future studies
with larger sample sizes are worthwhile to evaluate the predictive performance of machine
learning models in more generalized TBI patients. Secondly, machine learning models were
developed and internally validated using the same dataset from a single medical center.
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These models should be externally validated in other medical centers in future studies.
Thirdly, although the SHAP value is a visualized form of machine learning model, it is still
difficult for clinicians to evaluate the risk of ARDS in clinical practice. It is worthwhile to
develop a practical application incorporating random forest or adaboost algorithms which
could be readily used with an estimated accurate value of ARDS possibility in portable
electronic equipment for TBI.

5. Conclusions

Machine learning algorithms identified some factors of ARDS in TBI including age,
initial systolic blood pressure and heart rate, AIS chest, WBCs, platelets, and INR. The
random forest and AdaBoost based models perform efficiently and stably in the prediction
of ARDS in TBI patients. These models could help clinicians to evaluate the risk of ARDS
in the early stage after TBI, and consequently adjust treatment strategies to prevent the
development of ARDS during hospitalizations for TBI.
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