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Abstract: Background and Objectives: Survival estimation for patients diagnosed with Glioblastoma
(GBM) is an important information to consider in patient management and communication. De-
spite some known risk factors, survival estimation remains a major challenge. Novel non-invasive
technologies such as radiomics and artificial intelligence (AI) have been implemented to increase
the accuracy of these predictions. In this article, we reviewed and discussed the most significant
available research on survival estimation for GBM through advanced non-invasive methods. Ma-
terials and Methods: PubMed database was queried for articles reporting on survival prognosis for
GBM through advanced image and data management methods. Articles including in their title
or abstract the following terms were initially screened: ((glioma) AND (survival)) AND ((artificial
intelligence) OR (radiomics)). Exclusively English full-text articles, reporting on humans, published
as of 1 September 2022 were considered. Articles not reporting on overall survival, evaluating the
effects of new therapies or including other tumors were excluded. Research with a radiomics-based
methodology were evaluated using the radiomics quality score (RQS). Results: 382 articles were
identified. After applying the inclusion criteria, 46 articles remained for further analysis. These
articles were thoroughly assessed, summarized and discussed. The results of the RQS revealed some
of the limitations of current radiomics investigation on this field. Limitations of analyzed studies
included data availability, patient selection and heterogeneity of methodologies. Future challenges
on this field are increasing data availability, improving the general understanding of how AI handles
data and establishing solid correlations between image features and tumor’s biology. Conclusions:
Radiomics and AI methods of data processing offer a new paradigm of possibilities to tackle the
question of survival prognosis in GBM.

Keywords: glioblastoma; glioma; high-grade glioma; radiomics; artificial intelligence; deep learning;
machine learning; survival

1. Introduction

Glioblastoma (GBM), with an incidence of 3.5/100.000 population, is the most com-
mon malignant primary neoplasm of the brain in adults [1]. Its fatal prognosis has scarcely
improved over the last decades despite intensive research in the field [1]. Some clinical, sur-
gical and radiological features are known independent predictors of survival [2]. However,
accurate survival prediction is a key challenge for patients, relatives and physicians in their
search for precision medicine strategies to tackle the burden of this devastating tumor [3].

A radiology-based approach to prognosis prediction has gained momentum in recent
years fostered by the development of advanced tools to manage an immense quantity
of data and thanks to its noninvasiveness, radiomics, a science based on quantitative
data mining from medical images, has been extensively used in oncology [4]. Texture
analysis, a branch of radiomics, exploits the information concealed in voxels and pixels
and provides a quantitative assessment of images that might serve as a virtual biopsy [5].
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Thus, different imaging modalities, segmentation algorithms and texture features have
successfully contributed to supporting tumor diagnosis, molecular profile estimation,
treatment response evaluation and overall survival (OS) prediction in neurooncology [6–8].

Handling such an enormous quantity of complex data as derived from radiomic
analysis requires specific methods to obtain useful results and interpretable information.
Thus, artificial intelligence (AI) methods have been developed and applied to this novel
prognostic approach [9]. Machine learning (ML), a discipline within AI, through training
datasets on ground truth labels has allowed us to obtain algorithms that can execute
complex tasks such as tumor segmentation, tumor grading, molecular classification and
survival prognosis [10]. ML may follow a supervised (e.g., logistic regression, support
vector machine (SVM), random forest (RF), naïve Bayesian networks, decision trees (DT)) or
unsupervised (e.g., K-means cluster) workflow. In a different way, deep learning (DL), a
subclass of ML, does not require human intervention or ground truth labels to learn. Instead,
DL, mainly present in different forms of neural networks (NN), has been successfully
applied to tasks such as survival estimation, tumor segmentation, and estimation of glioma
molecular subtypes [6,11–15]. NN learns on its own from previous fails and successful
associations and can make more complex correlations. However, DL needs higher volumes
of data and requires extensive computational time for training. In all, different AI strategies
might be used to perform similar functions, which in the case of survival prognosis often
consists of correctly classifying patients into long and short survivors, whether by means
of SVM, RF, DT or naïve Bayesian classifiers, for instance, in the case of ML; or NN in the
case of DL.

In this review, we present an update of the current evidence on advanced statistics,
radiomics and data processing methods for the accurate survival prognosis of patients
suffering from high-grade gliomas. The initial attempt to conduct a systematic review or
meta-analysis was soon quit given the enormous heterogeneity of methods, the frequent
involvement of the same set of patients from public datasets and the lack of consistency in
results reporting. Instead, we sought to provide a comprehensive and thorough review of
advanced noninvasive methods for survival estimation in GBM, while we discuss present
challenges and future perspectives in this field.

2. Materials and Methods

A systematic search of PubMed was performed for articles reporting on the survival
prognosis for GBM, involving in their methodology a noninvasive advanced radiological
approach including radiomics and/or AI.

The query was built for the following terms to be present on the Title or abstract:
((glioma) AND (survival)) AND ((artificial intelligence) OR (radiomics)). Only English full-
text articles, reporting on human subjects, published (even ahead of print) as of 1 September
2022 were considered. Each manuscript was independently reviewed by two authors (S.
G-G and S.C.). Articles not reporting on overall survival, including other tumors than
GBM, or redundant articles were excluded. Articles assessing the effect of novel therapies
on survival were also excluded. In the case of an investigation conducted by the same
scientific team with similar methods applied to an updated, previously published dataset,
the last manuscript was considered. In case of disagreement on the need to include a given
study, a consensus was reached after substantiated discussion held by the signing authors.

