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Abstract: Background and objectives: Studies indicate that genetic and lifestyle factors influence optimal
bone development. Adaptations in bone mineral characteristics related to physical activity (PA)
are most often observed in pre- and peri-puberty. Longitudinal associations between bone mineral
accrual and objectively measured PA in puberty are poorly understood. The present study aims to
investigate whether pubertal PA at different intensities is related to bone mineral characteristics in
individuals at 18 years of age. Materials and Methods: Anthropometrics, pubertal stage, bone age
and PA by accelerometer were measured in 88 boys at the mean age of 12.1 (T1), 13.1 (T2), 14.0 (T3)
and 18.0 years (T4). Different bone mineral parameters were measured by dual-energy X-ray at T4.
Stepwise multiple regression analysis was performed to determine the effect of bone age, body mass
and PA characteristics on measured bone mineral parameters at 18 years of age. Results: Total PA in
puberty together with mean pubertal body mass predicted 35.5% of total body (TB) bone mineral
density (BMD), 43.0% of TB less head (LH) bone mineral content (BMC) and 48.1% of BMC/height in
individuals at 18 years of age. Vigorous PA and body mass in puberty predicted 43.2% of femoral
neck (FN) BMD; bone age at T1, vigorous PA and body mass in puberty predicted 47.3% of FN
BMC at 18 years of age. No associations between pubertal PA levels and lumbar spine bone mineral
characteristics in individuals at 18 years of age were found. Conclusions: Physical activity in puberty
has a significant impact on bone mineral characteristics in individuals at 18 years of age, with total PA
being a significant predictor of TB BMD and TB LH BMC as well as BMC/height, whereas vigorous
PA is a significant predictor of FN BMD and FN BMC.
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1. Introduction

Osteoporosis is a major public health issue [1]. The peak bone mass achieved in youth is the
strongest predictor of later life osteoporosis risk [2]. Genetic factors exert a strong influence on peak
bone mass, but gene expression depends on hormone levels, nutrition and physical activity (PA) [3,4].
The pubertal years are a critical period regarding the accumulation of bone mass [5]. Factors that alter
bone mass accumulation during this particular period of life may lead to suboptimal bone strength
and higher fracture risk in late adulthood [2].

There is clear evidence for the positive effect of PA and exercise on bone mass and density during
the late childhood and peri-pubertal years [6]. The positive relationships between PA and skeletal
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health can be explained by the bone’s mechanostat theory that describes the structural adaptation of
bone tissues to their mechanical environment [7]. Mechanical loading tilts the balance between bone
formation and resorption in favor of the former [8]. Physical activity has direct osteogenic effect via
impact loading and via strains exerted on bone by muscle contractions [9]. Additionally, PA has indirect
effect on bone by increasing muscle mass and hence the tensions generated on bone [9]. Adaptations in
bone structure and strength related to PA are most often observed in pre- and peri-pubertal groups [10].
Exercise-induced osteogenic effect tends to plateau at end of puberty, suggesting that bones might be
less sensitive to loading during this period of life [11].

It is known that PA decreases from childhood to adolescence [12,13] and tracks well throughout
maturation period [14,15]. Therefore, understanding of the associations between PA and skeletal health
in the critical period of maturation is of great importance.

Majority of studies investigating associations between objectively measured PA and bone mineral
characteristics in children and adolescents are cross-sectional [16–21]. Bone mineral characteristics
have been shown to be positively associated with PA intensities as well as total PA [18,20] and
negatively associated with sedentary behavior [16,21] in numerous cross-sectional studies. Our
previous cross-sectional studies have been in line with those findings, presenting associations between
vigorous PA and femoral neck (FN) bone mineral density (BMD) in 11–13-year-old males [17,19].

