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Abstract: Fish allergy constitutes a severe problem worldwide. Its prevalence has been calcu-
lated as high as 7% in paediatric populations, and in many cases, it persists into adulthood with
life-threatening signs and symptoms. The following review focuses on the epidemiology of Im-
munoglobulin E (IgE)-mediated fish allergy, its pathogenesis, clinical manifestations, and a thorough
approach to diagnosis and management in the paediatric population. The traditional approach for
managing fish allergy is avoidance and rescue medication for accidental exposures. Food avoidance
poses many obstacles and is not easily maintained. In the specific case of fish, food is also not the
only source of allergens; aerosolisation of fish proteins when cooking is a common source of highly
allergenic parvalbumin, and elimination diets cannot prevent these contacts. Novel management
approaches based on immunomodulation are a promising strategy for the future of these patients.

Keywords: allergen; basophil activation test; component resolved diagnosis; fish allergy; immunoglob-
ulin E; management; oral food challenge; parvalbumin; paediatrics; skin prick test

1. Introduction

Fish consumption has seen a steady rise in recent years, both in adults and children.
Multiple factors play a part in this trend, including the benefits of an increased intake of
antioxidants and omega-3 fatty acids, making fish meat of fundamental importance in
the growing child’s diet. Furthermore, it has been proposed that increased representation
of omega-3 fatty acids in a child’s diet could play a significant role in preventing future
development of atopic diseases [1–3]. However, fish allergy can represent a severe problem
worldwide, with a prevalence as high as 7% in the paediatric population [4], persisting in
many cases into adulthood with life-threatening signs and symptoms.

This review aims to outline the epidemiology of Immunoglobulin E (IgE)-mediated
fish allergy in children across the globe, its pathogenesis, clinical manifestations, and an
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in-depth approach to diagnosis, focusing on serological and molecular investigations. We
will finally discuss traditional and novel approaches and attitudes towards fish allergy
management and therapy and prospects for its future.

2. Epidemiology

Fish is one of the most common foods responsible for allergic reactions in children
and adults worldwide [1,2,4]. Since only a minority of fish allergy cases tend to resolve
with age [5,6], this clinical condition is routinely reported as having a higher prevalence in
adults than in children, the opposite of what is usually observed in other common allergies
of childhood, like dairy and egg. The exact rates of fish allergy are hard to quantify since
multiple variable factors are involved in how prevalence is measured. In addition to the age
mentioned above, other factors are critical, such as geography: fish allergy is more common
in countries where fish is one of the staples in the culture’s diet, so fish consumption is
higher. Another variable is the way allergy is assessed, e.g., self-reported, confirmed by a
doctor, confirmed with skin prick test (SPT) or serum specific IgE (sIgE), or confirmed by
oral food challenges (OFCs), with higher numbers observed with the first methods and
lower with the latter ones.

When investigating with self/parent-assessed methods, the highest prevalence was
measured in Finnish children, ranging from 5% [7] to 7% [8]. On the contrary, the lowest one
(0.0001%) was measured in 0–2-year-olds in Israel [9]. A significant prevalence is reported in
the United Arab Emirates [10], with 2.8% of children from 6 to 9 reported to have reacted to
fish’s ingestion. In Europe, the highest prevalence was found in countries with traditionally
fish-centric diets, including Finland as well as other Scandinavian countries such as Norway
(3% [11]), and Spain [12]: in a study by Crespo et al. [13] fish was responsible for 17.8% of
allergic reactions documented in a cohort of paediatric patients with SPT and sIgE-positive
food allergy.

Indeed, those numbers progressively get lower when we consider studies where
sensitisation was assessed with in-vivo or in-vitro methods: in Europe, Finnish children
show a sensitisation incidence of 0.3% [14], higher rates have been reported for British
(1.3% [15]) and French (0.7% [16]) children. Even fewer children were classified as fish-
allergic when we consider studies where OFCs were performed: 0% in Denmark [17],
0.0006% in the United Kingdom [18], 0.0002% in Turkey [19], and 0.2% in Iceland [20]. The
overall point-prevalence of OFC-confirmed fish allergy in Europe was estimated at 0.06%
in a meta-analysis by Nwaru et al. [21].

Fish consumption is perhaps the highest in the Asian continent, with Japan averaging
54 kg yearly per capita, reflecting on the high prevalence rates of fish allergy observed
in multiple Asian countries [22]. Connett et al. in 2012 reported a prevalence of 2.29%,
0.26%, and 0.29%, respectively, in the Philippines, Singapore, and Thailand by polling
a cohort of 25,842 14–16-year old students [23]. Another study by Lao-Araya, using
parent questionnaires, showed a lifetime prevalence in Thai preschoolers of 1.1% [24].
In a cross-sectional study in over 8000 children in Vietnam, aged 2–6 years, 1.62% had
a self-reported allergy to fish, while the doctor-diagnosed one dropped to 1.24% of the
population examined [25]. In China, a study conducted on infants reported a prevalence of
fish allergy of 0.21%, confirmed by SPT [26], reflecting a difference in prevalence between
self-reported studies and SPT-confirmed/doctor diagnosed studies.

In the American continent, the highest prevalence, as recorded with random telephone
survey, was seen in the United States (US), where a study polled more than 38,000 children
aged 0–18 with a resulting fish allergy prevalence ranging from 0.3% (0–2 years old) to
0.6% (>11 years old) [27]. A recent study showed a remarkable, dramatic difference in
fish allergy prevalence in different ethnic groups in the US: in a cohort of sIgE- or SPT-
confirmed food-allergic patients, fish was the culprit allergen in 3.4% of white patients,
16.16% of Hispanics, and an outstanding 34.39% of African American children, showing
the overwhelming ethnic influence over simple geography when determining food sensiti-
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sation [28]. In Canadian children, the prevalence was 0.18% when considering “probable
allergy” (compatible clinical history reported by parent questionnaires) [29].

