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Abstract: Background and Objectives: We developed a predictive statistical model to identify donor—
recipient characteristics related to kidney graft survival in the Chilean population. Given the large
number of potential predictors relative to the sample size, we implemented an automated variable
selection mechanism that could be revised in future studies as more national data is collected. Materials
and Methods: A retrospective multicenter study was conducted to analyze data from 822 adult kidney
transplant recipients from adult donors between 1998 and 2018. To the best of our knowledge, this
is the largest kidney transplant database to date in Chile. A procedure based on a cross-validated
regularized Cox regression using the Elastic Net penalty was applied to objectively identify predictors
of death-censored graft failure. Hazard ratios were estimated by adjusting a multivariate Cox
regression with the selected predictors. Results: Seven variables were associated with the risk of
death-censored graft failure; four from the donor: age (HR = 1.02, 95% CI: 1.00-1.03), male sex
(HR = 0.64, 95% CI: 0.46-0.90), history of hypertension (HR = 1.49, 95% CI: 0.98-2.28), and history of
diabetes (HR = 2.04, 95% CI: 0.97-4.29); two from the recipient: years on dialysis log-transformation
(HR = 1.29, 95% CI: 0.99-1.67) and history of previous solid organ transplantation (HR = 2.02,
95% CI: 1.18-3.47); and one from the transplant: number of HLA mismatches (HR = 1.13, 95% CI:
0.99-1.28). Only the latter is considered for patient prioritization in deceased kidney allocation
in Chile. Conclusions: A risk model for kidney graft failure was developed and trained for the
Chilean population, providing objective criteria which can be used to improve efficiency in deceased
kidney allocation.

Keywords: kidney transplantation; risk prediction; graft survival; regularized models; Elastic Net

1. Introduction

The shortage of deceased donor kidneys available for transplantation has increased the
relevance of allocation mechanisms. To better understand the factors predicting transplant
outcomes, several survival analysis methodologies have been applied in the literature [1-4].
The Cox proportional hazards model is the most widely used for assessing the risk of
kidney graft failure as it provides comprehensible results that aid clinicians and decision
makers. This methodology has been incorporated in the estimated post-transplant survival
(EPTS) and kidney donor profile index (KDPI) models used for matching patients with
good prognosis after transplant with kidneys with high predicted outcomes in the United
States [5,6]. The EPTS considers four recipient factors: age, history of diabetes, history of
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previous solid organ transplant, and time on dialysis [5]. On the other hand, the KDPI
considers ten deceased donor characteristics, including age, height, weight, race, creatinine
level, and history of hypertension [6].

In Chile, the deceased kidney allocation system mainly considers HLA mismatch to
prioritize patients with good transplant prognosis. Authors have suggested including fac-
tors such as donor—recipient age difference [7,8] for longevity matching and for maximizing
the utilization of deceased donor kidneys. In this context, it is relevant to provide decision
makers with objective information about the effect these factors have shown in historical
data from the Chilean population. This may lead to better allocation mechanisms, based
on statistical evidence that guides prioritization proportional to the benefit each factor has
shown on transplant outcomes. Furthermore, it is of interest to identify which factors are
associated with kidney graft survival and to develop a risk model for kidney graft failure
capable of revealing improvement opportunities in deceased organ allocation.

Therefore, we have collected data from multiple transplant centers to construct the
largest database of kidney-transplanted patients in Chile, comprising 1459 transplants in
total. Using this evidence, we have undertaken an in-depth analysis to objectively identify
factors influencing transplant outcomes in Chile. However, this sample size is relatively
small compared to the number of factors that can be used to predict graft survival [1,6,9].
For this reason, we combined survival analysis with an objective variable selection criterion
based on a cross-validated regularized Cox model using the Elastic Net penalty, which
provides transparency in the model specification process and could be applied in future
studies as more data are collected from transplant centers.

