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Abstract: Background and Objectives: Tumor necrosis factor alpha (TNF-«x) is proatherogenic and
associated with the risk of acute ischemic events, although the mechanisms that regulate TNF-a
expression in stable coronary artery disease (SCAD) are not fully understood. We investigated
whether metabolic, inflammatory, and epigenetic (microRNA (miRNA)) markers are associated with
TNF-x expression in SCAD. Materials and Methods: Patients with SCAD were prospectively recruited
and their metabolic and inflammatory profiles were assessed. TNF-o levels were assessed using an
enzyme-linked immunosorbent assay. The relative expression of six circulating miRNAs associated
with the regulation of inflammation and/or atherosclerosis was determined. Results: Of the 24
included patients with the mean age of 65 (9) years, 88% were male, and 54% were diabetic. The
TNF-« levels were (median (interquartile range)) 1.0 (0.7-1.1) pg/mL. The percentage of glycosylated
hemoglobin (r = 0.418, p = 0.042), serum triglyceride levels (r = 0.429, p = 0.037), and C-reactive
protein levels (r = 0.407, p = 0.048) were positively correlated with TNF-« levels. Of the candidate
miRNAs, miR-146a expression levels were negatively correlated with TNF-« levels (as indicated by
r=0.500, p = 0.035 for correlation between delta cycle threshold (ACt) miR-146a and TNF-« levels). In
multivariate analysis, serum triglyceride levels and miR-146a expression levels were independently
associated with TNF-« levels. miR-146 expression levels were not associated with metabolic or other
inflammatory parameters and were negatively correlated with the number of coronary vessels with
obstructive disease (as indicated by r = 0.556, p = 0.017 for correlation between AC; miR-146a and
number of diseased vessels). Conclusions: miR-146a expression levels were negatively correlated with
TNF-« levels in patients with SCAD, irrespective of other metabolic or inflammatory markers, and
with the severity of coronary artery disease. The results add to the knowledge on the role of miR-146a
in TNF-a-based inflammation in SCAD and support future research on the potential therapeutic use
of miR-146a in such a clinical scenario.

Keywords: inflammation; microRNA; miR-146a; stable coronary artery disease; tumor necrosis
factor alpha

1. Introduction

Stable coronary artery disease (SCAD) is accountable for substantial cardiovascular
morbidity and mortality worldwide [1]. It is a chronic inflammatory syndrome character-
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ized by the activation of proinflammatory pathways, including those of tumor necrosis
factor alpha (TNF-c), soluble CD40 ligand, and C-reactive protein [2—4]. Specifically, TNF-a
is a strong proinflammatory mediator that induces atherogenesis [2,5]. Moreover, TNF-« is
closely associated with cardiovascular prognosis and increased TNF-« levels are associ-
ated with a higher risk of ischemic events [6,7]. Therefore, TNF-o has been studied as a
therapeutic target in patients with documented atherosclerosis [8-10].

Despite the acknowledged role of TNF-« in atherosclerosis development and pro-
gression, the mechanisms that regulate TNF-o expression in patients with SCAD are not
fully understood [5]. Metabolic dysregulation, including hyperglycemia, dyslipidemia,
and adiposity, increases TNF-« levels [11-16]. Such metabolic abnormalities interact with
each other and often coexist in patients with SCAD, and the independent role of each on
TNEF-o expression is not entirely known [5,17]. On the other hand, epigenetic modulators,
including microRNAs (miRNAs), may influence TNF-« expression in vitro [18]. miRNAs
are small noncoding RNA molecules that are involved in distinct biological roles, including
the regulation of inflammation and atherosclerosis [19]. Whether an interaction between
circulating miRNAs and TNF-o expression exists in patients with SCAD and whether
such potential association is influenced by metabolic abnormalities or coexistent inflam-
matory dysregulation is unknown. The knowledge on the expression of inflammatory
mediators, including TNF-«, and their regulators in SCAD may provide insights into its
pathophysiology. Such research area has regained interest after the clinical results of a pure
anti-inflammatory agent in patients with stable atherosclerosis [20].