Studies involving a methodology based on radiomics were assessed according to
the radiomics quality score (RQS) [16]. The RQS is a sixteen-item scale that evaluates the
methodology and reporting of an investigation to improve the consistency of radiomics
studies, increase its reproducibility and enhance scientific soundness in this field [16].

3. Results

The search resulted in 382 articles with the terms glioma, survival, AI and radiomics,
whether in their title or abstract. After applying the inclusion criteria, 311 articles were
excluded. Seventy-one full-text articles were thoroughly reviewed, of which 46 articles
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were ultimately included (Figure 1). The main results of these articles are summarized
in Table 1. Similarly, the results of the RQS of articles, whose methodology was based on
radiomics, are presented in Table 2. The average and median scores of the RQS for the
analysed studies were 10.5 (29%) and 11 (31%), respectively.
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Table 1. Summary of the studies analyzed in this review.

Author
Year N

Cases from
Public

Database *

MRI
Sequence
Radiomics
Analysis

Segmentation
Method
(Labels)

Image
Preprocessing

F. Extraction
Software N of F. Feature Type

Feature
Selection/

ML
Classifier

Validation
Method

Model
Performance

1 Yang [17]
2015 82 Yes

TCIA
T1C

FLAIR

Manual
Enhancing tumor

Whole tumor

Intensity
Normalization

Re-Slicing
MATLAB 976

SFTA, GLRLM,
Local Binary

Patterns,
Histogram of

oriented gradients,
Haralick

RF Out-Bag
Validation

SFTA T1C
AUC = 0.69

2 Chaddad [18]
2016 40 Yes

TCIA
T1

FLAIR

Manual
Enhancing Tumor

Necrosis
Edema

Co-Registration
Intensity

Normalization
MATLAB 22 GLCM DA, NB, DT,

SVM LOOCV

AUC = 0.793
Phenotypes with
KM significantly

different

3 Liu [19]
2016 68 No RS-F- MRI

DTI
Automatic
Anatomical

Labelling

RS-F-MRI:
SPM8 and DPARSF

DTI:
FSL and PANDA

GRETNA
Toolbox for

Connec-
tomics

2797
Functional and

Structural
Networks,

Clinical
SVM No Accuracy = 75%

4 Macyszyn [20]
2016 134 No

T1C
T1
T2

T2FLAIR
DTI
DS

Automatic
Enhancing Tumor
Non/Enhancing

Tumor
Edema

Ventricles

Co-Registration N/A 216
First Order, Tumor
Location, GLISTR

Outputs,
Intensities

SVM 10-FoldCV
VD = 29

Retrospective
Accuracy =

77.14%
Prospective
Accuracy =

79.17%

5
Kickingereder

[21]
2016

119 No

T1
T1C

FLAIR
DWI
DS-C

Semiautomatic,
Enhancing Tumor
Non/Enhancing

Tumor

Co-Registration
N4 bias Correction

Intensity
Normalization

MITK 12,190
First order,
volumetric,

Wavelet, Haralick,
GLCM, GLRLM,

SPCA VD = 40
C-index = 0.61

HR = 3.45
KM

6 Lee [22]
2016 24 Yes

TCIA DS-C

Manual
Enhancing tumor

Nonenhancing
tumor Normal

WM

Co-Registration
Normalization MATLAB 18 First order, GLCM,

Haralick
Univariate
Analyisis No

AUC = 0.83
HR = 0.019

KM

7 Ingrisch [23]
2017 66 No T1C Semiautomatic

Whole Tumor
Resampling

Normalization Python 208

First order,
Haralick,

Parameter-free
Threshold

Adjacency Statistics

Minimal
Depth, RF 10-FoldCV

C-index = 0.67
HR = 1.04

KM

8 Liu [24]
2017 133 Yes

TCIA T1C
Manual

Enhancing
Tumor

Resampling MATLAB 56 First order, GLCM,
GLRLM

RFE-SVM 10-FoldCV
AUC = 0.81

Accuracy = 78%
KM

9 Li [25]
2017 92 Yes

TCIA = 60

T1
T1C

FLAIR
T2

Automatic
Enhancing Tumor
Non/Enhancing

Tumor
Necrosis
Edema

N4 bias correction,
skull stripping,

resampling,
co-registration,

histogram
matching

MATLAB 45,792
First order, GLCM,
GLRLM, GLSZM,

NGTDM
LASSO VD = 32

C-index = 0.71
HR = 3.29

KM
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Table 1. Cont.

Author
Year N

Cases from
Public

Database *

MRI
Sequence
Radiomics
Analysis

Segmentation
Method
(Labels)