2. Materials and Methods

A major data collection effort was conducted in collaboration with five transplant cen-
ters in Chile: Hospital Barros Luco Trudeau, Hospital del Salvador, Hospital Las Higueras,
Hospital Sotero del Rio, and Clinica Santa Maria, which jointly comprise approximately
14% of the total number of transplants conducted in Chile. To the best of our knowledge,
this is the largest kidney transplant dataset that has been collected to date in Chile. This
process required the digitalization and standardization of thousands of physical files stored
in each medical center. The resulting database was implemented in REDCap and registered
1459 kidney transplant cases. Specifically, it contains pre-transplant information of donor—
recipient characteristics and follow-up diagnosis post-transplant, including information on
graft failure, with a total of 25 pre-transplant characteristics, which we sought to evaluate
as potential predictors of graft survival. Anonymity was preserved for clinical records used
in the analysis.

To select the final sample for the study, we applied the criteria summarized in Figure 1.
From the 1459 original transplants, 637 entries were discarded sequentially for the following
reasons: 244 had transplant dates outside the study period 1998-2018, 12 due to inconsistent
recorded survival time or dialysis time, 333 with missing values on variables for which
the imputation would be complicated—survival time, HLA mismatch, end-stage renal
disease cause, and recipient comorbidities—(later we show how we were able to use these
observations to conduct an out-of-sample test), and 48 transplants with pediatric donor
or recipient (age < 18). As a result, the final sample comprised 822 transplants, of which:
(i) 140 graft failures were observed; (ii) 58 recipients died before graft failure was reported;
and (iii) 624 had a functioning graft in the last follow-up.

Table 1 reports summary statistics and the percentage of missing values of the main
characteristics collected in the study. Five variables presented missing information that
needs to be addressed. To avoid a relevant reduction in sample size and the deletion
of relevant information provided by other variables, missing values were replaced by
reasonable estimates using MissForest [10]. This nonparametric machine learning algorithm
based on random forest has shown good performance imputing clinical data [11].
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Figure 1. Description of the sample selection process. Selection criteria included cleaning entries

with imprecise data, missing values, and focusing on adult patients only.

Table 1. Statistical description of the most relevant potential predictors for death-censored graft

failure and their percentage of missing values (which were imputed to conduct the statistical analysis).

The study sample included 822 patients. CVA: cerebrovascular accident; HLA: human leukocyte

antigens; PRA: panel-reactive antibodies.

Origin Variable Mean (SD)/n (%) Events Missing (%)
Age 44.62 (12.91) - 0.0%
Weight in kilograms 66.78 (12.62) - 6.8%
Years on dialysis 3.16 (2.78) - 2.5%
Male Sex 0.0%
Yes 463 (56%) 78 -
No 359 (44%) 62 -
Previous Transplant 0.0%
Recipient Yes 55 (7%) 15 -
No 767 (93%) 125 -
Hypertension 0.0%
Yes 682 (83%) 111 -
No 140 (17%) 29 -
Max PRA 0.0%
0-10% 529 (64%) 93 -
11-50% 117 (22%) 25 -
51-100% 116 (14%) 22 -
Age 43.88 (13.03) - 0.0%
Male Sex 0.0%
Yes 475 (58%) 66 -
No 347 (42%) 74 -
Living donor 0.0%
Yes 164 (20%) 21 -
No 658 (80%) 119 -
Hypertension 0.0%
Donor Yes 158 (19%) 38 -
No 664 (81%) 102 -
Diabetes 9.8%
Yes 26 (3%) 8 -
No 796 (97%) 132 -
Creatinine > 1.5 mg/dL 9.6%
Yes 36 (4%) 7 -
No 786 (96%) 133 -
Cause of Death: CVA 0.0%
Yes 346 (42%) 68 -
No 476 (58%) 72 -
Cold ischemia time in hours 15.62 (9.50) - 0.9%
Mismatch HLA -
Transplant 4-6 MM 282 (34%) 54 -
2-3 MM 445 (54%) 77 -
0-1 MM 95 (12%) 9 -

Two definitions of graft failure are typically used in survival analysis after a kidney
transplant [12-14]. Overall, graft failure considers the time of transplantation to the date
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of irreversible graft failure (return to dialysis or a new transplant) or the time of death,
i.e., death is considered graft failure. This time may be censored by the date of the last
follow-up with a functioning graft. Graft survival censored for death with functioning graft
(death-censored graft failure) treats patient death as a censoring event equivalent to the last
follow-up, and hence considers a functioning graft at the time of death. The present study
used death-censored survival analysis, which more adequately accounts for varying death
rates from other causes in the patient population [14].