African data is scarce: a 2010 questionnaire-based study showed a prevalence of fish
allergy of 0.3% in Ghanaian children aged 5–16 [30].

3. Pathogenesis and Clinical Features

Adverse reactions to fish are widespread in adults and children, but IgE-mediated
reactions represent only a fraction (albeit the most common). A summary of immunological
and nonimmunological adverse reactions will be outlined.

3.1. Nonimmunological Adverse Reactions

• Anisakiasis: infection by the parasite Anisakis, resulting in mostly gastrointestinal
clinical manifestations. It requires the ingestion of live parasites. Therefore it is only
contracted after consuming raw, undercooked, or pickled fish [31].

• Scombroid poisoning: a syndrome caused by ingestion of poorly preserved fish (more
often red meat fish like tuna), in which bacterial overgrowth allows histidine to be
converted into histamine. Clinical manifestations mimic allergic reactions, with rapid
onset (around 30 min after ingestion), for example, urticaria, oral allergic syndrome,
nausea and vomiting, and, in rare cases, anaphylaxis. Patients, who often do not have
a history of fish allergy, often report oral tingling sensation and metallic flavour when
eating the responsible fish, and usually, the same signs and symptoms are reported by
other family members who consumed the same food [32,33].

• Toxic algae poisoning: fish can consume several toxin-producing algae taken up by fil-
ter feeders such as mussels and clamps. Subsequently, the human ingestion of contam-
inated fish triggers this type of poisoning. The clinical manifestations are varied and
depend on the toxin: e.g., Ciguatera, due to ciguatoxin found most commonly in trop-
ical fishes (groupers, eel, Spanish mackerel), may present with cutaneous (urticaria),
gastrointestinal (nausea, vomiting), neurological (blurred vision, paraesthesia, ataxia,
seizures) and cardiovascular (bradycardia/tachycardia, hypotension/hypertension,
conduction block) signs and symptoms [34,35].

• Bacterial/viral contamination: eating fish raised in or harvested from contaminated
waters will result mostly in gastrointestinal clinical manifestations arising several
hours after ingestion, often accompanied by fever [36].

• Seafood intolerance: due to vasoactive amines present in fish (histamine and tyramine),
especially when canned or pickled, or fish autolysates [37]. Usually presents itself
with a headache.

3.2. Immunological Adverse Reactions

• IgE-mediated adverse reactions to fish: the most common form of adverse reaction to
fish, which involves the development of sensitisation, a type 2 T helper (Th2) response,
and production of sIgEs against fish allergens. Its pathogenesis and clinical features
are discussed in more detail below.

• Non-IgE-mediated adverse reactions to fish: they include Food Protein-Induced
Enterocolitis Syndrome (FPIES) and Food Protein-Induced Allergic Proctocolitis
(FPIAP), of which fish is a major causative agent [38–40], and eosinophilic esophagitis
(EoE)/gastritis [41–43]. In the management of EoE, an empiric six-food elimination
diet is generally recommended and includes the elimination of fish/shellfish along
with milk, egg, wheat, nuts, and soy [41–44]. Of note, some clinicians advise a four-
food elimination diet and allow taking nuts and fish.

• Immunological, IgE-mediated adverse reactions to parasite infested fish. An immuno-
logical, IgE-mediated adverse reaction to Anisakis could occur due to the sensitisation
to the nematode’s proteins, which infests various fish species. The clinical presenta-
tion is indistinguishable from a fish allergy, but sIgEs are not directed towards fish
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protein but rather towards the parasite. Thus, SPT and sIgE will detect Anisakis
sensitisation [45].

IgE-mediated reactions to fish are the end-result of a process that, such as every allergic
reaction, starts with the absorption of antigens through the intestinal epithelium (ingestion),
lung mucosa (inhalation), or the skin (contact). The latter can happen via either a passive
system (paracellular diffusion) or an active system, which involves goblet cells or dendritic
cells [46,47]. After absorption, dendritic cells and macrophages usually participate in
the tolerance mechanisms in which regulatory T cells are produced, which suppress Th2
response, preventing IgE sensitisation development [48,49]. In allergic patients, though,
this process fails, and antigen-presenting cells switch to a Th2 response, in which one of
the leading players is IL-4. This cytokine induces the development of Th2 cells specific
for the presented antigen [50]. Thus, tolerance breaks down, and interaction between
Th2 and B cells leads to the production of antigen-specific IgE, which binds to IgE surface
receptors of mast cells/basophils. Re-exposure to the antigen and binding and cross-linking
allergen-specific IgE on mast cells and basophils leads to degranulation, with the release
of preformed granules containing histamine and tryptase, and the new production of
mediators such as prostaglandins and leukotrienes [51]. Those mediators’ effects include
vasodilatation, mucous secretion, smooth muscle contraction, and chemotaxis of other
inflammatory cells, which maintain and amplify the inflammatory process, leading to
typical clinical allergic reaction manifestations [52].

Fish allergy in children can manifest after either ingestion, skin contact, or inhalation
of the antigen. The most common route of sensitisation, especially in children, is the
digestive system: fish antigens take only around 10 minutes to be absorbed after ingestion,
so even a partial impairment of the denaturing effect of gastric acid (such as in patients
using antiacid medications) can lead to partial digestion and increased intake of antigenic
peptides [53,54]. An increase in gastric pH level from 2 to 3 caused a 10–30-fold increase
in allergenicity of codfish allergens [54]. IgE-mediated signs and symptoms after oral
ingestion are usually rapid in onset, especially true for fish, considering its absorption rate.