Image
Preprocessing

F. Extraction
Software N of F. Feature Type

Feature
Selection/

ML
Classifier

Validation
Method

Model
Performance

10 Liu [24]
2017 133 Yes

TCGA T1C Manual
Whole Tumor Resampling MATLAB 56 GLCM, GLRLM,

Histogram SVM No Accuracy = 78.2%
AUC = 0.8104

11 Lao [15]
2017 112 Yes

TCIA = 75

T1
T1C

FLAIR
T2

Manual
Necrosis

Enhancing tumor
Edema

N4 Bias correction
Resampling

Co-Registration
Histogram
matching

MATLAB 99,707

First order, GLSM,
GLRLM, GLSZM,

NGTDM, Deep
features

LASSO VD = 37
C-index = 0.71

HR = 5.13
KM

Nomogram

12 Prasanna [26]
2017 65 Yes

TCIA
T1C

FLAIR
T2

Manual
Enhancing Tumor

Necrosis
Edema

Co-Registration
Insensity

Normalization Bias
Field Correction

MATLAB 402

Haralick, Laws
features, Histogram

of oriented
gradients,

Laplacian pyramids

mRMR, RF 3-FoldCV KM
C-index = 0.70

13
Kickingereder

[27]
2018

181 No
T1

T1C
FLAIR

T2

Semiautomatic,
Enhancing Tumor

Nonenhancing
tumor

Necrosis

Intensity
Normalization
Coregistration

MITK 1043
First order, shape,
GLCM, GLRLM,

GLSZM
LASSO VD = 61 HR = 2.72

14 Bae [28]
2018 217 No

T1C
FLAIR

T2
DTI

Manual.
Necrosis

Enhancing Tumor
Non/Enhancing

Tumor

Co-Registration
N4-Bias Correction

Normalization
Python 796 GLCM, GLRLM,

GLSZM VHA, RSF VD = 54 AUC = 0.652
KM

15 Sanghani [29]
2018 163 Yes

BRATS

T1
T1C

FLAIR
T2

Manual
Enhancing Tumor
Non/Enhancing

Tumor
Edema

Co-Registration
Resampling Python 2200

Volumetric, Shape,
First order, GLCM,

Gabor texture
RFE-SVM 5-FoldCV Accuracy = 98.7%

16 Chaddad [30]
2018 40 Yes

TCIA
T1

FLAIR

Manual
Enhancing Tumor
Non/Enhancing

Tumor
Necrosis
Edema

Co-Registration
Resampling

Intensity
Normalization

MATLAB 9 Texture features
based on LOG filter RF 5-FoldCV AUC = 0.85

17 Liu [31]
2018 119 Yes

T1
T1C

FLAIR
T2

Manual
Enhancing tumor

Co-Registration
Resampling MATLAB 54 First order, GLCM,

GLRLM SVM-RFE No

T1C
AUC = 0.79,
Accuracy =

80.67%
KM

18
Molina-Garcia

[32]
2019

404 Yes
TCIA T1C

Manual
Enhancing Tumor

Necrotic Core
No MATLAB 44 First Order,

GLRLM, GLCM
NN

SVM
RT

VD = 93
C-Index = 0.817
(Optimal Linear

Prognosis Model)

19 Tan [33]
2019 147 Yes

TCIA = 112
T1C

FLAIR

Manual
Whole tumor

Edema
Contralateral

WM

Co-Registration
N4 Bias Correction

Resampling
Intensity

Normalization

MATLAB 1456 LASSO VD = 35

Radiomics
C-index = 0.71

HR = 2.18
Nomogram

C-Index = 0.76
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Table 1. Cont.

Author
Year N

Cases from
Public

Database *

MRI
Sequence
Radiomics
Analysis

Segmentation
Method
(Labels)

Image
Preprocessing

F. Extraction
Software N of F. Feature Type

Feature
Selection/

ML
Classifier

Validation
Method

Model
Performance

20 Nie [34]
2019 93 No

T1C
DTI

RS-F-MRI
Manual

Whole Tumor Co-Registration N/A 2048 CNN supervised CNN
SVM

10-FoldCV
VD =25

Accuracy =
90.46%

(VD = 88%)
21 Choi [35]

2019 114 Yes
TCIA = 53 T2 Manual

Peritumoral N/A Python 106 First Order, GLCM,
GLRLM, GLSZM No VD = 34

C-index 0.659
KM

22 Chen [36]
2019 127 Yes

TCIA T1C Manual
Enhancing tumor

Insensity
Normalization MATLAB 3824 First order, Shape,

GLCM, GLRLM mRMR N/A
HR = 3.65

AUC = 0.82
KM

23 Sasaki [37]
2019 182 No

T1
T1C
T2

Manual
Enhancing tumor

Whole tumor

Co-Registration
Intensity

Normalization
MATLAB 489 First order, GLCM,

GLRLM, shape
SPCA,
LASSO 10-FoldCV

HR = 1.62
High and Low
risk Log Rank

Test
p = 0.004

24 Um [38]
2019 161 Yes

TCIA
T1

T1C
FLAIR

Semiautomatic
Whole tumor

Co-Registration
Rescaling
Bias field

Correction
Histogram
Matching

Resampling

CERR 420

First order, Edge
features (LoG,
Sober, Gabor,

Wavelet), GLCM,
GLSZM, Haralick

LASSO VD = 47 HR = 3.61
KM

25 Chang [39]
2019 12 No

T1
T2FLAIR

Pretreatment
Posttreatment1
Posttreatment2

Manual
Whole Tumor Co-Registration MATLAB 61

GLCM, GLDM,
GLRLM, GLSZM,
Delta Radiomics

RF, Linear-
SVM,

Kernel-SVM,
NN, NB, LR

No

AUC = 0.889
Best Result:

RF with SVM
and

NN with Delta
Radiomics

26 Tixier [40]
2019 159 Yes

TCIA = 47
T1

T1C
FLAIR

Semiautomatic
Whole tumor

Co-Registration
Gabor Filtering

Binning
CERR 286 First order, GLCM,

GLSZM, Gabor LASSO VD = 61 KM

27 Shboul [41]
2019 224 Yes

BRATS

T1
T1C

FLAIR
T2

Automatic
Whole tumor

Edema
Necrosis

Enhancing
Tumor

Co-Registration
Bias Correction
Normalization

N/A 31,000 Texture, Euler,
Histogram

Univariate,
RFS, RF,
XGBoost

VD = 61
LOOCV

Accuracy = 73%
VD-Accuracy =

68%

28 Chaddad [42]
2019 200 Yes

TCIA = 71 T1C, FLAIR Manual
Whole tumor Resampling MATLAB 45 First order, GLCM,

NGTDM, GLSZM No VD = 100 AUC = 0.752
KM

29 Kim [43]
2019 83 No

T1
T1C

FLAIR
T2

DTI
DS-C

Semiautomatic
Enhancing Tumor
Non/Enhancing

Tumor

Co-Registration
Intensity

Normalization
Resampling

MATLAB 6472 First order, Wavelet,
GLCM, GLRLM LASSO 10-FoldCV

DTI Radiomics
AUC = 0.70
C-index 0.63

DS-C
AUC = 0.76

C-index = 0.55
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Table 1. Cont.

Author
Year N

Cases from
Public

Database *

MRI
Sequence
Radiomics
Analysis

Segmentation
Method
(Labels)

Image
Preprocessing

F. Extraction
Software N of F. Feature Type

Feature
Selection/

ML
Classifier

Validation
Method

Model
Performance

30 Liao [44]
2019 137 Yes

TCIA FLAIR Manual N/A Python 72
First order, GLCM,
GLSZM, GLRLM,
NGTDM, GLDM

GBDT, SVM,
kNN VD = 41

Accuracy = 81%
Short survival

AUC = 0.79
Long survival

AUC = 0.81

31 Osman [45]
2019 163 Yes,

BRATS

T1
T1C

FLAIR
T2

Manual
Enhancing Tumor
Non/Enhancing

Tumor
Edema

Co-Registration
Smoothing

Interpolation
Intensity

Normalization
Intensisty Rescaling

MATLAB 147

First order, GLCM,
Histogram of

oriented gradients,
Local Binary

Pattern.

LASSO, SVM,
kNN, DA VD = 54

Accuracy = 57.8%
Short survival

AUC = 0.81
Median survival

AUC = 0.47
Long survival

AUC = 0.72

32 Chaddad [46]
2019 73 Yes

TCIA
T1C

FLAIR

Manual
Enhancing Tumor

Necrosis
Edema

Co-Registration
Resampling

Intensity
Normalization

MATLAB 11 JIM, GLCM SpCoR
RF LOOCV

JIM features:
HR = 1.88

AUC = 0.776

33 Zhang
2019 [47] 105 Yes

TCIA

T1
T1C

FLAIR
T2

Manual
FLAIR Signal

Enhancing Tumor
Necrosis
Edema

Co-Registration
Resampling

Collewet
Normalization

MATLAB 4000
First Order, GLCM,
GLRLM, GLSZM,

Wavelet
LASSO

LR VD = 35 C-Index = 0.94
Nomogram

34 Han [6]
2020 178 Yes

TCIA = 128 T1C Manual
Whole Tumor

Normalization
Gray-Level

Quantization
Resampling

MATLAB
(radiomics)

CNN
(Keras-

TensorFlow)
Elastic

Net/Cox
(R)

8540

First order,
Nontexture,
Histogram,

GLCM, GLRLM,
GLSZM, NGTDM

Deep
features(CNN)

MAD,
C-Index,

PearsonC
No

Long Rank Test
Long/Short

Survival p < 0.001
(HR = 3.26)

35 Zhang [48]
2020 104 Yes

TCIA

T1
T1C

FLAIR
T2

Manual
Whole Tumor

Tumor
subregions

Co-Registration
Resampling

Normalization
MATLAB 180 First Order, GLCM,

GLRLM, GLSZM

Multiple
Instance
Learning,

SVM
VD = 33

Accuracy = 87.9%
Sensitivity =

85.7% Specificity
= 89.4%

36 Suter [49]
2020 109 Yes

TCIA = 76

T1
T1C

FLAIR
T2

Automatic
Enhancing Tumor
Non/Enhancing

Tumor
Necrosis
Edema

Co-Registration
Skull Stripping

Resampling
N4 Bias Correction

Python 8327
First order, GLCM,
GLSZM, GLRLM,
NGTDM, GLDM,

Deep features.

13 F selection
(RelieF, GINI,

CHSQ . . . )
and 12 ML
methods

(CNN, SVM,
RF, DT . . . )

VD = 76

2-Classes:
AUC = 0.66

Accuracy = 64%
3-Classes:

AUC = 0.58
Accuracy = 38%
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Table 1. Cont.

