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Abstract: Motor control, movement impairment, and postural control recovery targeted in rehabili-
tation could be affected by pain. The main objective of this comprehensive review is to provide a
synthesis of the effect of experimental and chronic pain on postural control throughout the available
literature. After presenting the neurophysiological pathways of pain, we demonstrated that pain,
preferentially localized in the lower back or in the leg induced postural control alteration. Although
proprioceptive and cortical excitability seem modified with pain, spinal modulation assessment might
provide a new understanding of the pain phenomenon related to postural control. The literature
highlights that the motor control of trunk muscles in patient presenting with lower back pain could
be dichotomized in two populations, where the first over-activates the trunk muscles, and the second
under-activates the trunk muscles; both generate an increase in tissue loading. Taking all these
findings into account will help clinician to provide adapted treatment for managing both pain and
postural control.

Keywords: pain; postural control; rehabilitation

1. Introduction

Chronic pain is defined by the International Association for Study of Pain (IASP)
as “an unpleasant sensory and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage” [1] lasting more than 3 months [2]. By
affecting more than 30% of the population worldwide [3], chronic pain is an economic
burden and has a dramatic impact on biological, psychological, and sociological factors,
resulting in poor quality of life [4–6]. Although medical care focuses on pain perception,
psychological and functional disability should be considered [6]. It has been clearly demon-
strated that pain interferes with sensorimotor control [7–11], and, more especially, with
postural control [12–20].

Postural control, either in static or dynamic conditions, is an essential requirement to
perform daily activities [21]. The upright standing human body, classically represented
by an inverted pendulum model, is intrinsically unstable, as reflected by the movement
of the center of mass (CoM) [22]. To maintain upright standing, the postural system
requires efficient functioning of the sensorimotor mechanisms and the ability to detect
body sways through reliable sensory systems integrating these sensory cues provided by
the visual, vestibular, proprioceptive, and exteroceptive systems [23–27]. The integration
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of sensory information appears to be dynamically regulated based on available sensory
information depending on environmental conditions, a process referred to as sensory
reweighting [28–31]. When one (or more) of the sensory systems is altered, the Central
Nervous System regulates balance by attributing a higher weight to the remaining afferent
information [28]. Both sensory integration and reweighting are used by the neural control
system to generate a corrective torque at the ankle to resist the deviations of the human
body from an upright reference position [32]. Balance control, commonly assessed by
measuring center of pressure (COP) displacement, could represent one of the sensorimotor
control signatures observed in patients with chronic pain.

The main aim of this comprehensive review is to provide a synthesis of the effect
of experimental and chronic pain on postural control by combining knowledge from the
literature and identifying the potential impact of pain on the sensorimotor mechanisms
involved in postural control. This review also summarizes the evidence supporting the
importance of including postural control in the clinical assessment of patients suffering
from chronic pain. Improving the knowledge of pain interference on postural control could
help with developing new and adapted therapeutic approaches for patients presenting
chronic pain.

2. From Nociception to Pain

The process leading to pain starts with the stimulation of nociceptors [33]. There
are two main classes of nociceptors. The first comprises myelinated afferents of medium
diameter (Aδ) that mediate acute and well-localized “first” or rapid pain. The second
class of nociceptor consists of small diameter unmyelinated “C” fibers that transmit poorly
localized “secondary” or slow pain [34]. Myelinated Aδ nociceptors respond to mechani-
cal and thermal stimuli, whereas unmyelinated C-fiber polymodal nociceptors generally
respond to mechanical, thermal, or chemical stimulation. Specific nociceptors are only
excited when stimulus intensities reach the noxious range, suggesting that they possess
biophysical and molecular properties allowing them to selectively detect and respond to
harmful stimuli [34]. Ion channels on peripheral nociceptors can be activated by direct
stimulation or by molecules released at a site of inflammation (bradykinin, prostaglandins,
histamine, serotonin, and others), leading to the depolarization of small primary affer-
ents of the first-order neurons expressing these channels [35]. Action potentials, with a
frequency that is proportional to the intensity of the stimulus, propagate along the ax-
ons of myelinated or unmyelinated nociceptive fibers through the dorsal root ganglion
(DRG) to the axonal endings of the spinal cord, which are organized into anatomically and
electrophysiologically distinct laminae [33].