We investigated whether metabolic, inflammatory, and epigenetic (miRNA) markers
are associated with TNF-« expression in SCAD.

2. Materials and Methods

This study is a part of a project aimed at assessing inflammatory and epigenetic
signatures associated with the clinical expression of stable atherosclerosis. The study
protocol was approved by the ethics committees of the involved institutions (Centro
Hospitalar Universitario de Lisboa Central, Nr. 245/2015, 1 October 2015; and NOVA
Medical School | Faculdade de Ciéncias Médicas, Universidade NOVA de Lisboa, Nr.
000176, 11 November 2015). The investigation conformed to the principles outlined in the
Helsinki Declaration. All the participants signed informed consent forms.

2.1. Recruitment of Participants

Patients with SCAD from our center were prospectively recruited. The inclusion
criteria were the presence of coronary artery disease, defined as luminal stenosis of at least
50% for the left main artery or at least 70% for other epicardial vessels on invasive coronary
angiography, and absence of symptoms worsening in the prior six months. Patients with
acute ischemic events within 12 months in any arterial territory, those with coronary
artery bypass grafting performed within 12 months, those with prior percutaneous arterial
treatment, those with heart failure, hemodynamically significant valvular heart disease,
hematological disorders, active infection, history of malignancy, chronic kidney disease
(stage 4 or 5), or severe hepatic dysfunction, those under 18 years of age, and those unable
or unwilling to consent to participate in the study were excluded.

2.2. Data Collection and Blood Sampling

Data were collected prospectively after patient inclusion. A standardized record
including clinical, demographic, laboratory, echocardiographic, and angiographic data was
obtained from each participant. Peripheral blood was collected early in the morning under
fasting conditions before any coronary intervention. Serum was separated by centrifugation
(500x g for 10 min) within 15 min of sampling. Aliquots were stored at —80 °C and samples
were thawed only once.
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2.3. Measurements of Inflammatory Markers

Levels of TNF-«, soluble CD40 ligand, and C-reactive protein were measured in serum
by an enzyme-linked immunosorbent assay (R&D Systems, Minneapolis, MN, USA). Mea-
surements were performed in duplicates. The intra-assay variation among the duplicates
for all samples was less than 10%.

2.4. Quantification of Expression Levels of Candidate miRNAs

Six candidate miRNAs (miR-21, miR-27b, miR-29a, miR-126, miR-146a, and miR-218)
were selected based on the following criteria: miRNAs are associated with the regulation
of inflammation and/or atherosclerosis in experimental models [19,21,22]; each of the miR-
NAs regulates distinct pathways and/or has distinct mechanisms of action [19,21,22]; and
miRNAs were reported to be dysregulated in patients with stable atherosclerosis [23-29].
Among other functions, miR-21 regulates vascular smooth cell and endothelial cell func-
tions; miR-27b regulates lipid metabolism and development of lipid-induced atherosclerotic
lesions, and modulates the production of proinflammatory factors; miR-29a regulates fi-
brosis and extracellular matrix composition; miR-126 regulates endothelial function in
response to shear stress; miR-146a regulates endothelial and monocyte-macrophage inflam-
matory response; and miR-218 regulates endothelial cell migration [18,19,21,22].

Total RNA was extracted from serum samples using the miRCURY™ RNA Isola-
tion Kit (Qiagen, Hilden, Germany). Complementary DNA was synthesized from total
RNA using the Universal cDNA synthesis kit from miRCURY™ LNA miRNA system
(Qiagen, Hilden, Germany). miRNA amplification was performed using quantitative
reverse-transcription polymerase chain reaction (using the miRCURY™ LNA SYBR Green
PCR Kit and LNA™ PCR primers, Qiagen, Hilden, Germany), and the melting curve was
determined according to the following conditions: 95 °C for 10 min followed by 45 cycles
of 95 °C for 10 s and 60 °C for 60 s. All the reactions were performed in triplicates. The
amplification data were assessed using DataAssist™ Software v3.01 (Thermo Fisher Sci-
entific, Waltham, MA, USA). Cycle threshold (C;) values greater than 40 were considered
undetermined [25,30-32]. The relative expression levels of the six candidate miRNAs were
calculated using the delta cycle threshold (AC;) method, normalizing for the UniSp6 RNA
spike-in control [25,33-35]. Higher AC; values represent lower circulating levels of the
candidate miRNAs [25,33-35].

2.5. Statistical Analysis

Discrete variables are presented as frequencies (percentages) and continuous variables
are presented as the mean (standard deviation) in normally distributed data or median
(interquartile range) in variables without a normal distribution (Shapiro-Wilk test). Cate-
gorical variables were analyzed using the chi-squared or Fisher’s exact tests. Continuous
variables were analyzed using Student’s t-test or the Mann-Whitney test when normality
was not verified. Pearson’s correlation was used to test correlations between continuous
variables. A multivariate linear regression analysis was performed using TNF-« as the
dependent variable and the metabolic, inflammatory, and epigenetic (miRNA) parameters
associated with TNF-« in the univariate analysis as the independent variables. Variables
with a p-value < 0.10 in the univariate analysis were tested in the multivariate model. A
correction for collinearity was performed. The level of significance was set at « = 0.05. Anal-
yses were conducted using SPSS software, version 26.0 (IBM Corp, Armonk, NY, USA).

3. Results
3.1. Clinical Characteristics and Laboratory Data Of Patients

A total of 24 participants were recruited with a mean age of 65 (9) years, of which
21 (88%) were male and 13 (54%) were diabetic (Table 1). All patients were using single
antiplatelet therapy and lipid-lowering (mostly statin) therapy. No modifications in an-
tithrombotic or lipid-lowering therapy were made within the two months prior to blood
sampling. The median (interquartile range) TNF-« levels were 1.0 (0.7-1.1) pg/mL.
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Table 1. Clinical characteristics and laboratory data.

Clinical Characteristics

Age, years 65 (9)
Male, 1 (%) 21 (88)
Hypertension, n (%) 22 (92)
Dyslipidemia, 1 (%) 22 (92)
Diabetes mellitus, 1 (%) 13 (54)
Active smoking, 1 (%) 4(17)
Body mass index, kg/ m? 26.7 (3.1)
Number of coronary vessels with obstructive disease 1 3(2-4)
Prior coronary artery bypass grafting, n (%) 3(13)
Left ventricular ejection fraction > 50%, n (%) 24 (100)
Antiplatelet therapy, 1 (%) 2 24 (100)
Oral anticoagulation, 1 (%) 0(0)
Statin therapy, n (%) 22 (92)
High-intensity statin therapy, n (%) 17 (71)
Ezetimibe, n (%) 4(17)
ACE inhibitor or ARB, 1 (%) 21 (88)
Betablocker, 1 (%) 15 (63)
Other antianginal agent, 1 (%) 12 (50)
Oral antidiabetic agent, 1 (%) 13 (54)
Insulin therapy, n (%) 6 (25)
Laboratory Data
Hemoglobin, g/dL 13.6 (1.6)
Leukocyte count, 10°/L 8.0 (1.5)
Neutrophil count, 10° /L 4.7 (1.5)
Lymphocyte count, 10°/L 22 (1.7-2.7)
Platelet count, 107 /L 236 (41)
Fasting glycaemia, mg/dL 99 (85-166)
Percentage of glycosylated hemoglobin 6.1 (5.6-7.9)
Creatinine, mg/dL 0.9 (0.8-1.3)
Total cholesterol, mg/dL 158 (40)
LDL-cholesterol, mg/dL 92 (29)
HDL-cholesterol, mg/dL 35 (29-43)
Triglycerides, mg/dL 117 (87-162)
Soluble CD40 ligand, ng/mL 8.4 (2.5)
C-reactive protein, mg/L 4.0 (3.64.7)
AC; miRNA
miR-21 17.6 (3.2)
miR-27b 23.4(20.9-24.4)
miR-29a 22.9(2.8)
miR-126 23.1 (16.9-24.9)
miR-146a 22.5(2.5)
miR-218 20.9 (19.5-24.3)

! The left main artery, left anterior descending artery, circumflex artery, and right coronary artery were scored
individually. Categorical variables are expressed as frequency (percentage) and continuous variables as the
mean (standard deviation) or median (interquartile range); ? all patients were using single antiplatelet therapy.
ACE—angiotensin-converting enzyme; ARB—angiotensin II receptor blocker; HDL—high-density lipoproteins;
LDL—low-density lipoproteins; miRNA—microRNA; ACi—delta cycle threshold.

3.2. Parameters Associated with TNF-a Levels in Univariate Analysis

The parameters associated with TNF-« levels in the univariate analysis are presented
in Table 2. The percentage of glycosylated hemoglobin, serum triglyceride levels, and
C-reactive protein levels were positively correlated with TNF-« levels, and there was a
trend for a positive correlation between fasting glycemia and TNF-« levels. No associations
were found between other clinical parameters (including pharmacological therapy) or
other laboratory data (including soluble CD40 ligand levels) and TNF-« levels.

Regarding the candidate miRNAs, AC; miR-146a showed a positive correlation with
TNF-« levels (r = 0.500, p = 0.035; Table 2), indicating an inverse correlation between
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miR-146a expression levels and TNF-« levels. The expression levels of other miRNAs were
not associated with TNF-« levels.

3.3. Parameters Associated with TNF-a Levels in Multivariate Analysis

In the multivariate analysis, serum triglyceride levels and miR-146a expression levels
were independently associated with TNF-« levels. Lower miR-146a expression levels and
higher serum triglyceride levels were associated with increased TNF-« levels (Table 3).

Table 2. Parameters associated with TNF-« levels in univariate analysis.

Clinical Characteristics TNF-«, pg/mL p-Value

Age, years 1 r=—0.145 0.500
Sex? Female 100519 1000
Hypertension 2 \lje Z (1)2 Eé;j?; 0.145
Dyslipidemia 2 i‘; (1)23 Eé:;j:?; 0.181
Diabetes mellitus 2 \IPL(; (1)(9) Eggj;g 0.820
Active smoking 2 \lje Z (1)? Eggj;; 0.347
Body mass index, kg/ m21 r=0.229 0.281
Number of coronary vessels with obstructive disease 1 r=0.097 0.651
Prior CABG 2 i‘; éig EgZ:égg 0.742
Left ventricular ejection fraction 2 5558://2 1.0 (0._7—1.1) -

Antiplatelet therapy 2 i (; 1.0 (0._7_1.1) -

Oral anticoagulation \lje (; 10 (0'_7_1'1) -

Statin therapy 2 I;L (; (1)3 Eg;:(llg; 0.587
High-intensity statin therapy 2 i (; (1)8 Eggji; 0.486
Erctimibe? Yo 112 0261
ACE inhibitor or ARB 2 {2;; (1):3 Eg:;j:g; 0.431
Betablocker 2 i(; (1)(9) Eg;ji; 0.861
Other antianginal agent > \lje c; (1)(9) Eggjé; 0.514
Oral antidiabetic agent 2 I;L (; (1)3 Eggj;g 0.820
Insulin therapy 2 No 09(0.7-1.0) 0.119

Yes 1.3 (0.8-2.4)
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Table 2. Cont.

Clinical Characteristics TNF-«, pg/mL p-Value
Laboratory data !

Hemoglobin, g/dL r=-—0.343 0.101
Leukocyte count, 10° /L r=0.167 0.436
Neutrophil count, 107 /L r=0.186 0.385

Lymphocyte count, 10° /L r=—0.352 0.870
Platelet count, 107 /L r=0.195 0.360

Fasting glycaemia, mg/dL r=0.395 0.056
Percentage of glycosylated hemoglobin r=0.418 0.042

Creatinine, mg/dL r=0.362 0.082
Total cholesterol, mg/dL r=0.129 0.549
LDL-cholesterol, mg/dL r=—0.094 0.662
HDL-cholesterol, mg/dL r=-0271 0.201

Triglycerides, mg/dL r=0.429 0.037

Soluble CD40 ligand, ng/mL r=0.170 0.427

C-reactive protein, mg/L r=0.407 0.048
AC¢ miRNA !

miR-21 r=0.278 0.199

miR-27b r=0.328 0.198

miR-29a r=0.189 0.627

miR-126 r=0.374 0.139

miR-146a r=0.500 0.035

miR-218 r=0.408 0.423

! Correlations between TNF-« levels and continuous variables were tested and the correlation coefficient (r) is presented for each;
2 TNF-a levels were compared between groups for categorical variables and are expressed as the mean (standard deviation) or median
(interquartile range); 3 the left main artery, left anterior descending artery, circumflex artery, and right coronary artery were scored
individually. ACE—angiotensin-converting enzyme; ARB—angiotensin II receptor blocker; CABG—coronary artery bypass grafting;
HDL—high-density lipoproteins; LDL—low-density lipoproteins; TNF-a—tumor necrosis factor alpha; ACi—delta cycle threshold.

Table 3. Parameters associated with TNF-o levels in multivariate analysis.

Parameters Associated with TNF-« Levels B 95% CI p-Value
Serum triglyceride levels 0.003 0.001-0.004 0.008
AC¢ miR-146a 0.111 0.026-0.196 0.014

95% CI—95% confidence interval; TNF-x—tumor necrosis factor alpha; ACi—delta cycle threshold.

3.4. MiR-146a Expression in Patients with Stable Coronary Artery Disease

miR-146a expression levels were not associated with other metabolic or inflammatory
parameters, including the percentage of glycosylated hemoglobin, serum triglyceride
levels, or C-reactive protein levels (Supplementary Material, Table S1). There was a positive
correlation between AC; miR-146a and the number of coronary vessels with obstructive
disease (r = 0.556, p = 0.017), indicating lower expression levels of miR-146a in association
with a higher severity of coronary artery disease.

4. Discussion

In this prospective study, three main findings were noted: in patients with SCAD,
metabolic and epigenetic (miRNA) mediators were associated with TNF-« expression;
miR-146a expression levels were negatively correlated with TNF-« levels, irrespective
of other metabolic and inflammatory parameters; and miR-146a expression levels were
negatively correlated with the severity of coronary artery disease.

Identifying major inflammatory regulators in SCAD is relevant for providing insights
into its pathophysiology as well as for clinical practice, since such regulators may be
useful as biomarkers and possible therapeutic targets [20,36]. TNF-« is a proinflammatory
agent with a distinct mechanism of action compared with other inflammatory mediators,
which reinforces the relevance of clinical investigation addressing TNF-« regulation in
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atherosclerosis [5]. Moreover, TNF-« is a proatherogenic agent and closely associated with
prognosis in patients with coronary artery disease [2,6,7]. Different anti-TNF-« therapies
have been studied in patients with documented atherosclerosis, although the clinical
results were not entirely consistent [8-10] and further insights are warranted regarding the
regulation of TNF-o in patients with SCAD.

In this study, metabolic dysregulation, characterized by a higher percentage of gly-
cosylated hemoglobin or higher serum triglyceride levels, was associated with higher
TNF-« levels, which is consistent with the reports from preclinical models [11-16]. Of
note, TNF-a may itself promote hyperglycemia and dyslipidemia, thereby further increas-
ing cardiovascular risk [37,38]. Data on the association between epigenetic mediators
and TNF-x expression are scarce. miR-146a was reported to suppress the inflammatory
response, including TNF-« expression, by dampening the NF-kB pathway through inter-
leukin 1 receptor-associated kinase, in experimental models [18,39]. In humans, a negative
correlation between miR-146a expression levels and TNF-« levels has been described in
patients with noncardiac inflammatory diseases, although such an association has not been
described in patients with SCAD [40,41]. Consistently, we observed a negative correlation
between miR-146a expression levels and TNF-« levels. Of note, such association was inde-
pendent of other metabolic and inflammatory parameters, which are frequently abnormal
in SCAD and influence TNF-« expression [11-17]. Moreover, the association between
miR-146a expression levels and TNF-« levels was independent of other clinical parameters,
including the pharmacological therapy, as demonstrated in uni- and multivariate analyses.
These results support an independent role of miR-146a in the regulation of TNF-a-induced
inflammation in SCAD.