Preliminary evidence was evaluated through different analyses to better understand
the influence between potential predictors and transplant outcomes. First, an exploratory
data analysis and a statistical description were computed. Distribution plots for survival
and censorship times were examined, and variables were described by their mean and
standard deviation or by their frequency and proportion in categories. Second, survival
curves were estimated using the nonparametric Kaplan—-Meier method for different subsets
of patients [15], and the null hypothesis of equality between curves was contrasted using
the Mantel-Cox test, considering a 10% significance level [16]. This approximates the
survival function, allowing us to assess transplant outcomes in different groups of patients.
Finally, penalized splines with 5 degrees of freedom were adjusted in univariate Cox
regression for non-binary variables to determine functional transformations that may better
fit Cox’s log-linearity assumption [17]. We considered a 10% significance level for detecting
statistical evidence of nonlinear effects [18], and we examined complementary graphical
evidence for determining adequate functional transformations.

Despite our significant data collecting effort, the sample size was still too limited
to evaluate the predictive power of the 15+ factors that needed to be tested, including
alternative functional forms. Consequently, we applied an automatized procedure to
objectively identify predictors for death-censored graft failure based on a cross-validated
regularized Cox model using the Elastic Net penalty [19]. Regularization is a technique
for creating generalized models which consists of applying a penalty over the estimated
coefficients in order to reduce overfitting and assist variable selection. The Elastic Net
penalty is a convex combination of the Lasso and Ridge penalties. Therefore, it combines
the strength of the two approaches. On one hand, the Lasso penalty chooses only a few
nonzero coefficients, performing variable selection but causing undesirable behavior in
the presence of correlated predictors [20]. On the other hand, the Ridge penalty reduces
the value of the coefficients towards zero proportionally but sets none to exactly zero;
therefore, it better handles correlated predictors but fails to exclude irrelevant variables
from the model. The value of « € [0,1] determines the trade-off between Lasso and
Ridge penalties in the Elastic Net. With o = 0.95, the Elastic Net behaves similarly to the
Lasso, only removing degenerate behavior due to extreme correlations [21]. We considered
this approach (« = 0.95) to prioritize variable selection while maintaining stability in the
presence of highly correlated predictors. The optimal penalty in the regularized model was
determined by applying 10-fold cross-validation using the Harrell’s Concordance Index
(“C-statistic” or “C-index”) as the ensemble metric [22]. To obtain a simplified model, we
considered the highest penalty with a C-index no more than one standard deviation from
the optimum. This procedure was repeated 1000 times to reduce group selection noise
in the 10-fold cross-validation. The selected variables (i.e., those associated with nonzero
coefficients) in more than half of the scenarios were defined as the identified predictors
by the procedure (see Algorithm S1). These were used as covariables in a multivariate
Cox model to estimate hazard ratios with their respective confidence intervals. Finally,
to communicate model predictions beyond hazard ratios, survival curves were estimated
for different transplant cases using the Breslow estimator to approximate the cumulative
baseline hazard function [23].

Predictive accuracy was assessed by computing the C-statistic, which indicates the
proportion of comparable pairs ranked correctly by the model. In addition to in-sample
predictions, predictive accuracy was also assessed out-of-sample using 76 kidney trans-
plants not included in the training data due to missing information. These transplants had
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missing data in recipient comorbidities assessed in the variable selection process. Since
some of these were not selected in the final model, this sub-sample was used for evaluating
the out-of-sample prediction of the final model specification.

The proportionality assumption in the model was tested using the scaled Schoenfeld
residuals [24] and considering the chi-squared distributed statistic proposed by Grambsch
and Therneau (1994) [25]. We contrasted the null hypothesis of proportionality considering
a 5% significance level, and we examined the graphical evidence of the evolution in time of
the scaled residuals for each predictor. On the other hand, the log-linearity assumption was
examined in non-binary predictors adjusting penalized splines with five degrees of freedom
independently on multivariate Cox regressions [18]. We considered a 5% significance level
for null hypothesis rejection and used graphical evidence as a complement.