Classically, those clinical manifestations are incredibly varied, both in nature and
severity. They range from mild oral allergy syndrome and the most common urticaria/
angioedema, reported by up to 70% of fish-allergic patients in the US [55], to life-threatening
events like anaphylaxis. Among the patients with food-induced fatal anaphylaxis, 1 of
32 deaths was caused by fish, and in a report of seven deaths, one was attributed to
crab and one to fish [55]. Interestingly, fish represented the third most common cause of
anaphylaxis in a cohort of Portuguese children, in which it accounted for 18.8% of cases of
anaphylaxis [56]. However, there is significant variability in the prevalence of anaphylaxis
caused by fish between different countries. For example, fish was a causative agent in 2.1%
of Korean children with anaphylaxis [57]. Another common presentation of fish allergy
is gastrointestinal involvement, with clinical manifestations like nausea, vomiting, and
diarrhoea [58]. Additionally, food allergy can induce exercise-induced anaphylaxis, in
which signs and symptoms appear only if the subject performs physical activity around
few hours from ingesting the food towards which they are sensitised [59–61]. Indeed,
food-related exercise-induced anaphylaxis cases have been described for fish [62,63].

Bronchospasm and asthma have been reported after ingestion of fish, but their oc-
currence is also possible after the inhalation of fish allergens. The latter route of exposure
is recurrent in seafood industry workers and handlers [64–68], but children can easily
be exposed to aerosolised proteins generated in the cooking process [69,70]. Cooking is
an especially pernicious process when dealing with fish allergy, as it may increase the
allergenicity of fish allergens in some cases [71,72]. Van der Ventel found out that mice
exposed to cooked pilchard developed higher IgE levels when compared to raw extract,
despite manifesting a narrower range of antigen sensitisation, showing specific IgE almost
exclusively directed towards parvalbumin, which is thermally stable. The explanation
for this phenomenon is that, in cooked fish, parvalbumin concentration increases, while
the minor allergens’ concentration decreases, being more easily denatured. This also
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contributes to a potential explanation of why parvalbumin is the most prevalent antigen
responsible for fish allergy since fish is predominantly consumed cooked [72]. The main
presentation of fish allergy caused by sensitisation by inhalation of antigens is, as previously
reported, the appearance of bronchospasm or other upper- and lower-respiratory tract
clinical manifestations [64–68] when re-exposed to the same inhaled allergen. However,
urticaria, conjunctivitis, and even anaphylaxis have also been reported [73]. In some cases,
fish has been reported to be tolerated when eaten and elicited signs and symptoms only
when allergens were aerosolised via cooking [74], in line with the previously mentioned
allergenicity changes of cooked fish [71,72].

The final sensitisation route is direct skin contact with fish protein, resulting in contact
urticaria and eczema or anaphylaxis in rare cases [65,75]. The latter method of sensitisation
is mainly reported in workers from the seafood-processing industry, fishers, and profes-
sional cooks, but it has also been reported in paediatric age patients [67,76]. The presence of
an impaired skin barrier function is a significant risk factor for fish sensitisation: this is also
confirmed by the fact that patients with filaggrin (a protein essential for the maintenance of
normal epidermal homeostasis) loss-of-function gene mutations have been shown to have
a 4-fold risk of developing fish allergy when compared with nonmutated controls [77].

4. Fish Allergens and Cross-Reactivity

Fish are mainly categorised into two classes as bony fish (Osteichthyes) and cartilaginous
fish (Chondrichthyes) [58]. Most of the edible fish are bony fish, while rays and sharks be-
long to the cartilaginous group. Although there is vast biodiversity among fishes (more
than 32,400 species), most of the bony fish belong to a limited number of orders, the
cod-like (Gadiformes), salmonlike (Salmoniformes), perchlike (Perciformes), herringlike (Clu-
peiformes), carplike (Cypriniformes), catfishlike (Siluriformes), and flatfishes (Pleuronectiformes)
(Figure 1) [78]. Identification of fish allergens from different regions and species facilitates the
diagnosis and treatment of fish allergy. So far, a limited number of species have been analysed.

4.1. Parvalbumin

Parvalbumin was first detected as a fish allergen in Baltic cod (Gad c 1 or Allergen M)
in 1969 [79]. This protein’s allergenicity was demonstrated in other fish species such as carp,
salmon, pilchard, tuna, and mackerel [71,80–82]. Parvalbumin is a calcium-binding protein
with a molecular mass of about 12 kDa, which participates in muscle fibre relaxation and
highly resistant to heat and enzymatic digestion [58]. Parvalbumin represents the major
cross-reactive allergen in fish allergy [78].

Based on amino acid sequences, two distinct isoform lineages have been identified
as alpha and beta parvalbumin. Fish species may have alpha and beta, but most of the
allergenic parvalbumins belong to the beta lineage, found in bony fish [83]. Alpha parval-
bumin is mostly found in the muscle of cartilaginous fish and seems to be nonallergenic.
The sequence identities have been reported for beta parvalbumins to vary significantly
between 46% and 99%, possibly explaining monosensitivity to specific fish species [84].
A recent study by Kalic et al. demonstrated with a food challenge that patients with allergy
to bony fish can consume ingestion of ray, another type of cartilaginous fish [85].

White muscles of fish contain a higher concentration of parvalbumin than the dark
muscles. Hence fish with white muscle such as haddock and cod seem to be more allergenic
than fish with more dark muscles such as mackerel, tuna, and swordfish [86]. Indeed, par-
valbumin content differs in fish species; swordfish and tuna contain <1 mg of parvalbumin
per gram of fresh fillet, while the concentration of parvalbumin is higher than 2.5 mg per
gram in cod and carp [87]. Allergenic variability among the fishes may help the patients to
tolerate fish species with low parvalbumin content, although they have allergic reactions
with fishes containing high parvalbumin content.
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4.2. Enolase and Aldolase

In addition to parvalbumin, aldolase A (40 kDa) in Pacific salmon and beta enolase
(50 kDa) in bream were also detected as fish allergens [88,89]. These allergens are abundant
in fish muscle and play a role in glucose metabolism. Parvalbumin sensitised patients may
also have IgE reactivity to enolase and aldolase. Kuehn et al. reported a group of patients
who were not sensitised to parvalbumin but had IgE reactivity to enolase and aldolase
from salmon, tuna, and cod [90]. IgE to enolase and aldolase were found in 62.9% and
50% of the patients, respectively. The authors described IgE to enolase and aldolase as
clinically relevant, particularly when sensitisation to parvalbumin was not detected, and
this might be related to enolase and aldolase being not heat stable. By using IgE-inhibition
enzyme-linked immunosorbent assay (ELISA), limited interspecies cross-reactivity was
detected for aldolases and enolases [90].