Findings from longitudinal studies support the importance of PA for bone mineral accrual [22–26].
However, regarding PA, most of these studies have concentrated on the earlier stages of puberty,
and the study periods have been relatively short. There are few longitudinal studies with longer
than 5-year study period examining the effect of PA parameters on bone mineral outcome [27–31].
However, studies that addressed the outcome of adulthood bone mineral characteristics have measured
PA indirectly via questionnaires [27,28] which can cause under- or over-reporting. A 12-year-long
study demonstrated that high level of childhood PA was positively associated with bone strength in
late adolescence even after drastic reduction in PA level during puberty [29]. Similarly, a negative
association of sedentary time with bone geometry have been reported in a 4-year longitudinal study in
adolescents [32].

Although some longitudinal studies examining the effect of PA on bone accrual in young subjects
have been published, further evidence is needed to understand the relationships between PA and bone
accrual in puberty and post-puberty. Therefore, the current study aimed to investigate whether PA at
different intensities during puberty is related to bone mineral characteristics in individuals at 18 years
of age.

2. Materials and Methods

2.1. Subjects and Study Design

The study conducted in 2017–2018 was a follow-up study of a longitudinal research project carried
out between 2009–2013 [33,34]. At baseline, 313 boys participated in the study. Baseline data collection
took place at 2010–2011. The invitation to participate in the current study was sent to all 217 subjects
who had participated in 12-month and 24-month follow-up in 2011–2013. Of these, 104 boys agreed
and participated in the follow-up. Valid accelerometer data were available in 88 subjects. Therefore,
the final number of participants included into the analysis was 88.

The study was conducted following the Declaration of Helsinki, and the protocol was approved
by the Research Ethics Committee of the University of Tartu (Estonia) (Consent No 260/T-19, 13 June
2016). All subjects and their parents were given a written description of the study and signed written
informed consent was obtained from all subjects prior entering the study. If a participant was younger
than 18.0 years, additional signed informed consent was retrieved from his parent.

Measurements of the current study included anthropometry, PA, sexual maturation and bone
mineral characteristics. Four measurement sessions were performed. Anthropometry and PA were
studied at baseline (T1), after one year (T2), after two years (T3) and after six years (T4). The mean age
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(years) of subjects at the study points were: 12.1 (range 10.6–13.4) at T1, 13.1 (11.6–14.0) at T2, 14.0
(12.5–15.3) at T3 and 18.0 (16.5–19.2) at T4 (Table 1). Sexual maturation and bone age assessment was
performed at T1, T2 and T3. Bone mineral characteristics were studied at T4.

Table 1. Clinical characteristics and physical activity data of subjects (n = 88) at different timepoint of
the study.

Variable
T1 T2 T3 T4Clinical Characteristics

Age (years) 12.1 (11.4–12.7) 13.1 (12.4–13.8) * 14.0 (13.4–14.7) *,† 18.0 (17.3–18.6)*,†,‡

Tanner 2.7 (2.04–3.37) 3.41 (2.64–4.18) * 4.13 (3.30–4.95) *,†

[No. at stages (I/II/III/IV/V)] 1/33/45/9/0 0/8/43/30/7 0/2/18/33/35
Height (m) 1.55 (1.46–1.63) 1.63 (1.54–1.72) * 1.69 (1.61–1.78) *,† 1.81 (1.75–1.88) *,†,‡

Body mass (kg) 47.15 (34.45–59.85) 54.00 (39.63–68.36) * 59.61 (45.90–73.32) *,† 73.86 (61.77–85.96) *,†,‡

BMI (kg/m2) 19.54 (15.58–23.49) 20.13 (16.05–24.21) * 20.60 (16.68–24.34) *,† 22.41 (19.14–25.69) *,†,‡

Bone age (years) 11.9 (10.73–13.0) 13.0 (11.8–14.2) * 13.9 (12.9–15.0) *,†

Physical activity
Sedentary time (min/day) 522.1 (485.9; 575.3) 539.1 (500.6; 585.7) * 562.1 (508.4; 627.5) *,† 623.5 (563.1; 680.1) †,‡

Light PA (min/day) 220.5 (194.3; 244.25) 197.0 (166.0; 221.7) * 170.5 (138.8; 196.56) *,† 151.3 (133.7; 184.1) *,†,‡

