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Abstract
Genome manipulation, the primary tool for assigning 
function to sequence, will be essential for understanding 
Plasmodium biology and malaria pathogenesis in 
molecular terms. The fi rst success in transfecting 
Plasmodium was reported almost ten years ago. Gene-
targeting studies have since fl ourished, as Plasmodium
is haploid and integrates DNA only by homologous 
recombination. These studies have shed new light on the 
function of many proteins, including vaccine candidates 
and drug resistance factors. However, many essential 
proteins, including those involved in parasite invasion 
of erythrocytes, cannot be characterized in the absence 
of conditional mutagenesis. Proteins also cannot be 
identifi ed on a functional basis as random DNA integration 
has not been achieved. We overview here the ways in 
which the Plasmodium genome can be manipulated. 
We also point to the tools that should be established if 
our goal is to address parasite infectivity in a systematic 
way and to conduct refi ned structure-function analysis of 
selected products. 

Introduction
It is safe to predict that the wealth of information revealed 
by the sequence of the Plasmodium falciparum genome 
will benefi t many areas of malaria research (Waters 
and Janse, 2004). New drug targets will be identifi ed 
by capitalizing on the comprehensive view of parasite 
metabolism, as was already done to demonstrate the anti-
malarial activities of fosmidomycin and triclosan (Jomaa 
et al., 1999; Surolia and Surolia, 2001). Another much 
anticipated impact of the genome sequence is on vaccine 
development, via the formulation of new ‘vaccinomic’ 
approaches (Hoffman et al., 1998; 2002). Comparative 
genomics will soon be possible as the genome sequence 
of more Plasmodium species and other Apicomplexa is 
completed, and will provide insights into the evolution of 
these protozoan parasites and adaptation to their hosts. 

To what extent will the sequence help us to 
understand Plasmodium biology? Encompassing 14 
chromosomes, the ~25-megabase Plasmodium genome 
is predicted to encode ~5,000 genes. Apicomplexa are 
part of one of the most ancient eukaryotic lineages, 
phylogenetically distant from the model organisms 
already sequenced. They have unique structural features 
and have evolved distinct solutions to basic problems; 
for example they divide by multiple fi ssion, locomote 
by gliding and induce the formation of new membrane 

compartments in the host cell. Not surprisingly, the 
proportion of Plasmodium products that have homologs 
in other organisms is the lowest among sequenced 
genomes. Annotation of P. falciparum chromosome 2 
(Gardner et al., 1998) and 3 (Bowman et al., 1999) left 
about two-thirds of the predicted genes without function, 
either having no detectable homolog or a Plasmodium/
Apicomplexa-specifi c homolog for which we have no 
functional information. Function was tentatively assigned 
to only a third of the predicted genes, but most of these 
signifi cant matches remain only partially informative. 
They may reveal the biochemical activity of the product, 
inherent to the protein and irrespective of cellular context, 
for example a kinase or a phosphatase activity. They may 
also indicate the presence of a domain of known function, 
but in an otherwise unique molecular context. Obviously, 
homology searches lead to physiological function only for 
proteins that are involved in one of the core biological 
processes common to all eukaryotes. 

In studying Plasmodium biology, the major questions 
concern the molecular basis of the features that defi ne 
Apicomplexa protozoa, the traits that are specifi c to 
Plasmodium, and the parameters that infl uence disease 
such as transmission and virulence. Thus the central 
challenge is to be able to identify the parasite products 
that are critical to biological processes of interest. For 
this, we need molecular genetic tools for manipulating 
and questioning the genome in a variety of ways.