Author
Year N

Cases from
Public

Database *

MRI
Sequence
Radiomics
Analysis

Segmentation
Method
(Labels)

Image
Preprocessing

F. Extraction
Software N of F. Feature Type

Feature
Selection/

ML
Classifier

Validation
Method

Model
Performance

37 Bakas [50]
2020 101 No

T1
T1C

FLAIR
T2

DTI
DS-C

Automatic
Enhancing Tumor
Non/Enhancing

Tumor
Edema

Co-Registration
Resampling

Noise Filtering
Histogram
Matching

CaPTk 1612

First order,
Volumetric,

Wavelet, GLCM,
GLRLM, GLSZM,
NGTDM, Spatial

information,
diffusion properties

Forward
Selection,

SVM
5-FoldCV

Accuracy
Advanced MRI =

73%
Basic MRI =

74.3%
KM

38 Park [51]
2020 216 No

T1C
FLAIR
DWI
DS-C

Semiautomatic
Enhancing tumor

Co-Registration
Intensity

Normalization
Resampling

MATLAB 1618 First order, GLCM,
GLRLM, Wavelet LASSO VD = 58

C-index = 0.64
KM

Nomogram

39 Lu [52]
2020 181 No T1C

Semiautomatic
Whole tumor

Enhancing tumor
Nonenhancing

tumor
Necrosis

Intensity
Normalization N4

Bias Correction
Python 333

Shape, First order,
GLCM, GLDM,

GLRLM, GLSZM,
NGTDM
VASARI

VHA,
RFS VD = 78 AUC = 0. 96

C-index = 0.90

40 Baid [53]
2020 346 Yes

BRATS

T1
T1C

FLAIR
T2

Automatic.
Whole Tumor

Enhancing tumor
Tumor core

Co-Registration
N4 Bias Correction

Normalization
MATLAB 678

First order, Wavelet
decomposition,

GLCM
SpCoR,

RF VD = 53 Accuracy = 57.1%

41 Moradmand [11]
2021 260

Yes
TCGA

IVY
N/A N/A N/A Python N/A

Clinical, Tumor
Data, PostSurgical

Treatment,
Molecular variables

CoxPH, RF,
NN TD = 78

C-index = 0.823
Bayesian

Hyperparameter
Optimization

42 Yan [8]
2021 688

Yes
TCIA

CGGA
Local

DTI
T2 Flair

Manual
Whole Tumor

Coregistration
Standardization Python N/A Radiogenomics

Clinical CNN VD = 77
C-index = 0.825
(VD-C-index =

0.79)

43 Priya [54]
2021 85 No T1C Manual

Whole Tumor N/A TexRAD 36 Texture, Age
SVM
NN
RT

5-FoldCV
AUC = 0.811

Accuracy = 67%
AUC CV = 0.71

44 Cepeda [55]
2022 203

Yes
TCIA = 34

BraTS = 119

T1
T1C

FLAIR
T2

Hybrid
(GLISTRboost)

Enhancing tumor
Nonenhancing

tumor
Edema

Re-Orientation
Co-Registration

Resampling
Normalization

CaPTk 15,720

First Order,
Histogram,
Volumetric,

Morphologic,
GLCM, GLDM,

GLRLM, GLSZM,
NGTDM

Gini Index,
FCBF,

InfoGain
/

LR, NB, kNN,
RF, SVM, NN

TD = 60

AUC = 0.98
Accuracy = 94%
(TD-AUC = 0.77
TD-Accuracy =

80%)
Naïve Bayes

45 Ben Ahmed [14]
2022 163 Yes

BRATS T1C
Automatic

Enhancing tumor
Tumor core

Whole Tumor

Null-Voxel
Reduction

Data Augmentation
2D Transformation

Python 35,709 Snapshot CNN VD = 46 Accuracy = 74%
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Table 1. Cont.

Author
Year N

Cases from
Public

Database *

MRI
Sequence
Radiomics
Analysis

Segmentation
Method
(Labels)

Image
Preprocessing

F. Extraction
Software N of F. Feature Type

Feature
Selection/

ML
Classifier

Validation
Method

Model
Performance

46 Ruan [56]
2022 200 Yes

TCGA = 129
T1C
T1

T2FLAIR
Manual

Whole Tumor Standardization MATLAB
3D Slicer 665

First Order,
VASARI, GLCM,
GLDM, GLRLM,

GLSZM, NGTDM
LASSO VD

Radiomics
C-Index = 0.935

RadiomicsVASARI
C-Index = 0.622

AUC: Area Under the Curve from Receiver Operating Characteristics; BraTS: Brain Tumor Segmentation Challenge Dataset; C: Contrast Enhanced; CGGA: Chinese Glioma Genome
Atlas; CNN: Convolutional Neural Networks; CoxPH: Cox proportional hazards; CV: Cross Validation; DA: Discriminated Analysis; DS: Dynamic Susceptibility; DT: Decision Trees; DTI:
Diffusion Tensor; DWI: Diffusion Weighted Image; Imaging; F: Radiomic Features; GBDT: Gradient Boosting Decision Tree; GLCM: Gray Level Co-Occurrence Matrix; GLDM: Gray
Level Difference Matrix; GLSZM: Gray Level Size Zone Matrix; HR: Hazard Ratio;IVY: Ivy Glioblastoma Atlas Project; JIM: Joint Intensity Matrix; KM: Kaplan-Meier Survival Curves;
kNN: K Nearest Neighbor; LASSO: Least Absolute Shrinkage and Selection operator; LOOCV: Leave One Out Cross Validation; LoG: Laplacian of Gaussian; LR: Logistic Regression;
MAD: Median Absolute Deviation; mRMR: minimum Redundancy Maximum Relevance; N: Number of patients; NB: Naïve Bayesian; NGTDM: Neighborhood gray tobe difference
matrix; NN: Neural Networks; PearsonC: Pearson’s Co-Relation Coeficient; RS-F-MRI: Resting State functional MRI; RF: Random Forest; RFE: Recursive feature elimination; RFS:
Recursive Feature Selection; RT: Regression Trees; SPCA: Sparse Principal Component Analysis; SpCoR: Spearman’s Co-Relation; SFTA: Segmentation Fractal Texture Analysis); SVM:
Support Vector Machine; TCGA: The Cancer Genome Atlas; TCIA: The Cancer Imaging Archives; TD: Testing Dataset; VD: Validation Dataset; VHA: Variable Hunting Algorithm; WM:
White Matter. * (If all cases were from a public dataset, the number is not disclosed again).
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Table 2. Itemized score for the Radiomics Quality Score of the included radiomics studies assessing survival prognosis in high grade gliomas.

Author and Year Yang
2015

Lee
2016

Kickingereder
2016

Macyszyn
2016

Chaddad
2016

Lao
2017

Liu
2017

Li
2017

Ingrisch
2017

Prasanna
2017

Bae
2018

Sanghani
2018

Liao
2018

Chaddad
2018

Liu
2018

Choi
2019

Image protocol quality 1 0 1 2 1 1 1 1 1 1 1 0 0 0 1 1
Multiple segmentations 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1
Phantom study on all scanners 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
Imaging at multiple time points 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Feature reduction or adjustment
for multiple testing −3 3 3 3 −3 3 3 3 3 3 3 3 3 −3 3 −3

Multivariate analysis with
nonradiomic features 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1

Detect and discuss biologic
correlates 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Cutoff analysis 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0
Discrimination statistics 1 1 1 1 1 1 1 1 0 0 2 0 1 1 1 0
Calibration statistics 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Prospective study registered in
trial data base 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Validation 2 −5 2 2 2 3 2 2 2 2 2 −5 2 2 2 2
Comparison with criterion
standard 0 2 2 0 0 2 0 2 2 2 2 0 0 0 0 2

Potential clinical utility 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cost-effectiveness analysis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Open science and data 1 1 0 0 1 1 1 1 0 1 0 2 0 1 1 1
Total points 4 5 13 12 4 19 10 15 10 11 14 1 8 4 10 6
% RQS 11% 14% 36% 33% 11% 53% 28% 42% 28% 31% 39% 3% 22% 11% 28% 17%

Author and Year Tixier
2019

Shboul
2019

Chaddad
2019

Chen
2019

Kim
2019

Chang
2019

Osman
2019

Chaddad
2019

Um
2019

Zhang
2019

Han
2020

Zhang
2020

Suter
2020

Bakas
2020

Park
2020

Cepeda
2021

Ruan
2022

Image protocol quality 1 0 0 1 1 0 1 0 1 1 2 1 0 1 1 1 1
Multiple segmentations 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1
Phantom study on all scanners 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
Imaging at multiple time points 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Feature reduction or adjustment
for multiple testing 3 3 −3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Multivariate analysis with
nonradiomic features 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1

Detect and discuss biologic
correlates 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

Cutoff analysis 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1
Discrimination statistics 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
Calibration statistics 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
Prospective study registered in
trial data base 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Validation 2 2 2 2 2 2 2 2 2 2 0 2 2 2 3 3 2
Comparison with criterion
standard 0 0 2 2 2 1 2 2 0 2 2 2 0 0 2 2 1

Potential clinical utility 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cost-effectiveness analysis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Open science and data 1 2 1 1 0 0 3 1 0 1 1 1 1 2 1 2 1
Total points 10 10 5 14 13 10 16 13 10 15 11 13 11 11 15 15 13
% RQS 28% 28% 14% 39% 36% 28% 44% 36% 28% 42% 31% 36% 31% 31% 42% 42% 36%
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4. Discussion

Predicting life expectancy for patients diagnosed with GBM is a major challenge. Many
variables might influence the prognosis, and despite numerous efforts and approaches,
uncertainty often erodes patients’ and physicians’ will to face and overcome the fateful
outlook that this disease entails. New advanced techniques to process images and data
have proven their ability to noninvasively mine and display the information shielded in
the infinite number of pixels and voxels that compose multimodal neuroimages. Initially,
we conducted a meta-analysis or systematic review of the main evidence on survival
prognosis through these advanced methods, such as radiomics and AI. However, we soon
realized that the tremendous variability of methods, the lack of consistency in reporting the
results and the recurrent use of public datasets of the same patients hampered successful
fulfillment of this task and rendered it unmanageable. Instead, we present a thorough
review of the key available evidence regarding this critical issue while we discuss the main
existing limitations, the actual room for improvement and the new horizons and challenges
that future research should address.

Conventional morphological MRI features contain valuable prognostic information.
As proven by Molina et al., a simple model based on age and morphological features,
without texture data, could outperform more complex models in GBM [32] prognosis
prediction. Nonetheless, morphologic information might be a loose term in which many
features fit. In an effort to unify the common characteristics gliomas display on MRI studies
and to harmonize the vocabulary in which we refer to them, Visually Accessible Rembrandt
Images (VASARI) were developed [57]. This list of 30 features has been demonstrated to be
useful for predicting OS in GBM [58]. In addition, VASARI, which does not consider texture
information, has been successfully integrated into ML models based on texture data [56].
However, in a study by Ruan et al., only cortical involvement was strongly associated with
poor outcomes. Indeed, VASARI features did not increase the predictive accuracy of the RF
model based on radiomic features when combined with them.