Moderate PA (min/day) 45.8 (25.7; 59.4) 42.8 (32.4; 51.2) * 34.1 (27.1; 45.8) *,† 27.0 (17.8; 33.4) ‡

Vigorous PA (min/day) 15.1 (9.1;24.2) 16.5 (11.3; 23.8) * 13.7 (9.6; 27.8) *,† 25.3 (14.8; 35.1) *,†,‡

MVPA (min/day) 64.1 (46.25; 84.4) 59.9 (47.0; 75.4) * 52.0 (38.1; 67.7) *,† 50.0 (35.3; 69.7) *,†,‡

Total PA (counts/min) 434 (359; 573) 428 (346; 526) * 350 (283; 497) *,† 380 (303; 498) *,†,‡

* Significantly different (p < 0.05) from T1; † significantly different (p < 0.05) from T2; ‡ significantly different (p < 0.05)
from T3. Median with 25th and 75th percentile for physical activity data and mean with +/− 1SD for anthropometry
data are shown. BMI, body mass index; PA, physical activity; MVPA, moderate-to-vigorous physical activity.

2.2. Anthropometry and Sexual Maturation

Body height (cm) was measured to the nearest 0.1 cm using Martin metal anthropometer according
to the standard technique (GPM anthropological instruments, Zurich, Switzerland). Body mass (kg)
was measured to the nearest 0.05 kg using medical electronic scale (A & D Instruments Ldt., Abington,
UK) with the subject wearing light clothes. Body mass index (BMI; kg/m2) was calculated as body
weight divided by square of body height.

Pubertal development was assessed by a self-report questionnaire of pubertal stages according to
Tanner [35], which has been previously validated [36]. The subjects were given photographs, figures,
and descriptions representing genitalia and pubic hair development stages and were asked to choose
the one that most closely matched their own development. In the case of discrepancies between the
two variables, Tanner stage of the subject was determined according to the self-estimation of genitalia
development [36]. Bone age was determined by the method of Greulich and Pyle using an X-ray of the
left hand and wrist [37].

2.3. Physical Activity

Physical activity was measured objectively at all four time-points of the study by ActiGraph
accelerometer (model GT1M (at T1, T2 and T3) and model GT3X (at T4), ActiGraph LLC, Pensacola, FL,
USA) designed to register vertical accelerations. All subjects were instructed to wear the accelerometer
on the right hip for seven consecutive days during the wake-up time. For the analyses of accelerometer
data, all night activity (24:00–6:00 h) and all sequences of 10 min or more of consecutive zero counts were
excluded from each individual’s recording. At least two weekdays and one weekend day of recording
with a minimum of 10 h/day was set as an inclusion criterion. The total PA was expressed as total
number of counts divided by the registered time (counts/min). Time spent in PA with different intensity
levels was calculated. The following cut-offs were used: sedentary time ≤ 100 counts/min, light PA
101–1999 counts/min, moderate PA 2000–3999 counts/min and vigorous PA ≥ 4000 counts/min [38].
The time spent in at least moderate intensity PA was calculated as moderate-to-vigorous PA (MVPA).
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2.4. Bone Mineral Density

Dual-energy X-ray absorptiometry (Hologic QDR Series, Waltham, MA, USA) was used to measure
BMD (g/cm2) and bone mineral content (BMC) (g) at the total body less head (TB LH), lumbar spine
(LS) and FN. Bone area (BA) was assessed for the calculation of bone mineral apparent density (BMAD)
(g/cm3), an estimate of volumetric bone density, according to the following formulas [39]:

TB BMAD = TB BMC/(TB BA2/height)

and
LS BMAD = LS BMC/BA1.5.

In addition, the expression of TB BMC for height (TB BMC/height) was calculated. The subjects
were scanned in supine position wearing minimal clothing and medium scan mode was used for
measurement. Coefficients of variation for bone mineral measurements were below 2%.

2.5. Statistical Analyses

Statistical analyses were performed using SPSS software version 20.0 for Windows (SPSS, Inc.,
Chicago, IL, USA). All variables were checked for normality of distribution before the analysis.
Normally distributed continuous variables are described as a mean and +/− 1 SD, not normally
distributed variables as a median and 25th and 75th percentile. Mean pubertal PA values including
total PA, sedentary time, light PA, moderate PA, vigorous PA and MVPA were calculated using
a formula:

Mean pubertal PA value = (PA value at T1 + PA value at T2 + PA value at T3)/3.

Using the same formula, mean pubertal body mass was calculated.
To determine the changes between different time-points of the study a paired t-test for normally

distributed data and Mann-Whitney test for not normally distributed data were used. Spearman partial
correlation analysis was performed to explore the relationships between mean pubertal PA variables
and bone mineral data at T4, after controlling for baseline bone age and mean pubertal body mass.

Series of univariate models were performed to select the covariates for multiple regression model.
Only variables that were statistically significant were included in the regression analyses. Stepwise
multiple regression analysis was performed to determine the independent effect of bone age at T1, mean
pubertal body mass and mean pubertal PA characteristics on measured bone mineral characteristics at
T4. Statistical significance was set at p < 0.05.

3. Results

The anthropometrical and PA data of the subjects are presented in Table 1. The mean age of the
boys at the beginning of the study was 12.1 years and the mean bone age 11.9 years. Regarding to
their pubertal development the subjects at T1 were mainly at stage II (n = 33) and stage III (n = 45)
by Tanner classification. Tanner stage, body mass, BMI and bone age increased significantly between
time-points (p < 0.001) (Table 1). Sedentary time increased significantly during the puberty (p < 0.001)
and time spent in light or moderate PA decreased (p < 0.001). Changes in vigorous PA were significant
(p < 0.001): it increased from T1 to T2 and from T3 to T4, but decreased from T2 to T3. Nevertheless,
when summed up, MVPA decreased at every time-point compared to the previous one (p < 0.001).
Similarly, significant decrease over time was found in total PA (p < 0.001) (Table 1).

Bone mineral characteristics studied at T4 are presented in Table 2. Partial correlation coefficients
between bone mineral characteristics in individuals at 18 years of age and mean pubertal PA levels
where baseline bone age and mean pubertal body mass were entered as covariates, are presented in
Table 3. Significant correlations between mean pubertal PA variables and FN BMD, TB LH BMC, FN
BMC and BMC/height were found. FN BMD was positively correlated to mean vigorous PA (r = 0.303;
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p <0.005), mean MVPA (r = 0.260; p < 0.05) and total PA (r = 0.286; p < 0.005). Total body less head
BMC was negatively correlated (p < 0.05) with mean sedentary time (r = −0.282) and positively with
moderate PA (r = 0.263), vigorous PA (r = 0.307), MVPA (r = 0.326) and total PA (r = 0.380) (Table 3).
Significant positive correlation was found between mean FN BMC and mean MVPA (r = 0.225; p < 0.05).
BMC/height correlated negatively with mean sedentary time (r = −0.266; p < 0.05) and positively with
total PA (r = 0.261; p < 0.05).

Table 2. Bone mineral characteristics (mean with +/− 1SD) of the subjects (n = 88) at T4.

Variable T4

TB BMD (g/cm2) 1.23 (1.14–1.32)
LS BMD (g/cm2) 1.06 (0.95–1.16
FN BMD (g/cm2) 1.01 (0.88–1.14)
TB LH BMC (g) 2323.04 (1965.03–2681.04)

LS BMC (g) 58.44 (49.10–67.78)
FN BMC (g) 5.09 (4.14–6.04)

TB BMAD (g/cm3) 0.095 (0.090–0.100)
LS BMAD (g/cm3) 0.143 (0.130–0.156)

BMC/height 1590.14 (1401.24–1779.05)

TB, total body; BMD, bone mineral density; LS, lumbar spine; FN, femoral neck; LH, less head; BMC, bone mineral
content; BMAD, bone mineral apparent density.

Table 3. Partial correlation coefficients of bone mineral characteristics at T4 with mean ((T1 + T2 +

T3)/3) physical activity variables.

TB
BMD

LS
BMD

FN
BMD

TB LH
BMC

LS
BMC

FN
BMC

TB
BMAD

LS
BMAD BMC/Height

(g/cm2) (g/cm2) (g/cm2) (g) (g) (g) (g/cm3) (g/cm3)
Sedentary time (min/day) −0.174 −0.072 −0.145 −0.282 * −0.215 −0.091 0.075 0.084 −0.266 *

Light PA (min/day) 0.071 0.001 0.086 0.200 0.061 0.032 0.013 −0.050 0.090
Moderate PA (min/day) 0.199 0.099 0.149 0.263 * 0.118 0.166 0.106 0.046 0.206
Vigorous PA (min/day) 0.145 −0.021 0.303 * 0.307 * 0.138 0.226 0.066 −0.161 0.153

MVPA (min/day) 0.196 0.043 0.260 * 0.326 * 0.147 0.225 * 0.098 −0.069 0.205
Total PA (counts/min) 0.221 0.051 0.286 * 0.380 * 0.203 0.216 0.054 −0.109 0.261 *

* Statistically significant, p < 0.05. The correlations have been adjusted for baseline bone age and mean ((T1 +
T 2+ T3)/3) body mass. TB, total body; BMD, bone mineral density; LS, lumbar spine; FN, femoral neck; LH,
less head; BMC, bone mineral content; BMAD, bone mineral apparent density; PA, physical activity; MVPA,
moderate-to-vigorous physical activity.

The results of stepwise multiple regression analysis, used to identify PA parameters in puberty
that contribute most to bone mineral characteristics at T4, are presented in Table 4. Mean total PA in
puberty together with mean body mass were associated with (p < 0.05) TB bone mineral characteristics
whereas mean vigorous PA had an effect on FN BMD and BMC (Table 4). This analysis did not find
any significant independent impact of PA on LS bone mineral characteristics.
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Table 4. The results of stepwise multiple regression analysis.

R2
× 100 F-Ratio Estimate SE p Value

TB BMD 35.5 21.489 <0.001
(Intercept) 0.963 0.046 <0.001

Body mass 0.004 0.001 <0.001
Total PA <0.001 <0.001 0.038
LS BMD 18.1 17.955 <0.001

(Intercept) 0.559 0.110 <0.001
Bone age 0.039 0.009 <0.001

FN BMD 43.2 29.682 <0.001
(Intercept) 0.636 0.051 <0.001

Body mass 0.006 0.001 <0.001
Vigorous PA 0.003 0.001 0.003
TB LH BMC 43.0 29.426 <0.001
(Intercept) 1073.037 171.580 <0.001

Body mass 15.981 2.260 <0.001
Total PA 0.887 0.239 <0.001
LS BMC 10.0 8.749 0.004

(Intercept) 28.322 10.308 0.007
Bone age 2.553 0.863 0.004

FN BMC 47.2 22.960 <0.001
(Intercept) 0.423 0.893 0.637

Body mass 0.032 0.008 <0.001
Bone age 0.229 0.098 0.022

Vigorous PA 0.013 0.007 0.045
TB BMAD - - - - -
LS BMAD 16.0 15.260 <0.001
(Intercept) 0.088 0.014 <0.001

Bone age 0.005 0.001 <0.001
BMC/height 48.1 36.093 <0.001
(Intercept) 934.242 88.275 <0.001

Body mass 9.699 1.163 <0.001
Total PA 0.306 0.123 0.015

Nine bone mineral characteristics entered as dependent variables and mean ((T1 + T2 + T3)/3) body mass, baseline
bone age and mean ((T1 + T2 + T3)/3) physical activity variables (sedentary time, light PA, moderate PA, vigorous
PA, MVPA and total PA) entered as independent variables. R2 × 100 value describes the percentage of variability of
a bone mineral characteristic physical activity parameter, bone age and/or body mass will explain. SE, standard
error; TB, total body; BMD, bone mineral density; LH, less head; PA, physical activity; LS, lumbar spine; FN, femoral
neck; BMC, bone mineral content; BMAD, bone mineral apparent density.