4.3. Collagen

Type I collagen was detected as a second fish allergen in 2000 [91]. In Japan, IgE
reactivity to fish collagen was observed in 50% of the patients with fish allergy [92]. The
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same group also reported that sera of patients retained IgE reactivity to fish collagen after
heated at 100 ◦C for 320 min and 140 ◦C for 10 min [93]. A study on 100 Australian fish
allergic children demonstrated that 21% were sensitised to collagen from salmon, tuna,
and Asian seabass, and basophil activation was demonstrated [85]. The authors suggest to
include this heat-stable allergen fish allergy diagnosis.

On the other hand, Hansen et al. investigated the allergenicity of gelatine in 30 fish
allergic patients based on the results of double-blind placebo-controlled food challenges
(DBPCFCs). They reported that 90% of fish-allergic individuals with 95% certainty would
not have shown a reaction to the ingestion of a 3.61 g cumulative dose of fish gelatine,
which questions the clinical relevance of gelatine in fish allergy [94].

4.4. Other Allergens

In 2013, a muscle protein tropomyosin, a pan-allergen for shellfish, was identified as
a fish allergen in patients with tilapia sensitisation [95]. A recent study from Australia
among 77 paediatric patients with confirmed fish allergy demonstrated that up to 32% were
sensitised to tropomyosin from salmon or Asian seabass [96]. Furthermore, a fish yolk protein
vitellogenin in Beluga caviar and several molecules such as aldehyde phosphate isomerase,
triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and creatine kinase
have been displayed as potential allergens in different species of fish [72,97,98]. However, the
clinical relevance of these allergens requires further investigation.

A summary list of fish allergens officially recognised by the World Health Organiza-
tion/International Union of Immunological Societies (WHO/IUIS) is reported in Table 1.

Table 1. Summary of the fish allergens based on the search in the World Health Organization/International Union of
Immunological Societies (WHO/IUIS) database (www.allergenonline.org).

Fish Species Common Name Nomenclature Order Allergen MW * (kDa) Ref

Clupea harengus Atlantic herring Clu h 1 Clupeiformes β-parvalbumin 12 [99]
Cyprinus carpio Common carp Cyp c 1 Cypriniformes β-parvalbumin 12 [100]
Gadus callarias Baltic cod Gad c 1 Gadiformes β-parvalbumin 12 [101]
Gadus morhua Atlantic cod Gad m 1 Gadiformes β-parvalbumin 12 [102]

Atlantic cod Gad m 2 Gadiformes β-enolase 47.3 [90]
Atlantic cod Gad m 3 Gadiformes Aldolase A 40 [90]

Lates calcarifer Barramundi/Asian Seabass Lat c 1 Perciformes β-parvalbumin 11.5 [103]
Barramundi/Asian Seabass Lat c 6 Perciformes Collagen alpha 130–140 [104]

Lepidorhombus
whiffiagonis Megrim, whiff, turbot fish Lep w 1 Pleuronectiformes β-parvalbumin 11.5 [105]

Oncorhynchus mykiss Rainbow trout Onc m 1 Salmoniformes β-parvalbumin 12 [106]
Rastrelliger kanagurta Indian mackerel Ras k 1 Scombriformes β-parvalbumin 11.3 [107]

Salmo salar Atlantic somon Sal s 1 Salmoniformes β-parvalbumin 12 [108]
Atlantic somon Sal s 2 Salmoniformes β-enolase 47.3 [90]
Atlantic somon Sal s 3 Salmoniformes Aldolase A 40 [90]

Sardinops sagax Pacific pilchard Sar sa 1 Clupeiformes β-parvalbumin 12 [71]
Sebastes marinus Ocean perch, redfish Seb m 1 Scorpaeniformes β-parvalbumin 11 [109]

Thunnus albacares Yellowfin tuna Thu a 1 Perciformes β-parvalbumin 11 [110]
Yellowfin tuna Thu a 2 Perciformes β-enolase 50 [90]
Yellowfin tuna Thu a 3 Perciformes Aldolase A 40 [90]

Xiphias gladius Swordfish Xip g 1 Perciformes β-parvalbumin 11.5 [105]
Oreochromis
mossambicus Mozambique tilapia Ore m 4 Perciformes Tropomyosin 33 [95]

Oncorhynchus keta Chum salmon Onc k 5 Salmoniformes Vitellogenin 18 [111]

* Molecular weight.

4.5. Cross-Reactivity

Clinical cross-reactivity has been shown among the fishes even from taxonomically
distinct families. This event has been explained by IgE reactivity to parvalbumin, the major
fish allergen, which is responsible for the clinical manifestations in 90% of the patients [78].
Van Do et al. investigated 10 patients by using SPT, sIgE, and immunoblotting, and reported
that cod (Gad c 1), pollack (The c 1), salmon (Sal s 1), wolfish, and herring were the most
cross-reacting allergens, while mackerel, tuna, halibut, and flounder were found as the

www.allergenonline.org
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least allergenic [110]. In Australia, a study among children, with confirmed fish allergy
demonstrated different sensitisation among 12 different species with catfish being the most
allergenic fish when combining IgE reactivity to several major allergens [112].