Plasmodium Transfection: A Brief 
Account of the First Milestones
Plasmodium was the last protozoan of medical 
importance to become amenable to molecular genetics. 
Transfecting Plasmodium was not an easy task, as the 
parasite spends most of its life located intracellularly 
within a vacuole, its nucleus being separated from the 
environment by four membranes. Also, Plasmodium
DNA is particularly A/T-rich and unstable in Escherichia 
coli, which complicates preparation of transforming 
constructs. The fi rst success in transfecting Plasmodium
was reported in 1993, when D. Wirth and collaborators 
obtained transient gene expression after electroporation 
of extracellular gametes and zygotes in P. gallinaceum, 
an avian Plasmodium species (Goonewardene et al., 
1993). The decisive breakthroughs came in 1995, when 
the groups of T. Wellems working on P. falciparum and of 
C. Janse and A. Waters working on P. berghei, a species 
that infects rodents, could transfect erythrocytic stages of 
the parasite. Transfection was transient in P. falciparum 
(Wu et al., 1995), and stable in P. berghei by means of 
a pyrimethamine-resistance gene (van Dijk et al, 1995). 
Using a similar selection system, three studies published 
the next year described integrative transfection, in P. 
falciparum (Wu et al., 1996; Crabb and Cowman, 1996) 
and P. berghei (van Dijk et al., 1996), which indicated 
a large if not complete dominance of homologous 
integration in both species. These seminal studies were *For cor re spond ence. Email rmenard@pasteur.fr.
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then rapidly followed by reports on the inactivation of 
genes of interest (Ménard et al., 1997; Crabb et al., 
1997a; Sultan et al., 1997). 

Although transfection has since been described in 
other Plasmodium species, P. falciparum and P. berghei
have been the subject of all functional studies. A variety 
of molecular genetic approaches can now be taken in 
the two species. Theoretically, episomal or integrative 
transfection can each be used for either characterizing 
or identifying genes, as outlined in Figure 1. To propose a 
complete view of the Plasmodium genetic toolbox, we will 
consider these four situations successively. 

Gene Characterization Using Episomal Transfection

Transient Transfection
Since its fi rst use in 1993, transient transfection has been 
largely used to study gene expression in Plasmodium. 
Transient transfection plasmids only need to contain a 
reporter gene fl anked by the sequences under study 
(Figure 1), and reporter genes encoding chloramphenicol 
acetyltransferase, fi refl y luciferase or green fl uorescent 
protein (GFP) have been used to analyze the untranslated 
regions of many genes. The goal of most of these studies 
was to defi ne by deletion mapping the minimal 5′ and 3′

Figure 1. A theoretical view of molecular genetic techniques. The selectable marker and its expression sequences are symbolized by a grey box, the 
bacterial plasmid by thick lines, the gene promoter by an arrow, and the 3′ untranslated sequences necessary for gene expression by an open circle. Ins, 
insertion plasmid; Rep, replacement plasmid. See text for details. 

aGenes of interest can be identifi ed by random insertional mutagenesis using a mutagenizing DNA (plasmid or transposon) that contains a reporter gene 
at its 5′ end, as shown. Screens may then identify gene function (via gene inactivation), gene expression (using promoter-trap constructs, with a reporter 
lacking a promoter), or localization of the product (using gene-trap constructs, with a reporter lacking a start codon).
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regions that retained the capacity to effi ciently drive gene 
expression (Wu et al., 1995; Crabb and Cowman, 1996; 
Crabb et al., 1997b; Horrocks and Kilbey, 1996; Dechering 
et al., 1997). This information has been particularly 
valuable for constructing expression or resistance 
cassettes of minimum size. More recent transient 
transfection studies have initiated characterization of the 
DNA elements involved in gene expression (Horrocks and 
Lanzer, 1999) and stage-specifi c expression (Dechering 
et al., 1999), or of the mechanisms that ensure expression 
of a single member of the var gene family (Deitsch et al., 
1999; 2001). Another study used transient transfection to 
demonstrate that readthrough of an internal stop codon 
was occurring in a Pf60 gene (Bischoff et al., 2000).

Still, little is known of how gene transcription is 
controlled in Plasmodium. Plasmodium promoters 
superfi cially resemble classical eukaryotic promoters 
transcribed by RNA polymerase II, consisting of a 
core promoter region controlled by upstream enhancer 
elements. However, they are functionally distinct from 
other eukaryotic promoters, as they do not function 
in mammalian COS cells and their sequences share 
no homology with any known transcription factor-
binding site of eukaryotes (Horrocks et al., 1998). In 
addition, promoters of SV40 or other viruses, which are 
ubiquitously active in higher eukaryotes, fail to drive 
reporter expression in P. falciparum (Horrocks et al., 
1998). What adds stage-specifi city to gene expression 
in Plasmodium is also mysterious, although upstream 
elements may be involved (Dechering et al., 1999). 
Unraveling the transcriptional machinery in Plasmodium
will be important, as it may reveal new schemes of gene 
expression and lead to the development of new tools for 
timely expression of transgenes or mutations.

Stable Transfection
Multiple selectable markers are now available for stable 
episomal transfection in both P. falciparum and P. 
berghei. The most commonly used markers remain the 
original Plasmodium or Toxoplasma DHFR-TS variants Toxoplasma DHFR-TS variants Toxoplasma DHFR-TS
that confer resistance to pyrimethamine, present in a 
variety of resistance cassettes (Wu et al., 1996; Waters 
et al., 1997; Crabb et al., 1997b). In both Plasmodium 
species, transfectants can also be selected via resistance 
to the antifolate drug WR99210 encoded by a human 
DHFR gene (Fidock and Wellems, 1997; de Koning-DHFR gene (Fidock and Wellems, 1997; de Koning-DHFR
Ward et al., 2000a). Derivative markers now exist that 
confer both drug resistance and fl uorescence via a GFP 
fusion (Sultan et al., 1999b; Kadekoppala et al., 2000). 
Other selectable markers that act independently from the 
folate pathway have been developed for stable episomal 
transfection in P. falciparum (Ben Mamoun et al., 1999; de 
Koning-Ward et al., 2001). 

The fate of stably maintained plasmids is different 
in P. berghei and P. berghei and P. berghei P. falciparum. In P. berghei, plasmids 
replicate as unrearranged monomeric units, with an 
average copy number of 15 per nucleus (van Dijk et al., 
1997). These plasmids appear to be fairly stable, even in 
the absence of drug pressure. In P. falciparum, however, 
the situation is more complex. Plasmids rapidly form large 
concatemers (Kadekoppala et al., 2001), which probably 
emerge from inter plasmid homologous recombination. 

The structure and properties of these concatemers also 
appear to change with time (O’Donnell et al., 2001). 
Initially small and unevenly segregated to the daughter 
merozoites, they become larger structures that after a 
few months are stably replicated even in the absence 
of selective pressure. Recently, a 1.4-kb sequence 
composed of 21-bp degenerate repeats, Rep20, has 
been shown to improve plasmid maintenance and to 
allow effi cient segregation of plasmids in P. falciparum
(O’Donnell et al., 2002).

Transgene Expression
Gene function can be approached using transgene 
expression in several ways (Figure 1). (i) Over-expressing 
dominant-negative forms of a protein can generate a 
defective phenotype and thus inform on protein function. 
This strategy is so far limited to a few well-known protein 
families, and has the drawback of possible unspecifi c 
effects. (ii) GFP fusions of a protein can be produced 
to analyze its secretory pathway, as in the case of the 
insightful studies on the apicoplast-targeted and KAHRP 
proteins (Waller et al., 2000; Wickham et al., 2001). 
(iii) Modifi ed versions of a gene can be expressed in a 
corresponding null mutant, although a serious limitation 
of episomes for addressing subtle structure-function 
relationships is the gene dosage effect due to the high 
number of replicating units. 

Whenever possible, the transgene should be 
expressed from the natural expression regions of 
the target gene to minimize artifacts due to temporal 
misexpression of the product (Kocken et al., 1998). In 
the future, tools for controlled gene expression should 
greatly help to refi ne episomal approaches, particularly 
for studies on the erythrocytic stages of the parasite. 
Transgene technology may nonetheless be limited by 
episome instability when studying mosquito stages of 
the parasite, on which drug pressure cannot easily be 
applied. 

RNA Reverse Genetics
Another tool for probing gene function using episomes 
is antisense technology. Target gene expression 
can be suppressed by the annealing of antisense 
molecules to complementary transcripts, by a poorly 
understood mechanism that may affect transcript 
stability, processing, transport and/or translation. 
Both approaches of electroporating single-stranded 
antisense oligodeoxynucleotides (Barker et al., 1996; 
1998) and stably over-expressing antisense transcripts 
(Gardiner et al., 2000) have been used with success 
in Plasmodium to disrupt endogenous mRNA function. 
Stage-specifi c or inducible expression of antisense RNAs 
may thus represent an alternative to gene manipulation 
for investigating protein function. It remains that the 
inhibitory activity of a given antisense molecule is 
diffi cult to predict, and that antisense approaches face 
the possible limitations of questionable specifi city and 
incomplete effi cacy. 

RNA interference (RNAi) has emerged as a 
powerful alternative to antisense technology for specifi c 
degradation of target mRNA. RNAi appears to follow 
the processing of long, double-stranded RNA into ‘short 
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interfering’ RNAs (21-23 nucleotide fragments), which 
guide the cleavage of homologous mRNA by the silencing 
complex RISC (Hammond et al., 2001; Sharp, 2001). This 
evolutionarily conserved pathway, which may be part of 
a basic surveillance system that degrades transposon or 
viral messages, has already been harnessed as a reverse 
genetics tool. Injecting or expressing double-stranded 
RNAs causes the silencing of the corresponding gene 
in many systems tested, from protozoa to multicellular 
organisms. Degradation of target mRNA is specifi c and 
effi cient, even with low concentrations of double-stranded 
RNA and regardless of the sequence chosen in the 
target gene. The silencing effect is particularly stable, 
which obviates the need for the extensive chemical 
modifi cations that are necessary for enhancing the half-
life of antisense oligodeoxynucleotides. 

The single RNAi study undertaken in Plasmodium 
is encouraging, showing a partial but apparently 
specifi c reduction of target mRNA levels (McRobert and 
McConkey, 2002). One limiting factor might be the low 
transfection frequencies in Plasmodium. Selection of 
interfered parasites would necessitate expressing double-
stranded RNA from a selectable episome. A variety of 
constructs have already been devised for inducing stable 

interference in other systems. For example transcription 
can occur through inverted DNA repeats, giving rise to 
hairpin single-stranded RNA mimicking double-stranded 
RNA (Tavernarakis et al., 2000; Shi et al., 2000; Chuang 
and Meyerowitz, 2000), or from two opposing promoters, 
each giving rise to one strand of the double-stranded 
RNA (Wang et al., 2000). Controllable and stage-specifi c 
expression of interfering constructs may thus become a 
handy tool for probing gene function in Plasmodium. 

Gene Characterization Using Integrative Transfection

Gene Targeting: Current Status
Gene targeting by homologous recombination is arguably 
the most informative approach to protein in vivo function. 
It is more reliable and predictable than antisense or 
dominant-negative approaches, and permits a detailed 
analysis of protein structure-function relationships. The 
Plasmodium genome is haploid, contains mostly single-
copy genes and integrates exogenous DNA by ~100% 
homologous recombination. Thus, for most genes a 
single recombination event is suffi cient for generating a 
modifi ed parasite clone. In fact, despite the relative youth 
of transfection technology in Plasmodium, and its relative 

Figure 2. Gene-targeting strategies used in Plasmodium. Gene targeting relies on homologous recombination between a genomic sequence (TARGET 
gene) and its homolog in the targeting construct (shown on the left). The latter can carry a single region of homology (insertion type) or two regions fl anking 
the marker (replacement type). Insertion plasmids insert via a single crossover (SCO) between the pair of homologs (plasmid retained), while replacement 
fragments replace the target sequence via a double crossover (DCO) between pairs of homologs (plasmid lost). In P. berghei, these events are favored by 
linearizing the transformed DNA. In P. falciparum, linear DNA does not promote recombination, and circular replacement plasmids insert preferentially via a 
SCO between one pair of homologous sequences. Symbols are as in Figure 1; downstream 3′ untranslated sequences are symbolized by a closed circle. 
aThe insertion plasmid must contain an internal fragment of the gene to generate two truncated gene duplicates in the fi nal locus. 
bThe replacement plasmid should be designed to delete part or all of the target coding sequence.
cThe SCO shown involves the 5′ regions of homology (TA). In this or the reverse case (a SCO between the 3′ regions of homology, ET), a full-length target 
gene copy is created. 
dFor the gene modifi cation (t) to be recovered in the fi rst, expressed and full-length duplicate, the SCO must occur upstream from the modifi cation. 
eThe 3′ sequence necessary for gene expression is truncated.
fSee legend of Figure 3 for references.
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ineffi ciency (stable transfection frequencies have been 
evaluated at ~10-6 in both P. falciparum and P. berghei), 
numerous gene-targeting studies have already been 
performed. They have revealed important insights into 
such diverse processes as drug resistance, cell invasion 
by the various invasive stages of the parasite, sexual 
differentiation, or cytoadherence of infected erythrocytes. 
Although usually genes have been inactivated, several 
genes have been modifi ed and in one case expression 
levels have been diminished. Figure 2 illustrates the 
strategies that have been used and Figure 3 shows the 
Plasmodium loci that have been targeted, as of february 
2002. Previous reviews have described construct design 
and selection protocols (Waters et al., 1997; