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Abstract: Background and objectives: Alzheimer’s disease is a progressive brain degeneration and
is associated with a high prevalence of sleep disorders. Amyloid β peptide-42/40 (Aβ42/40) and
Tau-pT181 are the core biomarkers in cerebrospinal fluid and blood. Accumulated data from studies
in mouse models and humans demonstrated an aberrant elevation of these biomarkers due to sleep
disturbance, especially sleep-disordered breathing (SDB). However, it is not clear if sleep quality
improvement reduces the blood levels of Ab42/40 ratio and Tau-pT181 in Alzheimer’s disease pa-
tients. Materials and Methods: In this prospective study, a longitudinal analysis was conducted on
64 patients with mild–moderate cognition impairment (MCI) due to Alzheimer’s disease accom-
panied by SDB. Another 33 MCI cases without sleep-disordered breathing were included as the
control group. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) score
system. Neuropsychological assessments were conducted using the Montreal Cognitive Assessment
(MoCA), Geriatric Depression Scale (GDS), Clinical Dementia Rating (CDR), 24-h Hamilton Rating
Scale for Depression (HRSD-24), and Hamilton Anxiety Rating Scale (HAMA) scoring systems. Aβ42,
Aβ40, and Tau-pT181 protein levels in blood specimens were measured using ELISA assays. All
patients received donepezil treatment for Alzheimer’s disease. SDB was managed with continuous
pressure ventilation. Results: A significant correlation was found among PSQI, HRSD-24, HAMA,
Aβ42/40 ratio, and Tau-pT181 level in all cases. In addition, a very strong and negative correlation
was discovered between education level and dementia onset age. Compared to patients without SDB
(33 non-SD cases), patients with SDB (64 SD cases) showed a significantly lower HRSD-24 score and
a higher Aβ42/40 ratio Tau-pT181 level. Sleep treatment for patients with SDB significantly improved
all neuropsychological scores, Aβ42/40 ratio, and Tau-pT181 levels. However, 11 patients did not
completely recover from a sleep disorder (PSQI > 5 post-treatment). In this subgroup of patients,
although HAMA score and Tau-pT181 levels were significantly reduced, MoCA and HRSD-24 scores,
as well as Aβ42/40 ratio, were not significantly improved. ROC analysis found that the blood Aβ42/40

ratio held the highest significance in predicting sleep disorder occurrence. Conclusions: This is the first
clinical study on sleep quality improvement in Alzheimer’s disease patients. Sleep quality score was
associated with patient depression and anxiety scores, as well as Aβ42/40 ratio and Tau-pT181 levels.
A complete recovery is critical for fully improving all neuropsychological assessments, Aβ42/40 ratio,
and Tau-pT181 levels. Blood Aβ42/40 ratio is a feasible prognostic factor for predicting sleep quality.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neuronal degenerative disorder, and nearly
50 million people live with dementia worldwide—75% are Alzheimer’s disease patients [1].
AD is the sixth leading cause of death in the US, accounting for more than 122 K deaths
in 2018, more than breast cancer and prostate cancer combined [2]. It is estimated that
5.8 million Americans age 65 and older have Alzheimer’s disease this year, and the num-
ber is projected to be 13.8 million by 2050, according to the Alzheimer’s Association
(www.alz.org accessed on 29 November 2021). Therefore, there is a desperate need for
medical breakthroughs to prevent, slow, or cure Alzheimer’s disease.

Alzheimer’s disease has two pathophysiological hallmarks in the brain: interstitial
deposition of insoluble amyloid-β (Aβ) peptides and intracellular aggregation of hyper-
phosphorylated Tau proteins [3]. Aβ deposition and Tau protein aggregation are long-
term and slow processes, starting 20 years before any noticeable symptoms, a so-called
prodromal phase [4,5]. Aβ peptides are physiologically processed from their precursor
protein, mainly in neuronal cells after sequential proteolytic cleavage by β-secretase and
γ-secretase [5,6]. There are four significant isoforms of Aβ peptides (38, 40, 42, and 43),
which are detectable in brain interstitial fluid (ISF), cerebrospinal fluid (CSF), and blood
plasma [7]. Aβ40 and Aβ42 peptides are more abundant than others. The Aβ42 peptide is
less soluble due to two extra hydrophobic amino acid residues at the C-terminus, rendering
it more prone to deposition than Aβ40 [8]. Currently, the levels of Aβ42/40 ratio in patient
CSF and blood are implicated as disease biomarkers in the clinic [7,9]. Tau protein is a
crucial component of microtubule assembly in axons, and its function is regulated by
phosphorylation on multiple residues, including threonine 181 (Tau-pT181) [10]. Like Aβ

peptides, Tau protein and its pT181 form are also detectable in CSF and blood specimens;
their levels are associated with disease progression [11].

In recent years, sleep disorders have been linked to Alzheimer’s disease progression
in addition to the typical symptoms of progressive loss of memory, speech, and cogni-
tion [12,13]. A high prevalence (25–66%) of Alzheimer’s disease patients was reported
to exhibit various sleep disorders, including sleep-disordered breathing (SDB) [14,15]. In
contrast, the incidence of sleep disorders was only 18.3–27.6% in elderly adults without
cognition impairment [14]. These sleep behavior changes began in the prodromal phase of
Alzheimer’s disease, while patients only suffered from mild cognitive impairment (MCI),
possibly due to amyloid/Tau pathology before cognition decline [14]. Recent studies
showed that more than half of the AD patients also are suffering from SDB [16]. Sleep
deprivation or disturbances increased Aβ peptides and Tau proteins in cerebrospinal fluid
(CSF) compared to normal sleep controls [9,17–19] due to high production of Aβ pep-
tides [20], which was supported by studies from transgenic mouse models of Alzheimer’s
disease [21].

Interestingly, sleep treatment with continuous positive airway pressure in SDB patients
significantly improved cognition scores in patients with Alzheimer’s disease [22]. On the
other hand, a healthy sleep cycle was shown to facilitate Aβ clearance from the brain
tissue [23]. These studies suggest a bidirectional relationship between sleep disorders
and AD progression [14,24]. However, it is unknown if sleep quality improvement would
reduce or slow cognition impairment in Alzheimer’s disease patients.

The purpose of this study was to examine the effect of sleep quality improvement
on neuropsychological symptoms and blood levels of Aβ peptides and Tau proteins in
Alzheimer’s disease patients with mild–moderate cognition impairments. We were also
interested in identifying potential risk factors that provide prognostic feasibility for sleep
quality prediction in Alzheimer’s disease patients. We compared the sleep quality (PSQI)
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score with a longitudinal approach, neuropsychological parameters (Montreal Cognitive
Assessment (MoCA), Geriatric Depression Scale (GDS), Clinical Dementia Rating (CDR),
24-h Hamilton Rating Scale for Depression (HRSD-24) and Hamilton Anxiety Rating
Scale (HAMA)), blood Aβ42/40 ratio, and Tau-pT181 proteins before and after a 6-month
sleep treatment in 64 MCI patients with sleep-disordered breathing. Our results revealed
that PSQI scores significantly correlated with HRSD-24 and HAMA scores, as well as
Aβ42/42 ratio and Tau-pT181 levels, but not with MoCA, GDS, or CDR scores. A significant
improvement was achieved after sleep treatment for PSQI, MoCA, HRSD-24, HAMA
scores, and Aβ42/40 ratio and Tau-pT181 levels. Most interestingly, a complete recovery
of sleep quality improved neuropsychological scores, Aβ42/40 ratio, and Tau-pT181 levels.
However, MoCA and HRSD-24 scores, plus Aβ42/40 ratio, were not significantly enhanced
in the patient who did not completely recover (PSQI > 5 post-treatment). ROC analysis
identified Aβ42/40 ratio as the most potent predicting factor for sleep disorder occurrence.
Our study demonstrated for the first time, as the authors are aware, that sleep quality
improvement can enhance the neuropsychological status and reduce blood Aβ42/40 ratio
and Tau-pT181 levels in MCI patients due to Alzheimer’s disease.