We observed that miR-146a was negatively correlated with the severity of coronary
artery disease. These results are consistent with data previously reported by our research
group regarding the association between lower miR-146a expression levels and the extent
of atherosclerosis to multiple arterial territories and higher severity of atherosclerosis in
different territories [42]. Complementary atheroprotective and anti-inflammatory effects
of miR-146 have been reported in experimental studies [19,21,43-45], which support the
association between miR-146a expression levels and severity of coronary artery disease ob-
served in this study. miR-146 is induced in endothelial cells in response to proinflammatory
cytokines and acts as a negative feedback regulator of inflammatory signaling in endothelial
cells by dampening the activation of proinflammatory transcriptional programs, including
the NF-«B (as aforementioned), AP-1, and MAPK/EGR pathways, and by promoting eNOS
expression [19,21,43]. The enhancement of miR-146 levels in the monocyte-macrophage
lineage was also shown to suppress the NF-kB pathway and thus reduce macrophage
activity [44]. Moreover, miR-146 targets the Toll-like receptor 4, reducing the formation
of foam cells [45]. Therefore, miR-146 contributes to reduce vascular inflammation and
atherosclerosis by targeting endothelial cells and the monocyte—-macrophage lineage. The
interaction between miR-146a and TNF-o [39] may be particularly relevant in such context.

The results of this study support the role of miR-146a in inflammation and atherosclero-
sis. Our findings and reported experimental data [18,19,21,39,43-45] suggest that miR-146a
may be further investigated as a therapeutic target, complementary to other disease-
modifying strategies, such as glycemic and lipid control. Specifically, the use of miR-146
mimics in patients with SCAD presenting enhanced inflammatory activation based on TNF-
« levels may be a potential field of research [46]. Interestingly, lower miR-146a expression
levels were reported to be associated with no response to an anti-inflammatory therapy in
patients with COVID-19 and worse adverse outcomes [47]. This reinforces miR-146 as a
potential target in experimental models of SCAD, considering the key role of inflammation
in the regulation of atherosclerosis, particularly the TNF-o pathway:.

There are strengths of this study that should be acknowledged. As far as we know,
this is the first report describing the association between miR-146a expression levels and
TNF-« levels in patients with SCAD. On the other hand, the multivariate analysis car-
ried out increased the consistency of results by pointing to an independent association
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between miR-146a and TNF-g, irrespective of other metabolic and inflammatory param-
eters, which are frequently dysregulated in SCAD and influence TNF-o levels [11-17].
Moreover, the association between miR-146a and coronary artery disease severity added
further to the consistency of the results. Finally, the results are in line with those from the
experimental investigation [18].

Study Limitations

The sample size was small and the results should be interpreted with caution. Nev-
ertheless, the sample size allowed to detect a significant association between miR-146a
expression levels and TNF-« levels and to adjust for confounders, which supports the
validity of the results. Furthermore, the results are consistent with the preclinical data [18].
Of note, the sample included mostly male patients and the results may not be applicable to
female patients. Larger prospective studies including a higher proportion of females are
warranted for performing an external validation. On the other hand, a causal effect between
miR-146a and TNF-« cannot be established based on the results of this study. Nevertheless,
the adjustment for confounders in the multivariate analysis and the consistency of the
results with the aforementioned experimental data [18] suggest that miR-146a is likely a
regulator of TNF-« expression in patients with SCAD.

5. Conclusions

Metabolic and epigenetic (miR-146a) mediators were associated with TNF-« expres-
sion in patients with SCAD. miR-146a expression levels were negatively correlated with
TNF-« levels, irrespective of other metabolic or inflammatory parameters, and with the
severity of coronary artery disease. The results provide insights into the pathophysiology
of inflammation in stable atherosclerosis, particularly the role of miR-146a in TNF-«-based
inflammation in SCAD, and support future research on the potential therapeutic use of
miR-146a in such a clinical scenario.
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