On the other side, selective allergy to one type of fish species have also been demon-
strated in salmonids where patients had allergic signs and symptoms following trout or
salmon consumption, but not reactive to cod, herring, carp, redfish [113,114]. In Italy,
monosensitisation to tropical sole was reported in a patient who did not react to cod,
salmon, lemon sole, tuna, and swordfish [115]. Although eliminating all the fish species
due to cross-reactivity in patients with fish allergy in previous years is common, these
findings suggest that some patients can consume some fish species. However, it would
be appropriate to confirm tolerance to safe alternatives by food challenge tests before
introducing them into patients’ diets.

For the fish allergic patients, the possibility of cross-reactivity to other fish species is
about 50%, which is lower than the cross-reactivity between shellfish species reported as
75% [116,117]. Currently, cross-reactivity between fish and shellfish has been shown in a
few studies [118,119]. Moreover, cross-reaction between frog and fish beta parvalbumin
has been described in a study, including 15 patients [120]. Cross-reactivity between fish and
other vertebrate meats has been reported, e.g., between fish and chicken meat involving
parvalbumin, enolase, and aldolases, named “fish-chicken syndrome” [121]. A study
among 66 fish allergic individuals demonstrated SPT reactivity in 60% to crocodile meat,
with cross-reactive parvalbumin demonstrated to be the major allergen [122].

Finally, fish tropomyosin’s cross-reactivity with shellfish and clam was investigated
with a nonthermal extraction technique [123]. Although a high sequence similarity was
demonstrated, fish tropomyosin did not show cross-reactivity with shrimp and clam
tropomyosin. In another study of the same research group, B cell epitopes from shrimp
were reported to have a high cross-reactivity with clam tropomyosin (>80%) and low
cross-reactivity with fish tropomyosin (<20%) [124]. These two studies emphasise the need
for further investigations on this subject.

4.6. Food Processing

Food processing may alter the allergenicity of fish species. For example, the palvalbu-
min allergenicity is low in canned fish and can be tolerated by some patients who cannot
consume fish in fresh form (Table 2). On the other hand, heating is shown to increase the
allergenicity of fish, as is the case for peanut allergens. Heat resistance is considered lower
in enolase and aldolases compared to parvalbumin [90]. Furthermore, the detectability
of fish allergens in processed food might be altered, as demonstrated by a recent study.
Ruthers et al. compared three commercial ELISA tests for fish allergens and demonstrated
that only 26–61% of fish extracts of the 57 fish species were detected, while none of the nine
cartilaginous fish were detected [125].

Table 2. Food processing effects in parvalbumin content (ELISA) modified from the article of
Kuehn et al. [126].

Type of Fish Presentation Parvalbumin Content (mg/g)

Cod Raw 1.5–2.5
Smoked 1.0–1.3
Cooked 1.3–1.9

Salmon Raw 1.9–2.5
Smoked 0.7–1.0
Cooked 1.5–1.9

Carp Raw 2.5–5.0
Cooked 2.1–4.0

Tuna (white muscle) Raw 0.01–0.05
Cooked 0.01–0.03

Tuna (dark muscle) Raw ND
Tuna Canned ND

ND: non detectable.
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5. Diagnosis

Confirming IgE-mediated fish allergy diagnosis is essential in terms of avoiding
both “over”- and “under”-diagnosis. In clinical practice, the diagnosis is commonly
based on a convincing history and demonstrating the presence of sensitisation via in vivo
(SPT) or in vitro (sIgE) tests [126]. However, specific IgE positivity may merely reflect
sensitisation, but not necessarily clinical reactivity. In other words, some patients who
present sensitisation to the fish allergen, particularly with low levels of sIgE, can tolerate
ingestion of certain fish species. Therefore, oral food challenges (OFC) remain the gold
standard test for food allergy diagnosis.

5.1. Clinical History

A detailed clinical history is the mainstay of the diagnosis. Revealing a temporal
association between fish consumption and allergic clinical manifestations will point out
food allergy as the source of the issue. More information including signs, symptoms, and
severity along with the type of the suspected fish, provoking quantity, the time interval
between ingestion and onset of clinical manifestations, triggering factors (e.g., exercise,
illness, drugs), having any previous reaction with the same or different kind of fish is
queried during the assessment. Testing for the fish, which is currently tolerated, is not
required. Conditions such as scombroid poisoning, allergy to fish parasite Anisakis, and
allergy to additives in canned fish should be considered to avoid misinterpreting fish
allergy. Following the medical history, evaluation of SPTs, sIgEs, and performing OFCs are
recommended before establishing allergy diagnosis.

5.2. SPTs

Since the first description by Lewis and Grant in 1924 [127], SPT has been commonly
used to diagnose of IgE-mediated allergic diseases due to its properties as sensitive, easily
applicable, cost-effective, and giving rapid results. The immunologic mechanism involves
releasing histamine and other mediators from mast cells following cross-linking of specific
IgE with allergens applied to the skin [128]. The test is performed by applying a drop of
fish allergen solution on the patient’s upper back or forearm’s volar surface and pricking it
through a lancet or another commercial test device. Placing allergens 2 cm or more apart is
appropriate for preventing false-positive results. The back of the patients is more reactive
than the forearm, resulting in larger wheal sizes. Histamine (10 mg/mL) and normal saline
are used as positive and negative controls, respectively [129]. A positive reaction is defined
as the diameter of wheal size equal to or more than 3 mm with a negative control read after
15–20 min.

SPTs are not recommended in patients with severe dermographism, uncontrolled
atopic dermatitis, or asthma, and in patients who use drugs that may interfere with skin
reactivity (e.g., antihistamines, tricyclic antidepressants) [130]. The tests can be performed
using commercial fish extracts or prick-by-prick tests with fresh food for the fish aller-
gens that are not available in the market due to the number of fish species. Although it
is considered a safe procedure, several anaphylactic reactions following SPTs with fish
allergens have been reported [131,132]. A 4-year old girl without any history of a systemic
reaction has been reported to experience anaphylaxis during the prick-to-prick tests with
eight fish species [133]. Therefore, well-trained personnel should perform the tests in an
adequate-equipped setting to treat potential severe reactions.