4. Discussion

The findings of the present study indicate that total PA in puberty is an important predictor of TB
BMD and TB LH BMC as well as BMC/height at 18 years of age, whereas vigorous PA in puberty is an
important predictor of FN BMD and FN BMC in individuals at 18 years of age.

Our results from the stepwise multiple regression showed that total PA in puberty together with
body mass in puberty is an important predictor of TB BMD at 18 years of age. This finding is supported
by the study by Ivuškāns et al., in which changes in total PA were positively related to TB BMD
increment in 11–13-year-old boys during a one-year study period [23]. Although Ivuškāns et al. argued
that the effect of total PA on TB BMD was probably mediated by vigorous PA [23], our results from this
study did not confirm this suggestion.

Similar to TB BMD, TB LH BMC in individuals at 18 years of age was also predicted by total
PA measured in puberty. A longitudinal study of the relationship of PA measured by questionnaire
to bone mineral accrual from adolescence to young adulthood in males and females aged 23 to 30
showed also a positive correlation between PA and TB BMC. Whereas active males had 8% greater TB
BMC than their inactive counterparts, suggesting that the skeletal benefits of PA in adolescence are
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maintained into young adulthood [30]. Our results confirm the positive influence of pubertal PA on
bone mass already at the age 18 years.

Results of our analyses showed that FN BMD in individuals at 18 years of age was positively
correlated with mean pubertal vigorous PA, MVPA and total PA values, and FN BMC to MVPA.
Vigorous PA in puberty was an important predictor of FN BMD and FN BMC also in stepwise regression
analysis. The effect of vigorous PA on FN bone mass and density during puberty has been previously
reported from cross-sectional [17,19,40] as well as from longitudinal [25,26] studies. The values of FN
BMD and FN BMC showed the strongest association with PA parameters in comparison of different
skeletal sites due to the highest responsiveness to physical stimulus [19]. There is evidence that effect
of a short-term high-impact exercise intervention on hip BMC in early childhood is sustained through
puberty [41]. Regarding habitual PA levels, children who accumulated the most MVPA in childhood
had greater bone mass and better geometry at FN at the age of 17 years when compared to less
active peers [29]. It has been found that active adolescent males had 9% higher adjusted FN BMC in
adulthood than inactive adolescents [30]; however, as questionnaires were used to assess PA in the
study, no conclusions about the individual effect of different intensity levels of PA, including vigorous
PA, could be made. Although not directly comparable with the findings from our study due to different
methods used to assess skeletal characteristics, Jackowsky et al. suggested that the skeletal benefits of
PA in adolescence in FN are evident and maintained into adulthood [28]. Our findings about positive
influence of vigorous PA on FN BMD and BMC support those from aforementioned studies.

Our results regarding PA levels in puberty were in line with those suggesting that PA decreases
from childhood to adolescence [12–14,29]. We found a significant decrease in total PA throughout the
study period accompanied with the increase in sedentary behavior and decrease in light and moderate
PA. Vigorous PA increased from T1 to T2 and from T3 to T4; nevertheless, this did not result in an
increase of MVPA. The mean duration of MVPA in our cohort reached the recommended amount
of at least 60 min of MVPA a day [42] only at T1 (64.1 min/day) and T2 (59.9 min/day), after that
MVPA decreased quite significantly being only 50.0 min/day at T4. The increase in sedentary behavior,
together with an overall increase in vigorous PA and a decrease in total PA seen in our subjects during
puberty, is in accordance with the conclusions drawn in the study of Metcalf et al. [14], suggesting that
the decline in PA can be imputed to falls in light-intensity activity, rather than higher intensity activity.