2. Materials and Methods
2.1. Study Design and Patients

A prospective longitudinal study was designed to examine the effect of sleep quality
improvement on neuropsychological behaviors and the changes of blood Aβ42/40 ratio
and Tau-pT181 levels in patients with mild cognitive impairment due to Alzheimer’s
disease accompanied with sleep-disordered breathing. Patients were recruited at the
Memory and Sleep Clinic at the Jianghan Oilfield General Hospital from February 2017
to December 2019. The diagnosis of AD dementia was made based on the core diagnostic
criteria developed by the National Institute on Aging-Alzheimer’s Association in 2011 [25].
The diagnostic criteria for sleep-disordered breathing in AD patients were based on the
definition of “Dementia-related sleep disorders” in the International Classification of Sleep
Disorders guidelines [26] and the clinical diagnostic criteria for Alzheimer’s disease-related
sleep disorders [27]. Other inclusion criteria include no severe dysfunctions or lesions of
the heart, lung, liver, kidney, and other vital organs and the ability to complete relevant
neuropsychological assessment and auxiliary examination. Exclusion criteria included:
(1) severe dementia; (2) other types of cognitive impairment, including vascular dementia,
Parkinson’s disease, frontotemporal dementia, Lewy body dementia; (3) a history of severe
mental illness; (4) association with a severely debilitating illness, infectious disease, painful
condition or other diseases that may affect the quality of sleep, such as chronic obstructive
pulmonary disease, stroke, heart failure, kidney failure, severe cerebrovascular disease,
epilepsy; and (5) severe physical movement disorder.

2.1.1. General Procedures

The study protocol was reviewed and approved by the Ethics Committee of the
Jiangshan Oilfield General Hospital (study ethical code number 2017016, approval date
20170226). All the patients and their immediate family members were informed with a
written consent form, and the patient’s signatures were obtained before enrollment. This
study was conducted according to the principles stated in the Declaration of Helsinki [28].

After diagnosis and recruitment, all patients were managed by dedicated research
nurses responsible for collecting demographic data, medical history, physical examination,
behavioral and neuropsychological assessment, biochemical specimen collection, and
regular follow-up. Structured questionnaires were used to assess patient medical history,
gender, age, onset age of the disease, course of the disease, years of education, marital status,
the living situation at home, and patient support level on the enrollment day. Patients
were requested to spend one night at the hospital, where peripheral blood specimens were
collected in the morning before daytime activity.
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2.1.2. Sleep Quality Evaluation

The Pittsburgh Sleep Quality Index (PSQI) questionnaire (a Chinese version) was used
to evaluate patients’ overall sleep quality [29,30]. There were 18 items on the scale divided
into seven sub-items: subjective sleep quality, time to sleep, sleep time, sleep efficiency,
night sleep disturbance, sleep drug use, and daytime dysfunction. Each item’s score is
0–3 points, and the total score is 0–21 points. A PSQI score at or above five was set as the
cutoff value for a sleep disorder.

2.1.3. Assessment of Neuropsychological Status

The Montreal Cognitive Assessment Scale (MoCA) was used to assess patient cognitive
function [31]. There were seven cognitive domains: visuospatial and executive function,
naming, delayed recall, attention, language, abstraction, and orientation. A total score of
less than 26 was considered as cognitive impairment.

The Clinical Dementia Assessment Scale (CDR) was used to provide a global evalua-
tion of the severity of dementia [32]. A CDR score of 1 was classified as mild, 2 as moderate,
and 3 as severe. The Global Deterioration Scale (GDS) was used to assess the extent and
progress of dementia [33], which provides an overview of a patient who has degenerative
dementia. The GDS scale was divided into seven levels and was completed by interviewing
the patients and their caregivers. A GDS score of 1 indicates no cognitive impairment;
2 indicates a very mild cognitive impairment, 3 as mild, 4 as moderate, 5 as severe, 6 as
very severe, and 7 as worst impairment.

The 24-item Hamilton Rating Scale for Depression (HRSD-24) was utilized to assess
patient depressive symptoms [34]. In the HRSD-24 version, a total score of 8 or less was
classified as no depression, 9–20 as suspicious depression, 21–35 as moderate or mild
depression, and above 35 as severe depression.

The Hamilton Anxiety Scale (HAMA) was used to evaluate patient anxiety, and
there were 14 items on this scale [35]. The scale adopts a 5-point scoring method ranging
from 0 to 4 points. A total score less than 7 indicated no anxiety, 7–13 was classified as
possible anxiety, 14–20 was anxiety, 21–28 was classified as significant anxiety, above 29
was classified as severe anxiety.

2.2. Measurement of Blood Levels of Amyloid Peptides and Tau-pT181 Proteins

Amyloid-β and Tau-pT181 levels in blood specimens were measured using the
enzyme-linked immunosorbent assay (ELISA) methods. The ELISA kits for Aβ40 (KHB3481),
Aβ42 (KHB3441), and Tau-pT181 proteins (KHO0631) were obtained from Invitrogen (Carls-
bad, CA, USA). All blood specimens were collected between 6:00 and 9:00 a.m. in a fasted
state. Heparin anticoagulant blood was collected by a vacuum tube and centrifuged at
3000 rpm for 10 min for plasma separation. The samples were then aliquoted and stored at
−80 ◦C. ELISA assays were conducted within one week at three repeats for each specimen.

2.3. The Intervention of Sleep Disorders and Dementia

All patients enrolled in this study received a standard anti-dementia medicine donepezil
(5–10 mg, QN). Patients with sleep-disordered breathing were managed by continuous
positive pressure ventilation.

2.4. Data Collection and Statistical Analysis

Data of biometrics, behavioral and neuropsychological assessments, and Amyloid-β
and Tau-pT181 tests were obtained at the enrollment before treatment and at the end of
the 6-month treatment. Statistical analysis was performed using SPSS software (version
28.0, Chicago, IL, USA) and the figure graphs were generated using the GraphPad Prism
software (version 9.0.0, San Diego, CA, USA). Statistical comparison among multiple
groups was conducted using two-tail ANOVA analysis. The comparison of the parameters
between pre- and post-treatment was analyzed using a paired t-test. Pearson correlation
analysis was used to determine the correlation among all parameters. The Receiver Op-
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erator Characteristic (ROC) analysis was used to identify a prediction factor for sleep
quality disorder.

3. Results
3.1. Patients Population and Clinical Parameters

A total of 97 AD-related dementia patients were enrolled in this study, of whom 33
patients without sleep-disordered breath were included as the control group, and 64 cases
with sleep-disordered breathing were set as the treatment group (Figure 1). All biometric
data are summarized in Table 1. All subjects had a CDR score of 1–2 (mild–moderate
dementia) and a MoCA score of 12–26 (cognition impairment). Sixty-three patients (64.9%)
were scored as suspicious depression (HRSD-24 score 9–20). Fifty-three (54.6%) patients
were scored as anxiety (HAMA score 14–18), and 42 (43.3%) patients were scored as
possible anxiety (HAMA score 7–13). Interestingly, a negative and robust correlation
(Persons r = −0.573) was discovered between the education level and dementia onset age
(Table 2), indicating that higher educated patients tended to have an early onset age of
mild–moderate dementia.
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Figure 1. A schematic illustration of the study design and protocol. A total of 97 patients participated; 64 patients were
diagnosed with sleep disorders and were subjected to sleep interventions in addition to donepezil treatment. The other
33 cases without sleep disorders received donepezil only. After a 6-month treatment, patients were re-assessed and
divided into recovered or unrecovered subgroups groups based on the Pittsburgh Sleep Quality Index (PSQI) scores. SD:
sleep-disorder.