As shown in Table 1, there are several examples of predictive algorithms based on
texture features extracted from conventional MRI sequences. Studies vary widely in terms
of image preprocessing, segmentation methods, number of features and ML classifiers
(Figure 2). Different strategies and approaches have been performed with a few outstand-
ing examples, such as those of Ruan et al.; Cepeda et al.; Lu et al.; and Sanghani et al.,
in whose studies based on conventional MRI sequences and ML algorithms, accurate
prognostic classification exceeded 90% [29,52,55,56]. Moreover, advanced MRI sequences
can also be employed for prognostic purposes. Thus, some authors have implemented
functional resting-state MRI and DTI (Diffusion Tensor Imaging) studies to build struc-
tural and connectivity networks, extract features and process them with ML and DL
algorithms [19,50,59].

An interesting conceptual approach was implemented by Lee et al., who used relative
texture features from perfusion maps to predict the survival status at 12 months [22]. Fea-
tures extracted from enhancing and nonenhancing regions of the tumor were computed to
provide these relative features. In addition, kinetic features calculated from the gadolin-
ium concentration time-series of perfusion data in both regions were also extracted [22].
Nonetheless, relative texture features displayed a higher impact on prognosis than kinetic
features [22].

Delta-radiomics, which consists of features extracted at different time points, provides
information about how radiomic features change over time. In a small cohort, Chang et al.
demonstrated the strong potential of delta-radiomics combined with a DL algorithm [39].
It is still unknown which time lapses might be more informative depending on the studied
outcome variable. Regardless, delta features seem to provide higher predictive information
than one-time features, which makes it even more logical for survival prognosis.



Medicina 2022, 58, 1746 12 of 17
Medicina 2022, 58, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 2. (A) Diagram depicting an example of the conventional process for studies implementing 
radiomics and machine learning algorithms. (B) Diagram of an example of a survival prediction 
investigation based on deep learning. 

An interesting conceptual approach was implemented by Lee et al., who used 
relative texture features from perfusion maps to predict the survival status at 12 months 
[22]. Features extracted from enhancing and nonenhancing regions of the tumor were 
computed to provide these relative features. In addition, kinetic features calculated from 
the gadolinium concentration time-series of perfusion data in both regions were also 
extracted [22]. Nonetheless, relative texture features displayed a higher impact on 
prognosis than kinetic features [22]. 

Delta-radiomics, which consists of features extracted at different time points, 
provides information about how radiomic features change over time. In a small cohort, 
Chang et al. demonstrated the strong potential of delta-radiomics combined with a DL 
algorithm [39]. It is still unknown which time lapses might be more informative 
depending on the studied outcome variable. Regardless, delta features seem to provide 
higher predictive information than one-time features, which makes it even more logical 
for survival prognosis. 

ML methods may also generate different radiomic profiles of gliomas that could 
potentially translate their underlying biological features. Itakura et al. and Rathore et al. 
classified gliomas into three clusters with different survival prognoses using different 
methodologies [60,61]. Remarkably, both teams reported three different radiomic profiles 
that actually shared some characteristics [9]. Specifically, rim-enhancing subtypes granted 
better prognosis in both reports. Indeed, tumor subgroups were associated with molecular 
subtypes, location and genetic mutations [60,61]. These findings, which require further 
validation, support the idea of radiomics as a virtual biopsy, turning the corner to more 
personalized and precise communication with patients and relatives. 

Figure 2. (A) Diagram depicting an example of the conventional process for studies implementing
radiomics and machine learning algorithms. (B) Diagram of an example of a survival prediction
investigation based on deep learning.

ML methods may also generate different radiomic profiles of gliomas that could
potentially translate their underlying biological features. Itakura et al. and Rathore et al.
classified gliomas into three clusters with different survival prognoses using different
methodologies [60,61]. Remarkably, both teams reported three different radiomic profiles
that actually shared some characteristics [9]. Specifically, rim-enhancing subtypes granted
better prognosis in both reports. Indeed, tumor subgroups were associated with molecular
subtypes, location and genetic mutations [60,61]. These findings, which require further
validation, support the idea of radiomics as a virtual biopsy, turning the corner to more
personalized and precise communication with patients and relatives.

Deep learning, as a branch of AI and considered a fully machine learning method
able to train on its own without human intervention, has consistently defeated rivals in
image recognition competitions such as ImageNet. The increasing amount, complexity,
types and availability of data partially explains the swift direction towards DL for medical
applications, as DL does not strictly require a human-driven refining of data.

Moradman et al. demonstrated the superior ability of DL to establish complex cor-
relations between multiple clinical, biological and therapeutic variables, and survival in
patients diagnosed with glioblastoma [11]. A feed-forward NN offered higher accuracy on
survival prognosis than the random survival forest and Cox proportional hazard regression
models [11].

Obviating the tasks that texture analysis involves, Ben Ahmed et al. built a convo-
lutional NN based on MRI snapshots that outperformed the accuracy of the best-known
predictor by 6% [14]. Using nonlabelled, nonsegmented snapshots offers a fast and low-cost
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way to feed a DL algorithm [14]. Nonetheless, DL might also be used as a method to mine
images. With a hybrid approach, Nie et al. applied a DL method to automatically extract
features that would otherwise be difficult to design [34]. These DL features together with
key demographic and tumor-related features allowed us to stratify patients into long and
short survival groups through an SVM classifier with 90.5% accuracy [34]. DL also supports
the inclusion of advanced MRI sequences, as demonstrated by Yan et al., who compared
a clinical nomogram with a DL signature based on DTI data [62]. Yan et al. obtained
better results with the DL signature, achieving a C-index of 0.9 on an external validation
dataset [62]. In addition, the authors suggested the existence of an association of DL fea-
tures with biological pathways involved in glioma development (synaptic transmission,
activation of AMPA receptors, axon guidance, calcium transport, etc.) [62].