In contrast to significant associations between total PA and BMD or BMC of TB and FN, the bone
mineral characteristics describing more cortical bone, we found no significant impact of different
pubertal PA parameters on LS BMD or LS BMC, the bone mineral characteristics describing more
trabecular bone. One possible explanation for this might be that the patterns of increase in cortical and
trabecular bone densities during growth differ considerably. A quantitative computer tomography
study in healthy children suggested that weight-bearing activities are important determinants of
cortical bone density while trabecular bones are influenced more by hormonal and/or metabolic factors
associated with sexual development [43]. Similar differences between cortical and trabecular bone are
were also seen in a study by Wang et al. concluding that Tanner stage I is a more sensitive period for
PA in which to exert or exhibit its impact on appendicular skeletal development, whereas Tanner stage
II or thereafter may be the most important time for the development of the BMD of LS or other axial
skeletal sites [44]. Correspondingly, a study on relationships between PA and bone mass parameters in
boys during pubertal growth spurt did not find a significant effect of PA on LS BMD [26].

Differences in loading responses of cortical and trabecular bone have been previously described
in the findings of a study using the mouse tibial axial compression loading model to simultaneously
explore cortical and trabecular bone adaptation to mechanical loading [45]. Dose response to loading
magnitude within cortical bone was observed, with increasing load magnitude inducing increasing
levels of cortical bone adaptation, whereas a dose response to load magnitude was not clearly evident
within trabecular bone, with only the highest load being able to induce measurable adaptation to
loading [45]. Relative importance of loading magnitude in osteogenic adaptation of trabecular bone
seen in mouse model study is supported by the results in a large cohort of young men, revealing
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a positive association between high degree of mechanical loading, due to PA, and trabecular bone
microstructure whereas the duration of PA was mainly related to cortical bone parameters [46]. Those
lines of evidence about differences between bone mineral accrual in cortical and trabecular bone might
explain why no significant associations between different pubertal PA parameters and LS bone mineral
characteristics in individuals at 18 years of age were seen in our study.

A longitudinal study of long-term benefits of habitual PA during adolescence on adulthood LS bone
characteristics of male subjects did not find significant difference between those who were physically
active during adolescence compared to non-active counterparts. Subjects who were physically active
during adolescence were defined as those who belonged to the highest quartile categorized according
to the Z-scores of questionnaire-derived PA scores that were averaged over the entire adolescent
period [31]. Nevertheless, in females who were active in adolescence, 3% greater trabecular content
was seen compared to those who were inactive during adolescence [31]. These findings, together with
our results, suggest that bone structural adaptation through childhood PA in males can be maintained
into young adulthood, predominantly at the weight-bearing cortical bone sites.

One might argue that PA data from later stages of puberty and post-puberty should also have
been measured and included into analyses when identifying PA parameters influencing bone mineral
characteristics at 18 years of age. Nevertheless, a study on exercise-induced changes in bone mass and
geometry suggests that bones might be less sensitive to loading from Tanner stages III to IV in male
subjects [11]. Additionally, bone mineral characteristics at the age of 13 years might be influenced by
increased PA level in the preceding years, whereas 3 years of continued high- or low-level activity up
to age of 16 years did not yield any increased differences in bone size or bone mass [47]. We could
assume that concerning the influence on PA on bone mineral outcome in individuals at 18 years of age,
the PA from the age of 12 to 14 is of greater importance than PA in the following years.

The major strength of the current study is relatively long study period, including pubertal years
that are known to be critical in regard to bone mineral accrual. Additionally, measuring PA objectively
by using accelerometers with a short epoch adds strength to the study. The relatively small number of
subjects and the absence of data on calcium intake should be considered as limitations in our study.
In addition, our results are limited to males. A similar study in females would clarify whether the
significant relationships between PA and bone mineral parameters from this study is relevant also for
girls, as it is known that in pre- and early puberty boys’ bones are more sensitive to loading than girls’
bones, irrespective of muscle mass [18].

5. Conclusions

In conclusion, our study showed that PA in puberty has a significant impact on bone mineral
characteristics in individuals at 18 years of age, and that total PA is an important predictor of TB
BMD and TB LH BMC as well as BMC/height whereas the vigorous PA is a significant predictor of FN
BMD and FN BMC. Our findings add to increasing evidence of the benefits of PA on bone mineral
parameters, as they expand the knowledge of the particular role of pubertal years on that process.
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