Table 1. Patient Biometrics Parameters.

All Cases SD Cases with Treatment

Non-SD Cases SD Cases p-Value Un-Recovered Recovered p-Value

Case number (%) 33 (34%) 64 (66%) 11 (17.2%) 53 (82.8%)

Age (year) 73 (66–81) 73 (63–81) n.s. 73 (67–78) 73 (63–81) n.s.

Onset age (year) 69 (63–79) 71 (61–79) n.s. 69 (63–79) 71 (61–79) n.s.

Sex (Male/Female) M18/F15 M30/F34 n.s. M6/F5 M24/F29 n.s.

Disease length (month) 32 (19–45) 32 (16–59) n.s. 32 (19–45) 32 (16–59) n.s.

Secondary education 4 (2–11) 4 (0–11) n.s. 4 (2–11) 4 (0–11) n.s.

Body Mass Index 23.7 (16.7–29.2) 23.6 (15.48–33.02) n.s. 23.7 (16.7–29.2) 24.5 (15.48–33.02) n.s.

Note: The values for clinical assessments were shown as the Median (range). The p-value was derived from Student t-test analysis between
non-recovered and recovered groups except X2 test for sex. n.s., not significant. SD, sleep disorder.
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Table 2. Pearson Correlation Coefficient.

Correlation Pair Pearson r p-Value

Education vs. Onset age −0.573 8.53 × 10−10

PSQI vs. HAMA 0.467 1.42 × 10−6

PSQI vs. HRSD-24 0.353 0.0004

PSQI vs. Aβ42/40 ratio 0.348 0.0005

PSQI vs. Tau-pT181 0.424 1.52 × 10−5

HRSD-24 vs. HAMA 0.419 1.93 × 10−5

HRSD-24 vs. Aβ42/40 ratio 0.506 1.24 × 10−7

HRSD-24 vs. Tau-pT181 0.643 1.30 × 10−12

HAMA vs. Aβ42/40 ratio 0.506 1.28 × 10−7

HAMA vs. Tau-pT181 0.555 3.61 × 10−9

Aβ42/40 ratio vs. Tau-pT181 0.588 2.34 × 10−10

Note: 24-h Hamilton Rating Scale for Depression: HRSD-24 and Hamil-ton Anxiety Rating Scale: HAMA,
Amyloid β peptide-42/40: Aβ42/40.

3.2. Sleep Quality Was Associated with Neuropsychological Symptoms and Blood Biomarkers

We first assessed the entire group (97 cases) for the correlation of sleep quality using
the PQSI score with the neuropsychological status and blood biomarkers. As shown in
Table 2, PQSI score significantly correlated with HAMA and HRSD-24 scores, as well as the
Blood Aβ42/40 ratio and Tau-pT181 level (Table 2). Further analysis revealed a significant
correlation among Tau-pT181 level, Aβ42/40 ratio, HAMA, and HRSD-24 scores. These
data indicate that sleep quality is associated with depression and anxiety behavior, as well
as blood biomarkers in MCI patients due to Alzheimer’s disease.

We then compared neuropsychological scores and blood biomarkers between patients
with or without sleep-disordered breathing conditions (non-SD vs. SD cases). As shown in
Figure 2, HRSD-24 score, Aβ42/40 ratio, and Tau-pT181 levels were significantly higher in
patients with sleep-disordered breathing (SD cases) than those in non-SD cases; however,
MoCA and HAMA scores did not show any statistically significant differences. These data
demonstrated that HRSD-24 score, blood Aβ42/40 ratio, and Tau-pT181 level were strongly
associated with sleep-disordered breathing in MCI patients due to Alzheimer’s disease.
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non-SD cases, including MOCA score (A), HRSD-24 score (B), HAMA score (C), Aβ42/40 ratio (D),
and Tau-pT181 level (E). The asterisk indicates a significant difference between the groups (* p < 0.05,
** p < 0.01, Student t-test).