4.1. Future Challenges
4.1.1. Data Availability

AI training requires a large, high-quality dataset to build robust algorithms. Creating
such datasets is costly and time consuming and demands that professionals shift from
care provision to data production. This burden is especially problematic in rare diseases
such as GBM. Therefore, a culture of data sharing is needed. Cooperative efforts, such as
The Cancer Imaging Archive or the Ivy Glioblastoma Atlas project, have contributed to
increasing data availability. Additionally, data could be improved by the harmonization of
image acquisition protocols across institutions. Automatic data acquisition, often used by
AI in other fields, clashes with the need to preserve the confidentiality of medical data [63].

4.1.2. Opening the Black Box

AI algorithms are built from associations that are not fully disclosed by the algorithm
itself. Therefore, drawing conclusions between radiomic features and glioma characteristics
might be misleading since their relationships are unknown, and predictive models might be
based on variables derived from similar features that might be overrepresented [64]. Indeed,
understanding the underlying mechanisms by which biology translates into radiomic
features is a classic concern and matter of current investigations. Nonetheless, recent
advances, such as principal component analysis and saliency maps, have relieved these
concerns by unveiling part of the structure of AI algorithms [65]. Radiomic features might
be the fine manifestation of molecular phenotypes in grayscale images [20].

4.1.3. Humanizing AI

When AI is implemented to fulfil a given task, human vs. machine approaches are
often used to elucidate who can better perform it. Modern AI applications to the medical
field have suggested the benefits of human-in-the-loop strategies to overcome the unique
challenges medicine poses to AI. In expert augmented machine learning, researchers com-
bined the knowledge of experts to solve specific problems where AI algorithms might fail
the most [66]. Thus, the quality of training data might be notably improved by integrating
the information that specialists base their decisions on. Similarly, in active learning, key data
are obtained from the expert by the algorithm itself to increase the quality of the training
dataset or enhance the ability of the algorithm to extract useful information [67,68].

4.1.4. Integrating AI into Clinical Practice

The ultimate goal of research in medicine is transferring the lessons learned in the
laboratory to clinical practice. The topic covered in this review is not an exception. The
reports presented herein are commendable efforts to find key features and methods to
improve patients’ prognostic estimation. However, the methodology that most of these
investigations involve is extremely time-consuming and makes it inefficient for daily
implementation in a clinical context. The next paramount advancement in this field,
beyond increasing accuracy or simplifying the workflow, will be the production of an open
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source, easily integrable and precise AI algorithm that requires simple or null intervention
of the physician for prognostic estimation from multimodal MRI studies.

4.2. Limitations

The major limitations of previous publications can be summarized in the following
sections:

1. Patient selection: In most published articles, patients were included without consider-
ing the extent of resection, which is one of the main factors associated with overall
survival. Therefore, if the intention is to use the imaging characteristics independently
to predict the outcome, it is necessary either to include only patients with gross total
resection or perhaps to introduce in the model a variable through which the degree of
resectability of the tumor can be quantified [55].

2. Image preprocessing and data extraction: There is significant variability in the meth-
ods employed to preprocess MRI images and in the parameters used to extract ra-
diomic features. This pitfall explains the differences in the results obtained on the
same patient dataset (such as the TCIA patient cohort) [47,49]. Therefore, the lack
of details about the preprocessing pipeline used by the different authors limits the
reproducibility of their results [11,35,44,54].

3. Classification task vs. survival regression: There are discrepancies in how different
authors approach the challenge of predicting survival in GBM. On the one hand, some
studies attempt to carry out a survival analysis, in which the relationship between
the radiomic variables and survival in days is expressed by the Harrell index or the
hazard ratio [6,18,35,37]. On the other hand, there are works in which a classification
task has been carried out to create survival groups. The latter methodology is much
easier to interpret and has a clinical orientation [6,19,23]. However, the cut-off point
for establishing survival groups is entirely arbitrary in various publications [19]. For
example, it does not seem helpful to define a short-term survivor as one who does not
exceed ten months of life when the overall median survival is 15 months. Therefore,
unifying the criteria for short- and long-term survival definitions in this neoplasm
is essential.

4. Lack of validation in multi-institutional data: Although there are studies with promis-
ing results, the lack of validation in a multicenter cohort seriously limits the applica-
tion of predictions in a clinical setting [55]. One of the challenges of models based on
radiomic features is to find a set of stable and reproducible features so that they can
be used regardless of artifacts produced during image acquisition, MRI acquisition
protocols, and scanner manufacturers.

5. Conclusions

Advanced image analysis and data processing methods have gained momentum over
the last decade. Methods such as radiomics, texture analysis, ML and DL have been success-
fully implemented to provide an accurate survival estimation and risk factor identification
for patients diagnosed with GBM. The wide variety of available approaches prevents
unifying methods and drawing consistent conclusions from reported results. However,
despite its limitations, the existing symbiosis between radiomics and AI represents a robust
approach to build evidence and address unanswered questions in neuro-oncology. In fact,
AI is no longer a matter of future but a living, vibrant and powerful reality.
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