Given that some of the patients may be sensitised to one or a few fishes, testing with
multiple fish species may help find safe alternative fishes and manage treatment plans.
Many factors such as technique, the skill of the testing staff, the test instrument, potency,
and stability of test reagents, preservatives in the extract may affect the results of SPTs.
Ruethers et al. investigated 26 commercial fish extracts from five different companies,
strikingly finding more than 10-fold variation in protein content, allergen concentration,
and IgE reactivity using immunoblotting and mass spectrometry assays [134]. Using recom-
binant proteins that can be standardised in their quantity and quality may be a potential
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option to improve the process. However, excluding other potentially essential allergens
from natural extracts is a handicap of this approach [135]. Van do et al. investigated the
reactivity of SPT of natural and recombinant parvalbumins from cod, pollock, and salmon.
However, the results yielded inadequate responses with recombinant versions, presumably
stem from the specific conformational binding of high-affinity IgE binding motifs [110].
Although SPTs have high sensitivity and negative predictive value (NPV), they are not
specific, and positive predictive value (PPV) is rarely higher than 50% [136].

Moreover, the canning process may alter the allergenicity of protein fractions and
lower IgE specific binding to the fish extracts in canned form compared to raw and cooked
extracts was shown by immunoblot analyses. In a group of children with fish allergy, 20%
of the children allergic to salmon or tuna could tolerate the fish in a canned form, which
consumption was associated with a decrease in SPT wheal sizes, addressing that ingestion
of canned fish may have led to an induction of tolerance in these children [137]. Collagen
allergy is also another critical issue in the diagnosis of fish allergy. As collagen is water-
soluble when heated, Chikazawa et al. suggested performing prick-by-prick tests with
heated fish following a negative test with raw fish to overcome the obstacle of overlooking
allergy to collagen [138]. Subsequent studies by Kalic et al. demonstrated that collagen is
only affectively extracted at very acidic conditions [85].

5.3. sIgEs

Specific IgEs can be measured with different diagnostic systems, whose results are
not interchangeable [139]. Currently, the ImmunoCAP (Phadia/Thermo Fisher Scientific,
Uppsala, Sweden) is more frequently used, with 28 fish extracts available for measuring fish
allergens. For predicting clinical reactivity, cut-off points of specific IgE are determined for
some foods, e.g., milk, egg, peanut, tree nuts in different paediatric populations [140–142].
For fish allergy, specifically for cod allergy, Sampson et al. found that a serum-specific
IgE level of 20 kU/L can predict a positive reaction with 95% certainty in children [143].
However, it is questionable whether the levels can be extrapolated to other fish species
allergy diagnosis and other populations. Notably, very low food sIgE levels may be associ-
ated with positive reactions in 10–25% of patients [144]. Beale et al. reported anaphylactic
reactions to pilchard and anchovy in patients with IgE levels as low as 1 kU/L [71]. A ret-
rospective chart review of adults and children with seafood allergy who underwent open
OFCs between 2008 through 2019 in the US revealed a significant difference between
fish sIgE values for negative (<0.34 kUA/L) and equivocal (<0.34 kUA/L) OFCs versus
positive (1.63 kUA/L) OFCs (p = 0.023) but not for shellfish (p = 0.272) [145]. Logistic
regression analysis determined a cut-off specific IgE level of 1.99 kUA/L with an 85%
negative challenge rate, and the NPV was 82.35%. In a North European study, 35 patients
with fish allergy, aged 5–19, were evaluated by DBPCFCs. Among the 24 clinically reactive
participants, cod specific IgE was above 8.2 kU/L in 19 patients, and salmon sIgE was
above 5.0 kU/L in 20 patients [146]. The authors suggested that these cut-off levels might
help reduce the number of food challenge tests.

5.4. OFCs

Oral food challenges are still the most accurate way of detecting clinical allergy.
However, these tests are time-consuming, labour-intensive, and expensive.

The tests can be performed in three forms:

• Open OFC: the food is administered in its daily-consumed form.
• Single-blind placebo-controlled food challenge (SBPCFC): the patient is blinded to the

tested food.
• DBPCFC: both patient and observing heath care staff are blinded to the tested food.
• In allergy practice, open food challenges are usually preferred, particularly in patients

with clear history. However, awareness of the tested food by both the patient and
the physician may bias false-positive results, particularly in patients with subjective
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symptoms such as abdominal pain. In these patients, DBPCFCs help confirm or rule out
the disease. An algorithm for the diagnosis of fish allergy is indicated in Figure 2 [147].

Medicina 2021, 57, x FOR PEER REVIEW  13 of 24 
 

 

 
Figure 2. Algorithm modified from the article of Niggemann et al. for the diagnosis of IgE medi-
ated fish allergy in children [147] (DBPCFC: double-blind placebo-controlled food challenge test). 

5.5. Component Resolved Diagnosis (CRD) 
The low specificity of SPT and specific IgE levels and OFC safety concerns have led 

researchers to develop a new diagnostic test to overcome these methods’ drawbacks. CRD 
measures IgE antibodies to individual allergen components and gives more information 
on cross-reactivity and risk for severe reactions. Recent studies found Ara h 2 and Cor a 
14 as biomarkers for severe peanut and hazelnut reactions, respectively [142,156]. The 
clinical utility of CRD has not been fully demonstrated in fish allergy yet.  

Fish parvalbumins rGad c 1 and rCyp c 1 can be measured by the ImmunoCAP sys-
tem (Phadia/Thermo Fisher Scientific, Uppsala, Sweden). Another technique Microarray-
based ImmunoCAP ISAC system (Immuno-Solid Phase Allergen Chip; Phadia/Thermo 
Fisher Scientific, Uppsala, Sweden), can detect IgE reactivity to 112 inhalation and com-
mon food allergens that includes cod (rGad c 1) allergens [135]. Although the Im-
munoCAP and ISAC assays’ outcomes are comparable, the sensitivity of ImmunoCAP is 
higher than ISAC. On the downside, it requires a larger amount of sera because it analyses 
each allergen component individually [157]. In a retrospective study, baseline SPT results, 
sIgE and rGad c 1 levels of 81 patients with fish allergy were compared to 60 patients who 
acquired tolerance to at least one fish species [158]. The authors found that the decrease 
in the mean SPT wheal size and specific IgE to rGad c 1 for salmon and hake can be useful 
markers to evaluate the development of tolerance in fish allergy.  