The statistical analyses were conducted using R (v4.1.2; R Core Team 2021; Vienna,
Austria), while data processing was carried out using Python (v3.8.8; Python Software
Foundation 2021; Fredericksburg, VA, USA). Detailed information about the libraries and
functions used can be found in the Supplementary Materials.

3. Results

A visual description of the study cohort is shown in Figure S1. From 822 kidney
transplants in the study, 140 (17%) graft failures are observed in a median time of 3.0
(IQR: 0.1-7.4) years from the transplant. An elevated proportion of these occurred in the
short term: 48 transplants (34% of total observed graft failures) failed during the first six
months after the surgery. On the other hand, 682 (83%) transplants are right-censored with
a median censored time of 7.2 (IQR: 4.9-10.2) years from transplant.

MissForest was used to impute missing values in donor history of diabetes (9.8%
missing), donor creatinine > 1.5 mg/dL (9.6%), recipient weight (6.8%), recipient years on
dialysis (2.5%), and cold ischemia time (0.9%). The statistical comparison between imputed
and pre-existing values showed a reasonable estimation by the machine learning algorithm
(see Table S1).

Table 1 shows a statistical summary of donor-recipient characteristics studied as
potential predictors for death-censored graft failure. Most kidneys come from deceased
donors (80%), male sex (58%), and without history of hypertension (81%). On the other
hand, most recipients present history of hypertension (83%), a maximum panel-reactive
antibodies (PRA) less than or equal to 10% (64%), and at least two HLA mismatches (88%).
In addition, the average recipient is 45 years old, weighs 67 kg, and has spent 3 years on
dialysis therapy, while the average donor is approximately 44 years old.

Graft survival at 1, 5, and 10 years from transplant estimated using the Kaplan—-Meier
method was 93% (95% CI: 91-95%), 89% (95% CI: 87-91%), and 81% (95% CI: 78-85%),
respectively. Survival curves were examined in different groups of patients as preliminary
evidence and are presented in Figures S3 and S4. Considering a significance level of 10%,
and without adjusting for other factors, ten variables were identified as potential predictors
of kidney graft failure.

The preliminary log-linearity analysis in non-binary variables using penalized splines
is shown in Figure S5. A nonlinear effect is observed for recipient age; the risk of graft
failure increases at a higher pace beyond 50 years old. The nonlinear component of the
penalized spline is significant (p = 0.044) at a 10% significance level, while the linear
component is not (p = 0.732). Considering this evidence, a functional transformation was
included to consider an effect for recipients beyond 50 years old. On the other hand, the
rest of examined variables showed a reasonable log-linearity adjustment. Nonetheless,
three extra functional forms were incorporated considering graphical evidence and medical
criteria: a binary variable that becomes active when maximum recipient PRA is greater
than 50%, and log-transformations for recipient weight and recipient years on dialysis.
These four functional transformations included for variable selection are shown in Table S5.

The variable selection mechanism is executed, including 25 potential predictors of
death-censored graft failure (see Table 2, which includes nonlinear transformations of
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the variables described in Table 1). Figure 2 shows the number of selected predictors for
different penalty values in one iteration of the algorithm. The vertical right line indicates
the selected penalty, and the number of selected variables (i.e., with nonzero coefficients
in the regularized model) is shown in the top row. The number of times each variable is
selected in 1000 iterations is shown in Table 2. Seven variables were selected as predictors
by the algorithm: donor age, donor male sex, donor history of hypertension, donor history
of diabetes, previous solid organ transplantation in the recipient, the recipient’s years on
dialysis log-transformation, and the number of HLA mismatches. The Cox multivariate
model adjusted to these factors is presented in Table 3 and presents a C-index of 0.659 in
the training data (n = 822) and 0.733 in testing out-of-sample data (n = 76).

Table 2. Number of times each variable is selected as a predictor in N = 1000 iterations of 10-fold
cross-validation of the Elastic Net Cox model. ESRD: end-stage renal disease; CVA: cerebrovascular
accident; PRA: panel-reactive antibodies; HLA: human leukocyte antigens.

