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Abstract: The main advantages of optical retinal imaging may allow researchers to achieve deeper
analysis of retinal ganglion cells (GC) in vivo using optical coherence tomography (OCT). Using this
device to elucidate the impact of Alzheimer’s disease (AD) on retinal health with the aim to identify
a new AD biomarker, a large amount of studies has analyzed GC in different stages of the disease.
Our review highlights recent knowledge into measuring retinal morphology in AD making distinctive
between whether those studies included patients with clinical dementia stage or also mild cognitive
impairment (MCI), which selection criteria were applied to diagnosed patients included, and which
device of OCT was employed. Despite several differences, previous works found a significant
thinning of GC layer in patients with AD and MCI. In the long term, an important future direction is
to achieve a specific ocular biomarker with enough sensitivity to reveal preclinical AD disorder and
to monitor progression.

Keywords: ganglion cells; optical coherence tomography; Alzheimer’s disease; mild
cognitive impairment

1. Introduction

Optical coherence tomography (OCT) is the most widely used imaging device in ophthalmic
clinical practice [1]. This noninvasive, fast, and inexpensive technology employs retroreflected light
to achieved cross-sectional structure images of the retina and the anterior eye chamber with high
resolution. OCT imaging reveals individual neuronal layers of the retina, including ganglion cell layer
(GCL) [2]. Initially, the main utility of GCL assessment was the diagnosis and treatment of ocular
diseases such as glaucoma [2,3]. There is growing evidence to incorporate OCT imaging into clinical
diagnosis managing neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s
disease, and multiple sclerosis [4–7]. The aim of this review is to analyze the use of ganglion cell layer
measurement in AD.

AD is a the most prevalent neurodegenerative disorder and the leading cause of dementia
in the elderly [8]. Definitive diagnosis of AD is given by pathological features like intracellular
neurofibrillary tangles of hyperphosphorylated tau protein (p-Tau) and extracellular beta amyloid (Aβ)
protein deposits throughout the brain [9,10]. These well-known neuropathological hallmarks of AD
initiated decades before it is clinically expressed, where there might be a window to treat AD [11,12].
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Current diagnostic modalities for AD biomarkers are restricted by high costs and limited availability
such as the use of magnetic resonance imaging (MRI) or positron emission tomography (PET), as well
as standardization problems and invasiveness of cerebrospinal fluid (CSF) biomarkers), or suboptimal
specificity and sensitivity (genetic markers, serum amyloid) [13–15]. These limitations are the leading
cause of the investigation of new AD biomarkers involving the evaluation of the eye.

It has long been demonstrated that patients with early AD suffer impairments in visual acuity [16],
contrast sensitivity [17], color perception [18], visual field [19], and motion perception [20]. Initially,
visual disorders in AD were thought to be exclusively due to parietal and primary visual cortex
pathology. However, increasing evidence showed that the anterior visual pathway degeneration also
plays a role in AD pathology. As previously stated, OCT is able to provide a morphological assessment
of the retinal layers and optic nerve structures, and several studies have been performed to assess
differences between AD and control patients. GCL reduction might be the most common finding in the
literature, although the assessment of this retinal layer is recently feasible.

2. Material and Methods

A systematic review was performed. The authors reviewed the literature using PubMed. The online
citation index service PubMed was searched using the keywords optical coherence tomography and
mild cognitive impairment or Alzheimer’s disease. Manuscripts including those keywords with
available OCT technology published in peer-reviewed publications were considered for this review.

We identified 24 eligible studies, involving 808 probable AD patients, all of which were
cross-sectional studies. Neither retrospective meta-analyses nor OCT angiography studies were
included in this review. In original research articles, the revisions considered the structures of the
retina investigated, the significance of the results, the use of AD biomarkers, which OCT device was
employed, the design of the study, demographics, groups sizes and number of eyes included, and the
characteristics of the different groups of the studies.

3. Results

OCT constitutes an important advancement and powerful tool to evaluate alterations of the optic
nerve and the retina and provides an opportunity for objective quantitative measurements and in vivo
real-time images of ocular structures related with neurological diseases. This review included 24 most
important AD and OCT studies that focused in retinal GCL in order to present clear results easy to
be understood. As it could be depicted in Table 1, most of these studies found a significant thinning
of the retinal nerve fiber layer (RNFL) and GCL between probable AD patients and healthy controls
(HC), using both Cirrus and Spectralis HD-OCT. Figure 1 illustrates the structure of the retina that is
analyzed with OCT. Different densities of nuclear layers due to neuron bodies are reflected in OCT
images and allows these devices to perform the layers’ segmentation.

Currently, two main OCT devices are used in the clinical practice and they performed the
retinal segmentation analysis differently, as it can be appreciated in Figure 2. Figure 2A represents
the OCT imaging with Cirrus spectral domain SD-OCT (Carl Zeiss Meditec, Dublin, CA, USA),
whereas Figure 2B shows the OCT imaging with Spectralis SD-OCT (Heidelberg Engineering,
Heidelberg, Germany). Cirrus SD-OCT segmented GCL including the inner plexiform layer (IPL)
whereas Spectralis accomplished retinal segmentation including GCL solely. Studies made using OCT
Cirrus refer to GCL as ganglion cell-inner plexiform layer (GCIPL) and those using Spectralis label it
as GCL. This fact elucidates why GCL and GCIPL thickness measurements should not be compared
between them. Along this text and in Table 1, GCIPL or GCL are differently used according to Cirrus
or Spectralis OCT, respectively. Figures 3 and 4 represent OCT images of a healthy control (HC) and
an AD patient, respectively, with Cirrus OCT assessment in the top of both figures and Spectralis
OCT assessment in the bottom. At the top of both figures, Cirrus OCT images showed segmentation
lines (“horizontal tomography”) and deviation maps. In Figure 3, no damage was demonstrated.
However, in Figure 4, three and two sectors of color map can be appreciated in right and left eye,
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respectively. Similarly, deviation and thickness maps are exhibited also damaged. Similarly, in the
bottom of both figures, Spectralis OCT exhibit a complete red circle for an HC and yellow-red colors
for an AD patient. Currently, this OCT device did not have a normative database to compare GCL
with normal population. For this reason, studies using Spectralis OCT must include HC. Nevertheless,
Spectralis OCT yields 64 values of GCL of the entire macula.

In recent years, increasing efforts have been made to discover new biomarkers with the aim to
improve AD diagnosis in early stages. Hinton et al. stated the feasible damage of the eye due to
AD and provided histopathological evidence of optic neuropathy and degeneration of retinal GCL
in AD subjects [21]. Some years later, postmortem studies showed that degeneration of the GCL
occurs preferentially in superior and inferior sectors, as well as in the central retina, particularly in
the temporal foveal region [22,23]. Lately, both Aβ and neurofibrillary tangles were detected in some
parts of the visual system in probable AD patients, including the retina [24,25]. Interestingly, in a
mouse model of AD, Aβ deposits were specifically in the GCL [26]. In assent with this finding,
Koronyo et al. demonstrated histopathologically that GCL damage due to AD might be related with
intracellular neurofibrillary tangles of p-Tau and extracellular Aβ protein deposits throughout the
retina and not related with other etiologies of dementia [27]. Extensive loss of ganglion cells and
their axons has been reported by histopathologic studies in eyes from probable AD patients and
AD animal models [28]. There might be two mechanisms which explain GCL damage. The first
proposed that cerebral pathologic features of AD may affect the visual pathway and cause retrograde
degeneration of the optic nerve [29], and subsequently damage of the GCL, because AD pathologic
features can be found in subcortical visual centers, including the lateral geniculate nucleus and
superior colliculus [30]. In agreement with this hypothesis, GC abnormalities also were associated with
non-AD dementias [31–33], strokes [34,35], and other neurodegenerative diseases including multiple
sclerosis [36–38], neuromyelitis optica [37], and cerebral atrophy [39]. Alternatively, it is also possible
that AD pathologic features occur simultaneously both in the brain and the retina, leading to thinning
of the retinal neuronal layers. Aβ pathologic characteristics, including Aβplaques and specific signs of
neuroinflammation, have been identified in ocular tissues of both probable AD patients [24,40] and
animal models of AD [27,41–45].

Several studies reported retinal and optic nerve changes in patients with AD using OCT imaging
in vivo, generating interest in the use of these parameters as biomarkers for early detection of AD [46–48].
Retinal changes may be an early event in the course of AD, and retinal OCT may provide insights for
assessing neurodegeneration in the brain [29]. As previously stated, OCT is a reliable noninvasive,
transpupillary technique that provides high-resolution cross-sectional images of RNFL and macular
volume [49–52]. RNFL thickness is believed to inform about axonal loss, whereas macular volume
reflects neuronal loss of GCL, since the neuronal bodies and dendrites are located in the GCL, mostly in
the macula [49].

Initially, evidence of total macular thickness decreased in patients with AD was demonstrated
with time domain OCT (TD-OCT) [53] and stratus OCT [49,54]. Subsequently, it was confirmed by
several independent groups using modern OCT devices, such as spectral-domain OCT [55–59].

Spectral-domain OCT (SD-OCT), a Fourier domain OCT technique, provided dramatically
increased scanning speed and higher axial resolution when compared to TD-OCT technology allowing
the study of GCL and analysis of the GCIPL layers [52,60]. The classical site of GCIPL measurement in
the studies is macula lutea, where GCL has more than one cell layer [53]. As a consequence of macular
segmentation program development, Marziani et al. reported significant reductions in combined
RNFL and GCL thickness (RNFL + GCL + IPL) in the macular region [60]. However, the authors were
not able to determinate which layer was most affected by AD due to poor segmentation OCT system.
Lately, a number of studies suggested including RNFL in the GCIPL analysis in the macular area
may influence the sensitivity for revealing GCL damage, so they measured GCIPL without including
the RNFL, and found significant GCIPL thinning in AD [52,61–69] and MCI patients compared to
HC [61,64].
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Table 1. Studies evaluating retinal biomarkers in Alzheimer’s disease using optical coherence tomography. Optical coherence tomography (OCT), ganglion cell layer
(GCL), Alzheimer’s disease (AD), mild cognitive impairment (MCI), subjective memory complaints (SMC), healthy controls (HC), normotensive glaucoma (NTG),
retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), ganglion cell inner plexiform layer (GCIPL), Bruch’s membrane opening-minimum rim width (BMO-MRW),
inner plexiform layer (IPL), outer nuclear layer (ONL), inner nuclear layer (INL), outer plexiform layer (OPL), lamina cribrosa (LC), magnetic resonance imaging
(MRI), positron emission tomography (PET), computed tomography (CT). Significant results are showed as (%, p).

Source OCT Exam:
Layers

Macular or GCL
Results

AD
Biomarkers OCT Platform Cross-Sectional Subjects Sample Size (Eyes)

Iseri et al. 2006 RNFL and macula Thinner
(23%, p < 0.001) No Zeiss Stratus Yes AD

HC

AD 28 eyes (n = 14)
HC 30 eyes (n = 15)

Age-matched

Moschos et al.
2012 RNFL and macula Thinner

(7%, p = 0.034) No Zeiss Stratus Yes AD
HC

AD (n = 30)
HCs (n = 30)

Age and sex matched

Marziani et al.
2013

RNFL + GCL
combined

Thinner
(12.8%, p = 0.008) No

RTVue-100 and
Heidelberg
Spectralis

Yes AD
HC

AD (n = 21)
HC (n = 21)

Age-matched

Garcia-Martin et al.
2014 RNFL and macula

Mild AD had a significant decrease in RNFL (9.24%,
p = 0.015), of some macular regions and in the total

macular volume (9.34%, p = 0.024).
No Topcon 3D

OCT-100 Yes Mild AD
HC

Mild AD (n = 20)
HC (n = 28)

Age-matched

Ascaso et al. 2014 RNFL and macula

RNFL was thinner in
-MCI vs. HC

(8.5%, p = 0.001)-AD vs. MCI
(24.8%, p = 0.001)

-AD vs. HC
(37.5%, p = 0.001)

Macular volume in mm3:
-HC had greater macular volume vs. AD

(12.4%, p = 0.001)

No Zeiss Stratus Yes
AD
MCI
HC

AD (n = 18)
MCI (n = 21)
HC (n = 41)

Eraslan et al. 2015 RNFL and GCL

-RNFL Thinner in AD and NTG vs. HC (8%, p = 0.004).
-GCL

(8.8%, p = 0.001)
-No difference between AD and NTG.