Figure 2. Algorithm modified from the article of Niggemann et al. for the diagnosis of IgE mediated
fish allergy in children [147] (DBPCFC: double-blind placebo-controlled food challenge test).

In food challenges, suspected fish is given in gradually increasing doses until an age-
appropriate serving is reached. A challenge can be ceased at the first clinical manifestations
of an allergic reaction, preventing more severe reactions, as well as determining the eliciting
threshold dose. In general, 5 mg is the proposed starting dose for fish; however, the
dose will be less in patients with a severe reaction history, according to the physician’s
decision [148]. Some studies suggested 3 mcg of food protein as the first dose to determine
no observed adverse effect [149,150]. Ballmer-Weber et al. evaluated patients with food
allergies who underwent DBPCFCs for identifying the threshold dose distributions in the
European population. For fish, estimated doses eliciting reactions in 10% of the allergic
population (ED10) were 27.3 mg of protein, higher than a hazelnut, peanut, and celery
ranging from 1.6 to 10.1 mg of protein [151]. In SBPCFCs and DBPCFCs, fish is blinded by
masking it with other foods tolerated by the patient. The active and placebo foods will be
served on separate days or, if it is preferred to be given on the same day, there should be
2–3 h intervals between the tests [152,153]. Open OFCs may also be performed in situations
where masking is tricky due to the high total cumulative dose of fish. For the Europrevall
study conducted in 12 different allergy clinics across Europe, DBPCFCs were standardised
for an extensive evaluation of food allergy. For fish, a maximum of 1 g of protein, which
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is equal to 5 g cooked fish, was blinded in a chocolate matrix, and the doses were given
as 3 mcg, 60 mcg, 600 mcg, 12 mg, 120 mg, and 1 g fish protein [154]. If there was no
reaction, open challenges with cooked Atlantic cod 2, 6, and 12 g protein in three doses
were performed.

Additionally, Vassilopoulou et al. developed and validated a recipe including chicken
breast, potato powder, salt, pepper, spearmint, dill, and vinegar for blinding fish in DBPCFC
tests [155]. The recipe was also found acceptable by the patients regarding appearance,
blinding, taste, and odour. Although DBPCFC tests are the gold standard tests for the
diagnosis, anaphylaxis may occur even with low SPT and sIgE levels. Hence, OFC’s
decision is challenging for physicians, and benefits and costs should be considered.

5.5. Component Resolved Diagnosis (CRD)

The low specificity of SPT and specific IgE levels and OFC safety concerns have led
researchers to develop a new diagnostic test to overcome these methods’ drawbacks. CRD
measures IgE antibodies to individual allergen components and gives more information on
cross-reactivity and risk for severe reactions. Recent studies found Ara h 2 and Cor a 14 as
biomarkers for severe peanut and hazelnut reactions, respectively [142,156]. The clinical
utility of CRD has not been fully demonstrated in fish allergy yet.

Fish parvalbumins rGad c 1 and rCyp c 1 can be measured by the ImmunoCAP system
(Phadia/Thermo Fisher Scientific, Uppsala, Sweden). Another technique Microarray-based
ImmunoCAP ISAC system (Immuno-Solid Phase Allergen Chip; Phadia/Thermo Fisher
Scientific, Uppsala, Sweden), can detect IgE reactivity to 112 inhalation and common food
allergens that includes cod (rGad c 1) allergens [135]. Although the ImmunoCAP and
ISAC assays’ outcomes are comparable, the sensitivity of ImmunoCAP is higher than ISAC.
On the downside, it requires a larger amount of sera because it analyses each allergen
component individually [157]. In a retrospective study, baseline SPT results, sIgE and
rGad c 1 levels of 81 patients with fish allergy were compared to 60 patients who acquired
tolerance to at least one fish species [158]. The authors found that the decrease in the mean
SPT wheal size and specific IgE to rGad c 1 for salmon and hake can be useful markers to
evaluate the development of tolerance in fish allergy.

Recent studies investigated recombinant fish parvalbumin for clinical cross-reactivity
in children with fish allergy [90,159]. On the other hand, some patients may present with
monosensitisation to some fish species. Kelso et al. reported allergy only to swordfish
while the tests to other nine commercial fish extracts were negative [160]. Another study
found a correlation with fish enolases and aldolases specific IgE and clinical sensitivity in
three cod sensitised patients who were not allergic to parvalbumin [161]. A testing panel
including minor fish allergens such as enolases, aldolases, and perhaps collagen could be
of added value for the component-resolved fish allergy diagnosis. Overall, while CRD
provides more information and improves the diagnostic tests, it does not eliminate the
need for OFC in many patients.

