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2 Department of Radiology and Diagnostic Imaging, Medical University of Łódź, 90-153 Łódź, Poland
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Abstract: Background and Objectives: Intradialytic hypotension (IDH) complicates 4 to 39.9% of
hemodialysis (HD) sessions. Vessels’ reactivity disturbances may be responsible for this complication.
Two-dimensional speckle tracking is used to assess arterial circumferential strain (CS) as a marker
of the effectiveness of the cardiovascular response to the reduction of circulating plasma. Materials
and Methods: The common carotid artery (CCA) and common iliac artery (CIA) CSs were recorded
using ultrasonography in 68 chronically dialyzed patients before and after one HD session. Results:
In patients with IDH episodes (n = 26), the CCA-CS was significantly lower both before (6.28 ± 2.34
vs. 4.63 ± 1.74 p = 0.003) and after HD (5.00 (3.53–6.78) vs. 3.79 ± 1.47 p = 0.010) than it was in
patients without this complication. No relationship was observed between CIA-CS and IDH. IDH
patients had a significantly higher UF rate; however, they did not differ compared to complication-
free patients either in anthropometric or laboratory parameters. Conclusions: Patients with IDH were
characterized by lower pre- and post-HD circumferential strain of the common carotid artery. The
lower CCA-CS showed that impaired vascular reactivity is one of the most important risk factors for
this complication’s occurrence.

Keywords: intradialytic hypotension; circumferential strain; vessel reactivity

1. Introduction

Intradialytic hypotension (IDH) is a common complication during hemodialysis (HD)
sessions, occurring with a frequency of 4 to 39.9% [1–6]. The National Kidney Foundation’s
Kidney Disease Outcomes Quality Initiative guidelines defined IDH as a decrease in sys-
tolic blood pressure (SBP) ≥ 20 mmHg during a HD session [7], but different definitions
take into account a combination of blood pressure (BP) decline, its decline below a certain
threshold, the occurrence of symptoms or the need for intervention [8]. However, Flythe
et al.’s results suggest that nadir-based definitions (for pre-dialysis SBP <160 mmHg, nadir
<90 mmHg and for pre-dialysis SBP ≥ 160 mmHg, nadir <100 mmHg) identify an asso-
ciation between IDH and all-cause mortality [9]. BP decline occurs due to a decrease in
cardiac output and arterial tone, which are caused by insufficient response and/or impair-
ment of compensatory mechanisms (cardiac, plasma refilling, passive venoconstriction,
and an active increase in arterial tone) during HD [10]. Risk factors for IDH are both
modifiable and non-modifiable, such as age >65 years, higher body mass index (BMI),
female sex, cardiovascular disease, arrythmia, diabetes mellitus, vascular calcification
(VC), hypoalbuminemia, hyperphosphatemia, anemia, higher ultrafiltration rate (UFR)
and higher interdialytic weight gain (IDWG) [11–19]. An occurrence of IDH may depend
on the composition of dialysate, e.g., sodium concentration and sodium profiling [20,21],
concentration of calcium ions [22,23], bicarbonate [22] and temperature [21,24]. IDH is
associated with unfavorable clinical outcomes, e.g., cardiovascular (CV) events, CV and
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all-cause mortality, vascular access thrombosis, loss of residual diuresis and development
of dementia [1,2,4,9,25–27]. It seems that inadequate arterial reactivity is one of the mech-
anisms involved in the development of this complication. Carotid-femoral pulse wave
velocity (PWV) is considered the ‘golden-standard’ measurement of arterial stiffness [28].
Two-dimensional speckle tracking is the software initially used to assess myocardial strain
and strain rate [29,30]. However, numerous studies have demonstrated that it can also be
useful in the assessment of arterial strain [31–33]. This ultrasonography non-doppler tech-
nique, based on the analysis of tissue motion, allows measurement of the circumferential
strain (CS), radial strain (RS) and longitudinal strain (LS) of the carotid arterial wall [31–33].
It has been proven that, at least to some extent, these parameters (in particular CS) can
be used to assess the local stiffness of vessels [32–34]. In our previous research, it was
found that CS values decrease significantly in correlation with ultrafiltration volume during
HD sessions [35]. This observation suggests that CS may be a parameter that shows the
effectiveness of the cardiovascular response to a reduction of circulating plasma volume,
and therefore correlate with the incidence of IDH. The aim of this study was to evaluate
changes in the CS measurements of the common carotid artery (CCA) and common iliac
artery (CIA) before and after an HD session, and to compare them to the incidence of IDH.