The nociceptive Aδ and C fibers surround the outermost layer of the dorsal horn. They
enter the dorsal horn and end in the superficial layers (called Rexed Laminae I and II)
or extend into the deep layers (Lamina V), probably via interneurons [34]. The lamina II
plays a key role in the modulation of pain in the spinal cord [36,37]. The lamina II, also
known as the substantia gelatinosa system, acts as an inhibitory mechanism on central
transmission cell (T)-cells. The stimulation of nociceptive Aδ and C fibers inhibits the
substantia gelatinosa cells, reducing the output and their inhibitory action on the (T)-cells,
leading to an increase in their activity. The reduction in the ability of (T)-cells to receive or
respond to the stimuli, is the hallmark of the gate control theory at the spinal level [38]. As
a reminder, the (T)-cells are located in the dorsal horn of the spinal cord. They receive a
balanced input of large of Aβ and small Aδ and C fibers activity in the peripheral nerves.
Inhibitory interneurons, located in the substantia gelatinosa, can be activated by large
afferents and can modulate the transmission of pain by projection to small fibers and
central transmission cells [38].

Because pain is a complex multifactorial subjective experience, a large brain net-
work is engaged during nociceptive processing. Numerous central nervous system struc-
tures (e.g., the anterior cingulate cortex, thalamus, and insula) consistently respond to
transient nociceptive stimuli causing pain. The activation of this pain matrix or pain
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signature has been related to perceived pain intensity, both within and between individu-
als [39]. Following integration into the dorsal horn, nociceptive information is conducted
via two phylogenetically distinct systems, the medial and the lateral systems, to the higher
centers of the brainstem and brain. The medial system is involved in the affective and
cognitive dimension of pain, pain memory, and autonomic responses [40–42]. This medial
pathway projects directly to the higher brain structures and mainly includes the spinoreticu-
lar tract, the spinomesencephalic tract, the spinoparabrachial tracts, the spinohypothalamic
tract, and the spinothalamic tract fibers. A component of the spinoreticular tract projects to
the lateral reticular formation involved in motor control. The other component projects to
the medial, pontomedullary reticular formation and, from there, to the thalamocortical cir-
cuits. A major target of the spinomesencephalic tract is the parabrachial nucleus of the pons,
a region involving in the integration of the cardiovascular, autonomic, and motivational re-
sponse to pain. Other collaterals of the spinohypothalamic pathway project at the thalamus
and also innervate the medulla and pons of the brainstem, sites of origin of the descending
modulatory pathways; please see [37]. The lateral system provides information on the
location and duration of pain and plays an important role in the sensory-discriminating
component of pain. This lateral system is formed by the spinocervical pathway, which
projects to the lateral cervical nucleus at the C1–C3 level, and the nuclei of the dorsal
column, which project to the cuneate and gracile nuclei of the dorsal column of the spinal
cord. From the lateral cervical nucleus, information travels by the cervicothalamic tract to
several thalamic nuclei, including the ventroposterior and posterior nucleus groups, and
by a cervicomesencephalic pathway to the midbrain, including the periaqueducal grey and
superior colliculus. With regard to the nuclei of the dorsal column, the output neurons
project by the medial lemniscus to the ventroposterior and posterior groups of thalamic
nuclei and to the superior colliculus; please see Millan [37].

3. Interaction between Pain and Postural Control

Experimental pain has been used to determine the potential impact of pain on balance
control. By inducing heat pain on the lower leg muscle (45 ◦C), Blouin et al. [15] showed a
significant increase in COP velocity in comparison with the non-pain condition (i.e., heat
stimulation at 40 ◦C). Similarly, other studies have reported that a unilateral hypertonic
saline injection at the infrapatellar fat pad [18], thigh [17], or leg muscles [16] led to
significant increase in body sways and muscle activities. In addition, it has been reported
that pain induced by electrical stimulation on the dorsum of the feet caused larger COP
displacement [14]. By inducing different levels of pain (weak, moderate, extreme), the
authors observed that the COP displacement scaled with the level of pain. Furthermore,
they reported that pain induced on the hand did not change COP displacement, showing
the specificity of the pain location related to postural control interference. The authors
concluded the painful stimulation affects postural control via the sensorimotor mechanisms
rather than cognitive processes related to perception of pain.