No RTVue-100 Yes
NTG
AD
HC

NTG (n = 18)
AD (n = 20)
HC (n = 20)

Bayhan et al. 2015 GCL and choroid
Reduced choroidal

(12.1%, p = 0.01) and macular GCL
(5.9%, p = 0.001) thicknesses in AD

CT or MRI Zeiss Stratus Yes AD
HC

AD (n = 31)
HC (n = 30)

Age matched

Cheung et al. 2015 RNFL and
GCIPL

- AD had GCIPL thinning in all sectors (AVG 5.4%, p =
0.039) and RNFL in Superior quadrant vs. HC (6.5%, p

= 0.001)
-GCIPL reduction in MCI (5.1%, p = 0.009)

CT or MRI Zeiss Cirrus Yes
MCI
AD
HC

AD (n = 100)
MCI (n = 41)
HC (n = 123)
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Table 1. Cont.

Source OCT Exam:
Layers

Macular or GCL
Results

AD
Biomarkers OCT Platform Cross-Sectional Subjects Sample Size (Eyes)

Pillai et al. 2016 RNFL, macula
GCL

No differences
(p = 0.35 and p = 0.17) MRI Zeiss Cirrus Yes

AD
MCI

No AD
Dementia
Parkinson

HC

AD (n = 21)
MCI (n = 21)

no AD dementia (n = 20)
PD (n = 20)
HC (n = 34)

Age-/sex-matched

Garcia Martin et al.
2016

RNFL, GCL, INL,
IPL, ONL, OPL

Thinner RNFL (5.6%, p = 0.004), GCL (2.8%, p = 0.04)
and IPL (2.3%, p = 0.018) No Heidelberg

Spectralis Yes AD
HC

AD (n = 150)
HC (n = 75)

Age-matched

Liu et al. 2016 GCIPL Thinner
(2.1%, p = 0.003) Yes. MRI Zeiss Cirrus Yes

MCI
AD
HC

MCI (n = 68)
AD (n = 47)
HC (n = 65)

Choi et al. 2016 RNFL andGCIPL -RNFL thinner in temporal sector (14.9%, p = 0.04).
-GCIPL thinner in inferior sector (14.5%, p = 0.004). Yes Zeiss cirrus Yes

MCI
AD
HC

AD (n = 42)
MCI (n = 26)
HC (n = 66)

Age-matched, age as a
covariate

Gimenéz Castejon
et al. 2016 Macula Macular thickness reduction in MCI (5.7%, p = 0.05) vs.

HC and in SMC vs. HC (4.9%, p = 0.05) No Zeiss cirrus Yes
SMC
MCI
HC

SMC n = 24
MCI n = 33
HC n = 25

Snyder et al. 2016 IPL Thicker
(5.8%, p = 0.029)

Yes (florbetapir
PET imaging)

Heidelberg
Spectralis Yes SMC

SMC (n = 63)
Age-matched, age as a

covariate

Kwon et al. 2017 RNFL and macula
RNFL average thinner in AD vs. MCI (7.8%, p = 0.011).
Macular thickness was thinner from HC to MCI and to

AD, but no significant.
Yes (MRI) Zeiss Cirrus Yes

Gender and
race

unknown

AD
(n = 15)

MCI (n = 15)
HC (n = 15)

Ferrari et al. 2017 RNFL and
GCIPL

Thinning
(6.4%, p = 0.023)

(15.9%, p = 0.009)
No Heidelberg

Spectralis Yes
MCI
AD
HC

AD (n = 39)
MCI (n = 27)
HC (n = 49)

Age-matched, age as a
covariate

Golzan et al. 2017 RNFL and GCL
GCL thinner

(5.2%, p = 0.02)
No RNFL differences

Yes (MRI,
florbetapir PET

imaging)

Heidelberg
Spectralis Yes AD

HC

AD n = 73
HC n = 28

Age-matched, age as a
covariate

Poroy et al. 2018 RNFL and macula
Foveal thickness and volume were higher in AD

(5.5%, p = 0.023). RNFL and other macular region not
different.

No Zeiss Stratus Yes AD
HC

AD (n = 21)
HC (n = 25)

Age-matched

den Haan et al.
2018 RNFL and macula No differences Yes (MRI, PET,

CSF)
Heidelberg
Spectralis Yes AD

HC
Early onset AD (n = 15)

HC (n = 15)
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Table 1. Cont.