Variable Type Selected Count Predictor
Donor Hypertension Binary 1000 Yes
Donor Age Integer 995 Yes
Donor Male Sex Binary 919 Yes
Recipient Previous Transplant Binary 822 Yes
Number of mismatch HLA Integer 822 Yes
Donor Diabetes Binary 796 Yes
Recipient In(Years on dialysis + 1) Numeric 743 Yes
Donor Death Cause: CVA Binary 385 No
Cold Ischemia Time Numeric 361 No
Recipient Hypertension Binary 196 No
Recipient Max PRA > 50% Binary 142 No
Recipient ESRD Cause: Glomerulopathies Binary 136 No
Recipient Age Integer 136 No
Donor Creatinine > 1.5 mg/dL Binary 126 No
Recipient ESRD Cause: Diabetes Binary 121 No
Recipient Max {Age—50, 0} Integer 121 No
Recipient Vascular Peripheral Disease Binary 112 No
Recipient ESRD Cause: Hypertension Binary 94 No
Recipient Weight Numeric 76 No
Recipient Diabetes Binary 2 No
Recipient Male Sex Binary 2 No
Donor Living Binary 0 No
Recipient Max PRA Integer 0 No
Recipient Years on dialysis Numeric 0 No
Recipient In(Weight + 1) Numeric 0 No

Table 3. Multivariate Cox model for death-censored graft failure.

Variable HR! 95% CI 2 p-Value
Donor Male Sex (ref = Female) 0.64 0.46, 0.90 0.010
Recipient Previous Tx (ref = No) 2.02 1.18,3.47 0.011
Donor Age (ref = 40) 1.02 1.00, 1.03 0.020
Recipient In(Years on Dialysis + 1) (ref = 0) 1.29 0.99, 1.67 0.055
Donor Diabetes (ref = No) 2.04 0.97,4.29 0.059
Donor Hypertension (ref = No) 1.49 0.98,2.28 0.065
Mismatch HLA (ref = 0 MM) 1.13 0.99, 1.28 0.068

1 HR = hazard ratio, 2 CI = confidence interval.

The proportionality test shows insufficient evidence to reject the null hypothesis and,
therefore, supports the chosen model specification (see Table S6). Specifically, the p-value
for the overall test is 0.4, and when evaluating each variable independently, the lowest
p-value is 0.092 (corresponding to the number of HLA mismatches). In addition, graphical
evidence shows a reasonable adjustment of the proportionality assumption (see Figure
57). Correspondingly, the test for log-linearity in non-binary predictors shows a reasonable
adjustment (see Figure S6). The nonlinear components were insignificant for donor age,
mismatch HLA, and recipient years on dialysis log-transformation.
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Figure 2. Cross validation plot for variable selection in the Elastic-Net Cox model. The top row
represents the number of nonzero coefficients per penalty value. The red dots describe the C-Index
associated to each penalty value. The vertical left line indicates the optimal penalty, which maximizes
the ensemble C-Index. The vertical right line corresponds to the largest penalty value related to a
C-index value within one standard deviation of the maximum C-Index.

To further explain estimated effects, survival curves were derived from model esti-
mates using Breslow’s estimator to approximate the cumulative baseline hazard. Figure 3
shows the estimated survival curves for different values in each predictor while keeping
the rest constant in the reference values. This graphical evidence provides comprehensible
information of model specification under proportionality and log-linearity assumptions.
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Figure 3. Estimated survival curves derived from the model using the Breslow estimator to approxi-
mate the cumulative baseline hazard. Each subfigure shows the survival curves when varying values
in one predictor while maintaining the rest of the variables in their reference values (see Table 3). The
subfigures correspond to: (a) HLA mismatch; (b) Years on dialysis; (c) Donor age; (d) Donor history
of hypertension; (e) Recipient previous transplant; and (f) Donor sex.
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4. Discussion