A systematic review, including 16 studies, reported that lower back pain (LBP) results
in COP parameters alteration (i.e., increase in COP velocity and sway in anteroposterior
direction) [19,20]. Pain influences the sensorimotor response in individuals with LBP, de-
laying and reducing the COP displacement on unstable surfaces [37], as well as increasing
postural sway in the antero-posterior and medio-lateral direction in open eyes [21,43]
and closed eyes [44] conditions, and in a single leg support [45]. Considering all of these
result, pain may alter the sensorimotor components of the postural system controlling bal-
ance [46–50]. Pain and impaired postural control often imply reduced muscle strength [51],
physical inactivity [52], and depression [53]. Musculoskeletal pain is also associated with an
increased risk of falling [12,13,54]. Results from various studies also highlighted reduced
trunk movements [55] and trunk stiffness [56]. These alterations likely cause postural
instability [46] and may be an indicator of dysfunctional postural control strategies [56,57].

Some studies also reported a decrease in proprioceptive acuity, that is, patients with
back or neck pain have less accurate positions sense [58,59] suggesting impairment in
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body sway perception. More specifically, Popa et al. [60] suggested that the deterioration
of proprioceptive information of the lower limbs and the trunk determines a reduced
accuracy in the sensory integration process, and thus, a more imprecise internal estimate
of the center of mass (CoM) position in individuals with chronic lower back pain (CLBP).
Consequently, the motor controller needs to increase the safety margin of the CoP shifts
with respect to the predicted oscillation of the CoM, reflected by a greater sway. Individuals
with CLBP might set ankle stiffness at a higher level in order to compensate for sensory
deterioration [61], as already demonstrated by reduced plantar sole sensitivity [24,25]. The
reweighting of proprioceptive input by increasing the gain at the ankle joints (increasing
loading of ankle extensors by leaning more forward) may enhance sensory discrimination
and help maintain a critical level of sensory information to adequately cope with postural
perturbations [60]. Overall, these sensorimotor changes may alter postural control [62].
Balance disorders may be associated with specific clinical findings, such as reduced muscle
strength, impaired cognition, sensory or motor deficits, lower-extremity myofascial trigger
points [63], or change in flexibility and coordination [64]. Patients with chronic pain
syndrome, such as fibromyalgia, reported larger body sway than healthy controls [65],
and balance impairment represents one of the top 10 most debilitating symptoms [66]. It
was proposed that fibromyalgia likely affects dynamic balance control because of altered
somatosensory inputs to the central nervous system, including the abnormal perception of
pain with light somatosensory stimulation [63].

Persistent pain also alters cognitive processes. As cognition contributes to balance
control [67–69], it is crucial to assess the relationship between pain intensity, cognition, and
balance control. Individuals with severe pain showed less effective executive function-
ing [70]. Such cognitive deficits are associated with impaired physical functioning including
gait speed, balance performance, sit-to-stand, and trunk rotation [71]. Because pain alters
the sensorimotor mechanisms involve in balance control [72,73], clinical evaluation should
assess balance control.

4. Mechanisms of Action of Pain and Potential Mechanisms Involved in Postural
Control Alteration in Pain Condition

Pain is intimately linked to the activation of a complex cerebral network, as mentioned
above, and involves cortical reorganization. Results from studies inducing pain confirmed a
causal relationship between pain and cortical changes [10,74–77]. Experimental pain studies
showed an increase in the primary motor cortex (M1) activity [78–80]. Using electroen-
cephalography (EEG), Stancák et al. [81] reported that short-lasting painful heat stimuli on
the hand decreased beta (β: 15–30 Hz) activity within the sensorimotor cortex. Given the
inhibitory role that β oscillations have on the motor cortex [82], the decrease in primary
motor cortex (M1) activity suggests that a brief nociceptive stimulus could alter (reduction
of the inhibition) the motor region, possibly to facilitate withdrawal responses [83]. In a
recent systematic review and meta-analysis, Rohel et al. [10] confirmed the inhibitory effect
of pain on corticospinal excitability. More specifically, Billot et al. [9] reported that heat pain
applied at the tibialis anterior muscle significantly reduced corticospinal excitability either
during active muscle contraction or at rest. These results provide evidence that nociceptive
sensory input can impact corticospinal excitability at the lower limb. Incoming research
using the transcranial magnetic stimulation of the lumbar erector spinae muscles [84] will
help to delineate corticospinal excitability modulation with pain.