Source OCT Exam:
Layers

Macular or GCL
Results

AD
Biomarkers OCT Platform Cross-Sectional Subjects Sample Size (Eyes)

Lad et al. 2018 RNFL, GCIP No differences No Heidelberg
Spectralis Yes

MCI
AD
HC

MCI (n = 15)
AD (n = 15)
HC (n = 18)

Uchida et al. 2018 ONL No differences Yes (MRI) Zeiss Cirrus Yes

AD
MCI

non-AD
Dementia

HC

AD (n = 24)
MCI (n = 22)

non-AD dementia (n = 20)
HC (n = 36)

Santos et al. 2018 RNFL, GCL, OPL,
ONL, IPL, INL

RNFL volume (p = 0.05), OPL temporal (p = 0.04), ONL
(p = 0.026) and IPL volume (p = 0.020) and inferior

thinner over a 27-month follow-up

Yes (florbetapir
PET imaging, head

CT)

Heidelberg
Spectralis No, 27 months

Preclinical
AD
HC

Preclinical AD (n = 56)
Age-matched

López de Eguileta
et al. 2019

RNFL, GCL,
BMO-MRW, IPL,

ONL, LC

RNFL (2.8%, p = 0.004),
GCL (8.7%, p = 0.006), IPL (5.2%, p = 0.011) & ONL

(7.9%, p = 0.010)
showed significant thinning in eyes of patients with

positive 11C-PiB PET/CT

Yes (11C-labeled
Pittsburgh

Compound-B PET
imaging, head CT)

Heidelberg
Spectralis Yes

MCI
AD
HC

MCI (n =51)
AD (n =12)
HC (n = 63)
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Figure 1. Schematic view of the retina. The upper layers are the innermost layers, in contact with
vitreous humor. The lower layers of the scheme are those that are in contact with the choroid. From the
innermost to the outermost, the layers of the retina are: retinal nerve fiber layer, ganglion cell layer,
inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, external limiting
membrane, and photoreceptor layer.
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Figure 2. Horizontal scans of Cirrus optical coherence tomography (OCT) (A) and Spectralis OCT 
(B). (A) Segmentation of ganglion cell layer (GCL) with Cirrus OCT includes GCL and inner 

Figure 2. Horizontal scans of Cirrus optical coherence tomography (OCT) (A) and Spectralis OCT (B).
(A) Segmentation of ganglion cell layer (GCL) with Cirrus OCT includes GCL and inner plexiform layer,
GCIPL, between purple and yellow lines. (B) Segmentation of GCL using Spectralis OCT includes GCL
in an exclusive manner, between blue and purple lines.
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Figure 4. OCT results of a 67 years-old male MCI patient. At left: images of the right eye (RE). At 
right: images of the left eye (LE). (A) Cirrus optical coherence tomography (OCT) results. Top middle 
(horizontal tomography): images of horizontal scans to confirm correct segmentation of ganglion 
cell-inner plexiform layer (GCIPL). Six sectors color values: sectors of GCIPL compared with 
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Figure 3. OCT results of a 67 years-old male healthy control. At left: images of the right eye. At right:
images of the left eye. (A) Cirrus optical coherence tomography (OCT) results. Top middle (horizontal
tomography): images of horizontal scans to confirm correct segmentation of ganglion cell-inner
plexiform layer (GCIPL). Green color values (in microns): sectors of GCIPL compared with normative
database. The thickness map shows the thickness in a color map (the caption of the colors is at right of
the maps), whereas the deviation map shows yellow or red color if a pixel of GCIPL is low of fifth or first
percentile, respectively. Middle columns showed the average and the minimum values (in microns) of
GCIPL of both eyes, colored in green if they are thicker than fifth percentile. (B) Spectralis OCT showed
a color map (the caption of the colors is at right of the maps) and values of thicknesses (in microns)
of GCL.
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Figure 4. OCT results of a 67 years-old male MCI patient. At left: images of the right eye (RE). At right:
images of the left eye (LE). (A) Cirrus optical coherence tomography (OCT) results. Top middle
(horizontal tomography): images of horizontal scans to confirm correct segmentation of ganglion
cell-inner plexiform layer (GCIPL). Six sectors color values: sectors of GCIPL compared with normative
database. Three and two sectors were thinner than fifth percentile in RE and LE, respectively.
The thickness map shows the thickness in a color map (the caption of the colors is at right of the map),
whereas the deviation map shows yellow or red color if a pixel of GCIPL is low of fifth or first percentile,
respectively. Middle columns showed the average and the minimum values of GCIPL of both eyes,
colored with yellow for the RE as they are thinner than fifth percentile. (B) Spectralis OCT showed a
color map (the caption of the colors is at right of the maps) and values of thicknesses (in microns) of
GCL. Comparing with Figure 3B, where a red ring could be appreciated, the RE of this patient is not
red colored and LE is little red colored.
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On the contrary, some in vivo studies displayed controversial GCL measurements using SD-OCT
reporting that RNFL and GCL thickness might not be unable to distinguish AD dementia from
MCI and normal controls in clinically well-characterized series [65,66]. The authors themselves
hypothesized that a larger series would be necessary to delineate significant differences between the
groups studied. In our opinion, their study has methodological limitations. Although PET imaging
was performed as an inclusion criterion for AD, neither the ligand used nor the imaging result are
detailed. Furthermore, patients with glaucoma were excluded, but the criteria for exclusion are not
clearly or correctly described.