2. Materials and Methods
2.1. Study Population

Qualified for this cross-sectional study were 68 (26 F and 42 M) clinically stable, non-
smoking, adult patients undergoing chronic 3 times weekly HD sessions in one dialysis
center for at least 3 months.

2.2. Demographic and Clinical Data

Data regarding patients’ age, sex, etiology of ESRD, dialysis vintage, as well as comor-
bidities, were collected from patients’ medical histories and medical records.

The exclusion criteria were: a history of major CV complications within the preceding
3 months (acute or chronic atrial fibrillation, severe aortic stenosis, peripheral artery disease,
recent myocardial infarction and cerebrovascular event, or decompensated congestive heart
failure); morbid obesity (BMI > 40 kg/m2); signs of active infection on the day of the
examination; active bleeding or a hemoglobin concentration below 8.0 mg/dL during the
3 months before a patient’s assessment; a bilateral arteriovenous (AV) fistula; wounds or
dressings of the examined neck and groin areas; and lack of consent.

2.3. HD Sessions

The patients were hemodialyzed for 3 to 5 h, three times per week, with low-flux
synthetic, polysulphone membrane dialyzers (F series, Fresenius Medical Care AG, Bad
Homburg, Germany) with Kt/V urea above 1.2. The blood flow was 200–380 mL/min,
and the dialysate flow was 500–600 mL/min with bicarbonate dialysate (constant sodium
concentrations of 138 mmol/L, calcium 1.25 mmol/L and potassium 2–4 mmol/L). The
ultrafiltration (UF) rate was constant for individual patients during HD, and the dialysate
temperature was 36.5 ◦C. Target dry weight was clinically evaluated based on the occur-
rence of peripheral oedema, pulmonary congestion and muscle cramps.

2.4. Ultrasonography CS Measurements

Examinations were performed before and after the mid-week HD sessions. Before the
examinations, patients were asked to rest at least 15 min in the supine position on their
own dialysis beds. After the HD session (10 min at the latest), patients were examined
in the supine position on the same dialysis bed. During the image acquisition of distal
CCA and proximal CIA, patients were instructed to refrain from swallowing, and to hold
their breath. All measurements were performed by the same radiologist, who was not
aware of the HD courses. For all examinations, a GE Vivid I ultrasound machine with a
linear probe 8 L RS in short-axis view and a frequency of 10 Mhz in the “carotid” preset, at
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an average of 43.7 frames per second, was used. The tracking quality was assessed and
revised, as needed, during the examination. For each image acquisition, a concurrent ECG
was recorded. For the purpose of analysis, at least two consecutive cardiac cycles were
stored in the cine-loop format.

A total of 8 recorded sequences of dilation and contraction were analyzed per patient
(2 sequences for each artery before and after the HD session). EchoPac software was
used for the analysis (Figure 1). Detailed data of the analysis were described in another
study [35].