3.3. Sleep Treatment Improves COGNITION and Relieves Anxiety

Patients with sleep-disordered breathing (64 cases) were treated with continuous posi-
tive pressure ventilation for six months in addition to the standard care of anti-Alzheimer’s
disease medicine donepezil. Pearson correlation analysis revealed a strong correlation
among the PSQI, neuropsychological scores, blood Aβ42/40 ratio, and Tau-pT181 levels
(Table 3), similar to the correlations for the entire cohort (Table 2).

Table 3. Pearson Correlation Coefficient.

Correlation Pair Pearson r p-Value

Education vs. Onset age −0.709 5.53 × 10−11

PSQI vs. HAMA 0.488 4.22 × 10−4

PSQI vs. HRSD-24 0.268 0.032

PSQI vs. Aβ42/40 ratio 0.311 0.012

PSQI vs. Tau-pT181 0.328 0.008

MoCa vs. GDS −0.409 0.0008

GDS vs. Aβ42/40 ratio −0.316 0.011

HRSD-24 vs. HAMA 0.407 0.0008

HRSD-24 vs. Aβ42/40 ratio 0.580 4.96 × 10−7

HRSD-24 vs. Tau-pT181 0.709 5.13 × 10−11

HAMA vs. Aβ42/40 ratio 0.526 7.98 × 10−6

HAMA vs. Tau-pT181 0.663 2.43 × 10−9

Aβ42/40 ratio vs. Tau-pT181 0.772 7.84 × 10−14

Note: Montreal Cognitive Assessment: MoCA, Geriatric Depression Scale: GDS, Clinical De-mentia Rating: CDR.

After a 6-month sleep intervention, a significant improvement was achieved for all the
neuropsychological scores, blood Aβ42/40 ratio, and Tau-pT181 levels (Figure 3). Among
these patients, 53 cases (82.8%) showed a complete recovery in PSQI score (<5) but 10 cases
were only showed a slight improvement (PSQI > 5 post-treatment). One patient had a PSQI
increased from prior to treatment of 6 to post-treatment of 8. After separating these two
subgroups, a substantial improvement was observed for the recovered cases in MoCA,
HRSD-24, and HAMA scores after sleep treatment. blood Aβ42/40 ratio and Tau-pT181
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levels were also significantly reduced after the 6-month sleep treatment in this subgroup
(Figure 4A). In the unrecovered subgroup, although HAMA scores and blood Tau-pT181
levels reduced considerably, MoCA and HRSD-24 scores, as well as blood Aβ42/40 ratio,
did not improve significantly (Figure 4B).
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We then compared blood Aβ42/40 ratio and Tau-pT181 protein levels prior- or post-
sleep treatment in unrecovered and recovered subgroups. As shown in Figure 5A, the
Aβ42/40 ratio showed a significant reduction in the recovered subgroup but not in the unre-
covered subgroup. In contrast, Tau-pT181 protein levels showed a significant reduction
in both recovered and unrecovered subgroups (Figure 5B). However, the recovered sub-
groups showed a much lower Aβ42/40 ratio and Tau-pT181 protein than the unrecovered
subgroups. These data suggest that a full recovery of sleep quality is necessary to reduce
the blood Aβ42/40 ratio and improve recognition and depression status.
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covered subgroups. Group comparison was conducted using Student t-test, and the asterisks indicate
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3.4. Blood Amyloid-β42/40 Ratio Is a Predictive Factor for Sleep Quality in MCI Patients

Finally, we determined if the neuropsychological score, blood Aβ42/40 ratio, and Tau-
pT181 protein level had any predictive value as a risk factor for sleep quality. The ROC
analysis included the prior-treatment values from all 97 patients. Sleep quality was set
as the dependent variate (PSQI < 5). As shown in Figure 6, Aβ42/40 ratio had the highest
significance as a predicting factor over HAMA and HRSD-24 scores and Tau-pT181 protein
level. These data suggest that Aβ42/40 ratio is an important factor associated with sleep
disorder in MCI patients due to Alzheimer’s disease.
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4. Discussion