5.6. Basophil Activation Test (BAT)

BAT has been investigated as a novel tool in food allergies to provide a biomarker for
predicting clinical reactivity, reaction severity, and to reduce the need for OFCs [162]. The
BAT utilises flow cytometry to determine the expression of activation markers (e.g., CD 63,
SD203c) on the surface of basophils following the cross-linking of high-affinity IgE receptor
(FcεRI)-bound IgE antibodies that arise from allergen or anti-IgE stimulation [163]. In 2015,
67 patients aged 12–45 years old underwent DBPCFC tests with peanut, hazelnut tree nut,
fish, shrimp, and sesame to determine whether SPT, sIgE, allergen-specific IgG4, component
testing, and basophil activation are associated with DBPCFCs results and the severity of
allergic reactions during challenge [164]. The results revealed that BAT could discriminate
reactive from nonreactive patients, and it was positively correlated with DBPCFC severity
scores. Based on the receiver operating characteristic (ROC) curve analysis, basophil reactivity
had the largest area under the curve (AUC) at 0.904, and sIgE had an AUC of 0.870. Dose-
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dependent outcomes with BAT were addressed, as stimulation with 200 ng/mL allergen
showed the highest overall accuracy and best diagnostic performance [164]. A recent study
investigated 51 Japanese children with fish allergy who underwent BAT using in-house
fish extracts of 15 different kinds of fish species [165]. The AUC was high (0.72–0.88) for
the five most commonly consumed fish species (salmon, mackerel, tuna, red sea bream,
and yellowtail), and the diagnostic accuracy was between 0.74 and 0.86. The diagnostic
performance of BAT was found similar to sIgE. However, the authors emphasised BAT’s
usefulness, particularly for fish species with no available sIgE test [165].

Although there are promising results regarding its value in clinical reactivity and
severity of allergic reactions, BAT is commonly used for research purposes and not yet
implemented in daily practice, most probably due to technical difficulties and high cost.

6. Management

Today, the only widely accessible and clinically proven approach to fish allergy is
food avoidance and rescue medication (e.g., adrenaline, corticosteroids, antihistamines)
in accidental exposure [126]. Food avoidance poses many problems and is not easily
maintained. Since the primary fish allergen, parvalbumin, is highly conserved between
fish species, cross-reactivity is expected, so it is often insufficient to avoid only the original
offending fish [90,166–168]. Given this, mono- and oligo-sensitisation to one or few fish
species have been documented in adults and children [161,169–171], and often ingestion of
fish with a higher content of red meat, such as tuna, are tolerated even in polysensitised
patients [110,172], probably due to the lower concentration of parvalbumin found in
red muscle [80]. Different processing methods have different effects on allergenicity:
canning, marinating, or fermenting may result in tolerance of previously nontolerated raw
fish [137,173,174]. On the other hand, the heating process is not enough to destroy the
fish’s main allergenic proteins and will likely trigger sensitised patient’s reactions [71]. The
extent of fish elimination should thus be ideally tailored per patient.

Cross-reactions are not relegated to other fishes: cross-reactivity with shellfish is rare
but has been reported for fishes like tilapia [119]; cross-reactivity has also been documented
for chicken [121,175] and crocodile meat [176]. Hidden fish allergens in food represent
another sizable threat to fish-allergic patients. In a study by Anibarro et al., 35% of fish
allergic patients reacted to fish proteins hidden in other foods [177]. In addition not all
allergens from different fish species are detected by commercial tests [125].

Food is also not the only source of fish allergens, hidden or not, and fish elimination
diets are not effective when dealing with these sources: aerosolisation of fish proteins when
cooking, as mentioned above, is a common source of highly allergenic parvalbumin [70,72,73].
A study performed in Norwegian homes showed fish allergens in 46% of mattresses in
patients’ bedrooms [178]. Additionally, to the difficulty and fallibility of even a correctly
performed fish elimination diet, the fact itself of eliminating food from the diet has social
and psychological implications: feeling different because of the diet, worrying about foods,
increased anxiety and stress in both the children and their families, increased feeling of
responsibility, adverse effect on social activities. Children with food allergies experience
food-related bullying because of their diet [179–182]. Considering this, it is easy to understand
why the attention has shifted towards the development of specific immunotherapy: the
first documented trial of fish immunotherapy dates back to 1930, with Freeman’s “Rush
inoculation” [183]. Multiple desensitisation approaches have been tried over the years. In
their most recent endeavours, Patriarca et al. [184,185] attempted oral desensitisation with
boiled cod. However, several allergic reactions during OIT and the following observation
period were documented both in adults and children, and they still did not reach a tolerated
dose comparable to a typical fish portion. Recently, similar approaches were performed
by D’Amelio in 2017 and Martore-Calatayud in 2019 by using hake instead in paediatric
populations, with promising results [186,187].

The deepening of molecular knowledge about the fish allergen parvalbumin has
allowed the development of hypoallergenic recombinant parvalbumin with preserved
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immunogenicity in recent years. Allergenicity is determined by conformational epitopes
of parvalbumin [188], meaning that conformational changes can create proteins deprived
of IgE-binding epitopes but can still determine an IgG response. The previous has been
demonstrated with carp parvalbumin [72,189], and it represents a promising route for the
development of fish allergy vaccines [99] and subcutaneous specific immunotherapy. The
first-in-man trial has been performed in 2013 in Denmark, and it was followed in 2015 by a
phase 2b clinical trial in six countries [190]. Recently, passive immunisation’s effectiveness
via blocking antibodies created with hypoallergenic recombinant parvalbumin has been
trialled in murine models of fish allergy [191].

7. Conclusions

Fish allergy in children is a growing health concern, and the prevalence has been
reported between 0% and 7% worldwide. The reactions can occur after ingestion, skin
contact, or inhalation of the antigen and range from mild symptoms to life-threatening
anaphylaxis [192]. Although a limited number of species have been analysed, parvalbumin,
aldolase A, beta enolase, tropomyosin, collagen, vitellogenin have been identified as fish
allergens. Parvalbumin, the major allergen, is responsible for the allergic reactions in the
vast majority of the patients. Skin prick tests and specific IgE are most commonly used
tests. However, DBPCFC tests remain the gold standard tests for the diagnosis of fish
allergy. Recent studies investigated CRD and BAT as a novel tool for predicting clinical
reactivity, reducing the need for OFCs, and yielding favourable outcomes. Currently, the
use of rescue medication (e.g., adrenaline, corticosteroids, antihistamines) in accidental
exposures is the only clinically proven and widely accessible approach to fish allergy. New
promising approaches via the modulation of the pathological immune response in fish
allergy are under investigation and may lead to novel therapeutic options in the future.
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