Another controversial study is from Ferrari et al. [69]. They described significant group differences
regarding GCIPL, being reduced in moderate AD versus mild AD and versus MCI. However,
nonsignificant GCIPL thinning was detected in MCI compared with HC. One explanation may be that
they explored GCIPL in the peripapillary area, and this is not ideal site to detect early GCL loss due
to the poor representation of ganglion cells at this location. Macular GCIPL thinning may be a more
sensitive marker of earlier neurodegeneration in MCI and AD than evaluation of the RNFL.

Recently, our group have published an investigation about retinal damage in AD assessed by
Spectralis OCT, reporting promising results. The study included highly characterized patients with
detailed neurocognitive testing and positive to 11C-labeled Pittsburgh Compound-B with positron
emission tomography [64] analysis that could readily differentiate between participants with normal
cognition from dementia due to AD. AD and MCI patients were recruited and compared among them
and HC. The investigation reported a significant thinning of RNFL, GCL, IPL, and outer nuclear layer
(ONL). Interestingly, temporal sector of GCL showed the greatest area under the curve value.

Aforementioned studies have some design limitations. One significant gap could be that the
thinning of GCL might be due to other eye conditions such as glaucoma, arteritic or nonarteritic optic
neuropathy, or other neurological disease. For this reason, results of GCL thinning might be used to
understand the pathophysiology of AD, but they should be carefully interpreted. Future techniques
might provide more specific information about retinal ganglion cell degeneration in AD. Besides,
definition of MCI was used meeting research diagnostic criteria for probable AD MCI or with evidence
of the AD pathophysiological process (in most cases defined by a positive amyloid-PET) following the
recommendations of the National Institute on Aging-Alzheimer’s Association [70], but criteria should
be consistent. In addition, all studies screened the eyes with the OCT technology after pupil dilation,
except one [64], which might constitute a limitation. Finally, it is important to focus that his review
revealed that limited research had focused exclusively on screening the eyes of study subjects with and
with no cognitive decline using optical coherence tomography, neuropsychological tests, and in vivo
neuroimaging techniques. Besides, a few studies used MRI, PET, or AD biomarkers for the diagnosis
in the AD group.

4. Conclusions

The investigation of eye biomarkers in AD using OCT assessment remains an area of active research.
Reviewing literature about this subject, it is feasible to find a large amount of studies, and several
of them show significant damage of the GCL or GCIPL in probable AD patients, even during the
early stage of the disease and using different OCT devices such as Cirrus and Spectralis. We consider
these results might provide more detailed information about the physiopathology of AD and the
relevance of GCL in neurological diseases. In terms of diagnosis, current available techniques show
temporal region thinning of GCL, which might be the most reliable indicator of a possible MCI or
AD patient. It is necessary to be aware that this thinning could be consequence of other ocular or
neurological circumstance. However, today might be soon to consider optic nerve or retinal biomarkers
as reliable biomarkers of AD, as a limited number of studies have compared OCT retinal measures
with neuroimaging biomarkers and a very few longitudinal within-subject studies of retinal structural
changes in AD are published.
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