In this study, our main findings are listed below: (1) a very strong and negative
correlation was discovered between education level and MCI onset age; (2) a strong
correlation was identified among sleep quality (PSQI score), depression (HRSD-24 score),
anxiety (HAMA score), blood Aβ42/40 ratio and Tau-pT181 levels; (3) patients with sleep
disorder-breathing exhibited a worse HRSD-24 score and higher levels of blood Aβ42/40
ratio and Tau-pT181 levels; (4) sleep treatment for sleep-disordered breathing improved all
neuropsychological scores, Aβ42/40 ratio, and Tau-pT181 levels; (5) a complete recovery
of sleep quality is critical to fully improve the MoCA and HRSD-24 score and to reduce
the Aβ42/40 ratio; and (6) blood Aβ42/40 ratio showed the highest significance in predicting
sleep quality. These data suggest that sleep treatment improved neuropsychological
symptoms and reduced blood Aβ42/40 ratio and Tau-pT181 protein levels in MCI patients
due to Alzheimer’s disease.

Accumulating evidence has demonstrated sleep disordered-breathing as a clinical
contributing factor in patients with MCI during Alzheimer’s disease development and pro-
gression [13,15]. However, very few studies reported the correlation of sleep quality (PSQI
score) with neuropsychological scores that occur at any stage in Alzheimer’s disease [36].
This study assessed patient sleep quality with the PSQI and neuropsychological scores. Our
results revealed that PSQI scores correlated significantly with HRSD-24 and HAMA scores,
which were supported by a cross-sectional study showing an inverse correlation between
sleep length and anxiety symptoms in Alzheimer’s disease patients [37] and by a recent
study showing a close correlation between PSQI scores and depression in Alzheimer’s
disease patients [38].

So far, there is a paucity of literature about the correlation of sleep quality (PSQI
scores) with MoCA, GDS, and CDR scores. However, a linear correlation (coefficient of
multiple correlations at 0.307–0.34) between sleep quality and GDS score was reported in
Alzheimer’s disease patients with moderate to severe dementia (CDR 2–3) [39], indicating
a possible connection of sleep disturbance with global deterioration scale at a late stage
of AD patients. Also, lower MoCA scores were found in patients with obstructive sleep
apnea-hypopnea syndrome (OSAHS) than non-insomnia patients [40], indicating a poten-
tial effect of sleep disturbance on cognitive impairment in patients without Alzheimer’s
disease. Meanwhile, our results showed that treating SDB patients with continuous posi-
tive pressure ventilation significantly improved the MoCA, HRSD-24 and HAMA scores.
Significantly, our results are supported by a previous report derived from a randomized
clinical trial in patients with Alzheimer’s disease [22]. Therefore, sleep improvement might
be able to slow down the process of Alzheimer’s disease (15), although further investigation
is warranted to determine the clinical significance of sleep disordered-breathing in different
phases of Alzheimer’s disease.