Medicina 2023, 59, x FOR PEER REVIEW 3 of 10 
 

 

own dialysis beds. After the HD session (10 min at the latest), patients were examined in 
the supine position on the same dialysis bed. During the image acquisition of distal CCA 
and proximal CIA, patients were instructed to refrain from swallowing, and to hold their 
breath. All measurements were performed by the same radiologist, who was not aware of 
the HD courses. For all examinations, a GE Vivid I ultrasound machine with a linear probe 
8 L RS in short-axis view and a frequency of 10 Mhz in the “carotid” preset, at an average 
of 43.7 frames per second, was used. The tracking quality was assessed and revised, as 
needed, during the examination. For each image acquisition, a concurrent ECG was 
recorded. For the purpose of analysis, at least two consecutive cardiac cycles were stored 
in the cine-loop format. 

A total of 8 recorded sequences of dilation and contraction were analyzed per patient 
(2 sequences for each artery before and after the HD session). EchoPac software was used 
for the analysis (Figure 1). Detailed data of the analysis were described in another study 
[35]. 

 
Figure 1. Carotid circumferential strain measurement analysis. Dotted graph indicates values for 
the whole circumference and every segment of the circumference is marked with different color. 

2.5. Vital Signs 
BP was measured on a dialysis bed with the patient in the supine position using an 

automated oscillometric device and optimal-sized cuff at the beginning (not earlier than 
10 nor later than 5 min before HD began) and the end (not later than 10 min after HD 
ended) of HD, every 30 min of HD or in cases with IDH symptoms. BP was measured 5 
min before ultrasonography measurements. IDH was defined for pre-dialysis as SBP < 160 
mmHg, nadir < 90 mmHg, and for pre-dialysis as SBP ≥ 160 mmHg, nadir < 100 mmHg, 
during hemodialysis sessions while ultrasonography examinations were performed. 
Patients were divided into two groups: those with IDH episodes (IDH) and those without 
(nIDH).  

Each patient’s weight was measured before and after their HD session, and their 
height was measured before their HD session. BMI was calculated regarding body mass 
after HD as the mass in kilograms divided by the square of height in meters (kg/m2). 

Figure 1. Carotid circumferential strain measurement analysis. Dotted graph indicates values for the
whole circumference and every segment of the circumference is marked with different color.

2.5. Vital Signs

BP was measured on a dialysis bed with the patient in the supine position using an
automated oscillometric device and optimal-sized cuff at the beginning (not earlier than 10
nor later than 5 min before HD began) and the end (not later than 10 min after HD ended)
of HD, every 30 min of HD or in cases with IDH symptoms. BP was measured 5 min before
ultrasonography measurements. IDH was defined for pre-dialysis as SBP < 160 mmHg,
nadir < 90 mmHg, and for pre-dialysis as SBP ≥ 160 mmHg, nadir < 100 mmHg, during
hemodialysis sessions while ultrasonography examinations were performed. Patients were
divided into two groups: those with IDH episodes (IDH) and those without (nIDH).

Each patient’s weight was measured before and after their HD session, and their
height was measured before their HD session. BMI was calculated regarding body mass
after HD as the mass in kilograms divided by the square of height in meters (kg/m2).
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2.6. Biochemical Results

Laboratory findings, including complete blood count (CBC) assessed during the past
month and serum phosphate, total calcium and PTH levels from the 3 months preceding
examination, were obtained from patients’ medical records.

2.7. Statistical Analysis

Continuous data are presented as means with standard deviations (SD) or as medians
with interquartile ranges, depending on the normality of the distribution, which was tested
using Shapiro–Wilk’s test. Continuous data with normal distribution were compared
using the unpaired Student’s t-test. Continuous non-normal distribution and ordinal data
were compared using the Mann–Whitney U test. Nominal data are presented as numbers
with percentages and were compared using the Chi2 test (if the number of cases in each
subgroup exceeded 15) and the Chi2 test with Yates correction (if <5 cases were present in
any subgroup). Correlations between continuous or ordinal variables were tested using
Pearson or Spearman rank correlation tests, respectively. A logistic regression model with
a stepwise backward feature selection was fitted to create a simple model predicting the
occurrence of IDH that could be of use in clinical settings; to check its goodness of fit
we performed ROC curve analysis. p values lower than 0.05 were considered statistically
significant. All analyses were performed using Microsoft Excel (Microsoft, Redmond,
Washington, USA) or Statistica 13.3 software (Dell, Rouind Rock, TX, USA).

3. Results

The characteristics of 66 analyzed patients are shown in Table 1. Two patients were
excluded from the analysis due to poor visualization of the carotid artery due to numerous
artifacts in the image. The causes of end stage kidney disease (ESKD) in examined patients
were glomerular disease (n = 23), diabetic kidney disease (n = 13), hypertensive nephropathy
(n = 9), polycystic kidney disease (n = 5), obstructive uropathy (n = 4), nephrocalcinosis
(n = 1) and unknown (n = 11). Thirty-three patients were diagnosed with CV complications,
e.g., coronary heart disease (n = 21), cerebrovascular disease (n = 5) and peripheral arterial
disease (n = 17). Fifty-nine patients were hypertensive and were treated with angiotensin-
convertase enzyme or sartans (n = 25), beta-blockers (n = 38), calcium blockers (n = 43) and
other medications (n = 29). Thirty-one patients were treated with statins.

During HD sessions, 26 patients had an incidence of IDH (IDH group); nine of these
were associated with symptoms; in two cases there were two IDH incidents during the
session. In 14 cases, placing patients in the Trendelenburg position was applied as a rescue
therapy, and nine patients were additionally infused with concentrated saline solution.
IDH patients and those without this complication (nIDH) did not significantly differ in
terms of age, dialysis vintage, systolic and diastolic BP before and after the HD session,
BMI, or dry mass, but IDH patients had a significantly higher UF rate, as shown in Table 1.

CCA-CS before and after HD differed significantly between IDH and nIDH groups.
There were no significant differences in CIA-CS before or after HD sessions (Table 1).

None of the evaluated biochemical results were significantly different in patients with
or without IDH.

Multiple logistic regression analysis with forward stepwise variable selection showed
that UF rate, height, dry mass BMI and CCA-CS post HD were factors associated with
the occurrence of IDH. All model parameters and regression coefficients are presented in
Table 2. The model had an AUC ROC of 0.8163 and allowed for identification of patients
with IDH with 35.29% sensitivity and 91.84% specificity (Figure 2).
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Table 1. Clinical (including laboratory) data and circumferential strain in patients without (nIDH)
and with intradialytic hypotension (IDH).

All Patients
No Intradialytic

Hypotension (nIDH)
(n = 40)

Intradialytic
Hypotension (IDH)

(n = 26)
p

Men/Women [%] 60.61/39.39 62.50/37.50 57.69/42.31 0.696
Age [years] 59.52, SD 15.28 56.63, SD 16.67 63.96, SD 11.82 0.056

HD vintage [months] 52 (9–86) 57 (9–88) 47.6, SD 30.69 0.582

Dry mass [kg] 69.02, SD 15.22 69.62, SD 15.49 68.10, SD 15.05 0.694
Pre-dialysis body mass [kg] 71.17, SD 15.60 71.61, SD 16.19 70.48, SD 14.94 0.777
Post-dialysis body mass [kg] 69.02, SD 15.60 69.62, SD 15.49 68.10, SD 14.94 0.694

Height [cm] 168.08, SD 8.62 169.15, SD 10.07 166.42, SD 5.52 0.212
BMI [kg/m2] 24.24, SD 4.06 24.13, SD 3.85 24.40, SD 4.42 0.789

IDWG [L] 2.15, SD 1.18 1.99, SD 1.19 2.39, SD 1.16 0.184
HD session duration [min] 240 (210–270) 239.88, SD 28.90 238.27, SD 30.69 0.830

UF rate [mL/h/kg] 7.91, SD 4.43 6.87, SD 3.45 9.51, SD 1.16 0.017
Dialyzer surface area [m2] 1.80 (1.80–2.10) 1.80 (1.80–2.10) 1.80 (1.80–2.10) 0.646

Dialysate potassium concentration
[mmol/L] 3.00 (2.00–3.00) 3.00 (2.00–3.25) 3.00 (2.00–3.00) 0.651

CCA-CS [%]
before HD 5.63, SD 2.26 6.28, SD 2.34 4.63, SD 1.74 0.003
after HD 4.28 (3.24–5.82) 5.00 (3.53–6.78) 3.57 (2.64–4.69) 0.010

difference 0.94, SD 1.72 1.00, SD 1.80 0.84, SD 1.56 0.705

CIA-CS [%]
before HD 1.34 (0.69–2.08) 1.38 (0.70–2.11) 1.39, SD 1.05 0.808
after HD 1.13 (0.39–2.29) 1.45, SD 1.55 1.03 (0.69–1.83) 0.906

difference 0.07 (−0.77–0.79) 0.14 (−0.81–0.83) −0.09 (−0.48–0.47) 0.694

Pre-HD HR [beats/min] 67.02, SD 13.37 69.79, SD 11.89 59.25 (51.00–67.00) 0.014
Pre-HD SBP [mmHg] 131 (115–152) 131.80, SD 20.23 138.62, SD 31.90 0.291
Pre-HD DBP [mmHg] 75.50, SD 13.33 75.82, SD 11.60 70.50 (66.00–82.00) 0.362
Pre-HD MAP [mmHg] 95.16, SD 15.42 94.48, SD 12.50 96.21, SD 19.30 0.661

Post-HD HR [beats/min] 74 (65–87) 77.49, SD 13.29 66.50 (53.00–89.00) 0.096
Post-HD SBP [mmHg] 120 (107–137) 124.68, SD 17.77 109 (102–132) 0.128
Post-HD DBP [mmHg] 72.64, SD 11.50 74.38, SD 11.17 69.96, SD 11.71 0.129
Post-HD MAP [mmHg] 89.38, SD 13.47 91.14, SD 12.44 81.33 (75.00–96.00) 0.082

HGB [g/dL] 10.65, SD 1.45 10.40, SD 1.21 11.03, SD 1.71 0.083
HCT [%] 31.83, SD 4.08 31.16, SD 3.33 32.85, SD 1.71 0.099

Ca [mmol/L] 2.20 (2.11–2.32) 2.23, SD 0.15 2.14 (2.09–2.33) 0.309
P [mmol/L] 1.83, SD 0.52 1.90, SD 0.55 1.72, SD 0.46 0.172

PTH [pg/mL] 300.90 (116.45–523.80) 374.83, SD 249.32 213.90 (102.73–435.90) 0.243

HD: hemodialysis; BMI: body mass index; IDWG: interdialytic weight gain; UF: ultrafiltration; CCA-CS: circum-
ferential strain of common carotid artery; CIA-CS circumferential strain of common iliac artery; HR: heart rate;
SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; HGB: hemoglobin con-
centration; HCT: hematocrit; Ca: calcium; P: phosphorus; PTH: parathormone. Nominal variables are presented
as absolute and relative numbers and continuous data are presented as means with standard deviations or as
medians with the values of upper and lower quartiles.

Table 2. Parameters in the model used to identify patients with IDH.

Parameter β SE OR (95% CI) p

Intercept −11.43 8.26 0.167

UF rate [mL/h/kg] −0.19 0.09 0.83 (0.70–0.98) 0.028
Height [cm] 0.10 3.57 1.11 (1.00–1.23) 0.059

BMI [kg/m2] −0.16 0.10 0.85 (0.70–1.03) 0.089
CCA-CS after HD [%] 0.33 0.21 1.39 (0.92–2.10) 0.116

B: regression coefficient; SE: standard error; OR: odds ratio; CI: confidence interval; UF: ultrafiltration; BMI: body
mass index; CCA-CS: circumferential strain of common carotid artery.
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4. Discussion