Regardless of the limitations given by the sample size of the Chilean transplanted
population, the results of this study are reasonable considering previous findings in the
literature. Donor age and history of hypertension are significant predictors for kidney
graft survival identified in populations from the United States, the United Kingdom, and
Thailand [6,9,26]. In addition, recipient history of previous solid organ transplant, recipient
years on dialysis log-transformation and mismatched HLA have been presented as relevant
predictors in several cohort studies [2—4] and are included in the EPTS score used for
assessing the patient risk of graft failure in the United States [5]. However, regarding the
estimated effect for donor sex, which suggests a higher survival in male donor kidneys,
this effect could be confounded through other relevant predictors not included in our study
due to lack of data—such as donor weight, height, and donor body mass index—which
have shown significant associations with transplant outcome in the literature [6,27]. These
factors were not included in this study because of missing values in more than 50% of
the entries. To analyze whether these omitted variables could be generating a bias in the
gender coefficient, we compared means and proportions between donor genders using
the Wilcoxon’s test (see Table S7). Donor weight, height, and cause of death by CVA
are statistically different across genders; in particular, male donors have a higher value
for weight and height and a higher proportion of deaths caused by CVA. On the other
hand, the donor body mass index did not show significant differences between genders.
Overall, this analysis suggests that the effect of donor gender could be attributed to omitted
variables characterizing the donor; hence, the result should be interpreted with caution.
More information about the donor is needed to assess whether donor gender is associated
with differences in death-censored graft survival.

Of the six predictors identified, only donor-recipient HLA mismatch is currently
considered in the score used to prioritize patients with good transplant prognosis in Chile.
In addition, the estimated effects suggest that the current score distinctions between patients
may need adjustment to be proportional to the benefits of transplant survival, which may
be an opportunity to improve deceased kidney allocation. Furthermore, the five prognostic
factors not considered for organ allocation open room for discussion about the mechanisms,
based on national evidence, that increase patients’ overall years of therapy.

We compared the predictive power of the model against the C-index that could
be attained using the Kidney Donor Profile Index (KDPI) [6]. The KDPI is a numerical
measure that combines 10 donor factors to predict graft survival, which is used to match
with adequate recipients for kidney allocation. The KDPI is derived from the Kidney Donor
Risk Index (KDRI), which is computed using ten factors’ coefficients estimated through a
multivariable Cox proportional hazards regression using a sample of deceased donors in
the United States. These factors include donor’s age, height, weight, ethnicity, history of
hypertension, history of diabetes, cause of death, serum creatinine, hepatitis C virus (HCV)
status, and donation after circulatory death (DCD) status.

We applied the KDRI score with the patient sample analyzed in this study, calculating
the C-index to assess its predictive power. Since height, weight, HCV status, and DCD
exhibited significant missing values in the data, these factors were set at reference levels
to compute the KDRI. The predictive power of this adjusted KDRI score yields a concor-
dance index (C-index) of 0.606, which is lower than the C-index calculated in this study
(C-index = 0.659). This comparison provided further support that the methodology devel-
oped in this work is useful to improve predictions of graft survival, which can potentially
be used to construct a “local” KDPI score in Chile’s kidney allocation system.

5. Conclusions

This study analyzed the largest sample of kidney transplants collected up to date in
Chile, comprising 1459 transplants from five transplant centers accounting for 14% of the
transplants performed from 1998 to 2018. An automated procedure based on the Elastic-
Net-regularized Cox’s regression was applied to objectively select predictors for kidney
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death-censored graft failure in the Chilean population, and a risk model that provides
comprehensible results was developed to aid clinicians and decision markers. It is relevant
that the data collection process continues to increase the accuracy of the selected variables
and the precision of the estimated effects through the proposed methodology. In this
regard, the procedure can be used as more information is collected if proportionality and
log-linearity conditions for the Cox model are adequately validated.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /medicina58101348 /s1, Algorithm S1: Training algorithm for
variable selection and model fitting, Table S1: Statistical comparison between imputed and preex-
isting values, Table S2: Categories used for numeric variables in Kaplan-Meier analysis, Table S3:
Descriptive summary of recipient characteristics, Table S4: Descriptive summary of donor and trans-
plant characteristics, Table S5: Transformations included as study variables, Table S6: Proportionality
assumption tests in each predictor and in the overall model, Table S7: Comparison of means and
proportions between donor genders, Figure S1: Exploratory data analysis, Figure S2: Graphic repre-
sentation of Spearman’s correlation matrix, Figure S3: Kaplan-Meier analysis in donor characteristics,
Figure S4: Kaplan-Meier analysis in recipient characteristics, Figure S5: Preliminary log-linearity
assumption analysis, Figure S6: Log-linearity assumption analysis via penalized smoothing splines,
Figure S7: Proportionality assumption analysis via scaled Schoenfeld residuals.
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