Aberrant aggregation of phosphorylated Tau protein is one of the major pathogenic
factors in the development and progression of Alzheimer’s disease [3,8]. Also, exces-
sive shedding and deposition of amyloid peptides have been considered a critical factor
in Alzheimer’s disease [3,14]. Studies in mouse models of Alzheimer’s disease and hu-
mans have convincingly demonstrated a tight association between sleep disorders and
Alzheimer’s disease in terms of Tau proteins [14,41]. Increased cerebrospinal fluid and
blood levels of Amyloid-β peptide and phosphorylated Tau protein was reported in pa-
tients with sleep disturbances, including SDB [15], and have been considered biomarkers
for disease progression [42–44]. A recent meta-analysis indicated that blood levels of
Aβ42/40 ratio and Tau-pT181 protein strongly predicted the Aβ-PET status in patients [45]
and that blood Aβ42/40 ratio was even recommended as a cost-effective marker for early
AD pathological screening [46]. Our data also showed a strong correlation between PSQI
scores and blood Aβ42/40 ratio and Tau-pT181 levels before and after sleep intervention
in this study. Interestingly, we also found that Aβ42/40 ratio and Tau-pT181 levels corre-
lated with HRSD-24 and HAMA scores. Although it is hard to postulate their causative
relationship among these correlations, they are the first clue for further investigation to
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determine the correlation of Aβ42/40 ratio and Tau-pT181 level with cognition/dementia
or depression/anxiety during Alzheimer’s disease progression.

For Alzheimer’s disease, a fundamental challenge is determining if sleep intervention
improves neuropsychological status and reduces the Tau protein burden in patients [24].
Our data demonstrated that sleep intervention resulted in a significant reduction of blood
Tau-pT181 levels. More specifically, patients with or without a full recovery achieved a
substantial decrease in Tau-pT181 levels. In contrast to the Tau-pT181 decline, Aβ42/40
ratio was not significantly reduced in unrecovered patients, indicating that a complete
recovery is critical in lowering the Aβ42/40 ratio.

Our data are supported by other clinical studies showing a 50% increase of Tau-pT181
proteins in human cerebrospinal fluid after sleep deprivation [18]. These results indicate a
potential causative relationship between sleep disturbance and accumulation of Tau-pT181
in Alzheimer’s disease. Aberrant accumulation of Tau protein occurs due to an imbalanced
production and clearance process reported recently [14,24]. A high-quality sleep-wake
cycle is vital for successfully clearing these pathogenic molecules [21,23,47]. Therefore, it is
plausible that sleep intervention at the preclinical stage of Alzheimer’s disease has a strong
potential to prevent or slow down disease progression [48].

There were a few limitations in our study. First, we utilized the most economical but
reliable blood biomarkers, Aβ42/40 ratio and Tau-pT181 level [42,45,46]. However, more
precise and accurate methods are available in the field, such as HPLC measurement in CSF
or blood specimens [49] and Florbetapir (18F)-positron emission tomography (PET) [50].
With advanced imaging technologies like functional MRI and 18F (or 11C-PIB)-PET, more
precise brain tissue changes after sleep treatment will be clearly understood for mechanistic
analysis. Second, we used the subjective assessments of sleep quality with PSQI and
neuropsychological evaluation system of MoCA, GDS, CDR, HRSD-24, HAMA, which
have been widely used in the field as standard tools in clinical practice. Although the self-
assessment system by older patients might not reflect their actual sleep quality compared
to a subjective measurement like polysomnography [51], the alterations of PSQI scores
between prior- and post-treatment were analyzed using a paired t-test (longitudinal self-
comparison) so that the derivations among individuals were minimized. It is plausible that
objective measurements with advanced technology for sleep monitoring will significantly
strengthen our conclusion. Third, 11 cases did not fully recover after a 6-month treatment.
We are still monitoring these cases for a more extended intervention and follow-up until a
possible complete recovery within two years.

5. Conclusions

This is a longitudinal study with 97 cases of mild–moderate cognitive impairment
patients due to Alzheimer’s disease. Of these, 64 subjects were treated due to sleep-
disordered breathing. The sleep quality scores were significantly correlated with depression
and anxiety scores, blood Aβ42/40 ratio, and Tau-pT181 protein levels. Sleep treatment
significantly improved sleep quality and enhanced cognition, relieving anxiety, and reduced
blood Aβ42/40 ratio and Tau-pT181 protein levels. A full recovery of sleep quality was
critical to improving cognition and depression status. Our data provided valuable evidence
that sleep intervention might be feasible to improve neuropsychological symptoms and
reduce disease progression when implicated in the early phase of Alzheimer’s disease.
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