In our study, IDH patients differed from those who did not experience this compli-
cation (with lower CCA-CS, both before and after HD) whereas the CS measured on CIA
did not differ. To our knowledge, this is the first study investigating changes in CCA-CS
and CIA-CS and the incidence of IDH. The observed phenomenon in IDH patients can be
related to the processes taking place during HD sessions. It is postulated that the cause
of hypotension is a reduced cardiac filling [36], primarily dependent on venous return
(augmented mainly by plasma refilling) and accompanied by cardiac function, which de-
termines cardiac output [37]. The content of the venous system constitutes approximately
60% of the total blood volume; it can be further divided from a functional point of view
into theoretical stressed and unstressed parts [38]. The first generates a gradient between
the venules and the right atrium, whereas the second is a reservoir. The main compartment
of the unstressed volume is held in the splanchnic system [37]. It has been proven that
during HD there is significant mobilization from this compartment [39], which plays a
major role in cardiac filling. However, an autonomic system dysfunction and reduced sen-
sitivity of baroreceptors in HD patients [40], combined with increased adenosine secretion
(which further aggravates hypotension) [41], impairs the system and prevents splanchnic
shift [39]. Venous return inadequacy may be further exacerbated by an increase in body
temperature during HD [42] accompanied by dilatation of the skin vasculature [43,44]
and intensified bradycardic and vasodilatory reflexes induced by sudden withdrawal of
sympathetic activity and the predominance of parasympathetic tone [36]. Additionally,
plasma refilling from interstitial and intracellular compartments ensures maintenance of
blood pressure [45]. Moreover, the HD procedure itself causes tissue ischemia [46], which
is associated with myocardial stunning [47] impairing cardiac function, a process even
more severe in a significant percentage of patients (28.4%) with chronic heart failure. Cor-
nelis et al. observed a fall in cardiac output (1.4 ± 1.5 L/min) during HD sessions [48]. As
one of the independent factors, it leads to an increase in arterial stiffness (AS) and further
aggravation of the IDH effect due to inadequate vessels reactivity [49,50]. The mechanisms
responsible for increased AS in HD patients are still the subject of numerous studies; how-
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ever, the most important factors identified include chronic volume overload, oxidant stress,
chronic microinflammation, sympathetic overactivity, activation of the renin–angiotensin
system [51–53] and VC [52–54].

Considering all the mentioned factors that have a satisfactory association between
CCA-CS and VC [54], it appears that CS changes can simultaneously assess aspects related
to refilling, venous return and cardiac output augmented by the relationship with AS.
Moreover, significantly lower pre-dialytic CCA-CS in the IDH group indicated vascular
stiffness as an important predisposing factor for IDH. Surprisingly, we did not find this
difference in CIA-CS; perhaps it is related to the distance between the heart and examined
vessels, but this observation requires further study.

Its small sample size from a single center and being a cross-sectional study with only a
one-time measurement were the main limitations of our study. In addition, we used clinical
assessment of the hydration status rather than bioimpedance. The definition of IDH we
adopted has a significant clinical impact on dialysis patients; hence, the decision to use
this definition. We undertook to eliminate or minimize deviations of modifiable factors
affecting the frequency of IDH by selecting a group of patients using the same dialysate fluid
composition (except potassium concentration), the same sodium concentration without
profiling, at the same temperature; additionally, patients abstained from food ingestion
during their HD sessions. Our results are in line with previous observations regarding the
incidence of IDH in patients with higher UF rates [15,16,19].

5. Conclusions

Patients with IDH were characterized by lower pre- and post-HD circumferential
strain of the common carotid artery. The lower CCA-CS showed that impaired vascular
reactivity is one of the most important risk factors for this complication’s occurrence.
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Tracking in Evaluation of Arterial Stiffness: Comparison with Pulse Wave Velocity and Conventional Sonographic Markers of
Atherosclerosis. Vascular 2018, 26, 63–69. [CrossRef]
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