Using neuroimaging and neurostimulation, numerous studies showed that patients
with chronic pain, such as complex regional pain syndrome (CRPS) [85] or phantom limb
pain [86], presented cortical reorganization at the M1 level, with a smaller corticomotor
representation of the affected limb, compared to pain-free participants. A normalization
of the cortical changes was observed in CRPS patients following the administration of
treatment over 1 to 6 months that consisted of graded sensorimotor retuning [87], once
pain subsided [87,88], underlying the fact that cortical reorganization may play a major role
in the physiopathology of chronic pain [87,88]. These results support a causal relationship
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between pain and cortical changes. The cerebrum works as an integrated system of
circuits, and certain brain areas, other than those classically involved in pain perception
and modulation, can be affected by nociceptive stimulations [83].

At a lower anatomical level, spinal control may likewise be affected by pain conditions.
To date, experimental pain studies failed to provide strong evidence of a potential inhibitory
or facilitatory effect at the spinal level [89]. Investigating the influence of pain (hypertonic
saline into biceps brachii) at cortical and spinal levels, Martin et al. [90] showed that the
cervicomedullary motor evoked potentials increased at rest for both biceps and triceps
brachii, and for the agonist muscle during a constant level of elbow flexion (biceps) and ex-
tension (triceps). On the other hand, Le Pera et al. [49] reported reduced H-reflex amplitude
reduction in the recovery period after related pain induced by a hypertonic saline injection
in the flexor carpi radialis. The authors interpreted this delayed H-reflex depression by
the inhibition of the spinal motoneurones excitability that overlaps the cortical inhibition
observed by motor-evoked potential amplitude (corticospinal excitability) decrease. In
addition to spinal excitability, pain induces steady variations in spinal transmission that
could alter motor strategies [47]. For instance, prolonged exposure to nociceptive stimu-
lations from the skin or sore muscles induced large errors in a torque-matching task [91].
The authors reported that participants overestimated the torque level generated by a limb
affected by pain. In addition, pain could induce a distortion of the body image, leading to a
biased estimation of the body position in space [50].

The assessment of motor control in patients presenting with CLBP considers three
main classes of motor tasks, evaluating the control of the trunk in a steady-state condition
(posture and movement) or challenging by predictable or unpredictable perturbations [92].
Regarding the first condition, the literature has provided inconsistent lumbar extensor
muscle activity through 30 studies by reporting higher, no difference, or lower muscle ac-
tivity [7]. The results may differ depending on the anatomical specificity of the muscle. For
instance, for deeper muscles, there was a systematic inhibition, whereas for superficial mus-
cles, activity was preferentially augmented [7]. Likewise, by investigating the anticipatory
activation of the trunk muscles that occurred after expected or unexpected perturbations
in CLBP patients, studies reported the late activation of the transversus abdominis and
multifidus muscles [93–98], no modification [99], or earlier activation [100,101]. In line
with these results, the trunk movement alteration observed in CLBP patients may result
from proprioception deficiency [102,103]. Far from placing all these results in opposition,
van Dieen et al. [92] propose to dichotomize patients’ profils/phenotypes, where one phe-
notype includes patients with tight trunk control associated with the over-activation of
the trunk muscle due to excitability increase and causing tissue loading increase; and the
second phenotype includes patients with loose control associated with excessive spinal
movements due to excitability decrease and tissue loading increase. Thereby, in a nutshell,
patients suffering from CLBP present an abnormal loading of the tissues in the lower back
originating from different mechanisms.

5. Conclusions

There is no doubt that pain modifies movement and motor control, illustrated by
postural control alteration. This review showed that both experimental and chronic pain
lead to postural control impairments. Although cortical modification has been largely
investigated with pain localized at the upper limb, cortical and spinal modulation focusing
on spine and lower limb muscles have yet to be determined. Finally, different phenotypes
of motor control by tight or loose trunk control should be considered to provide adapted
treatment for managing both pain and postural control in patients presenting with chronic
lower back pain.
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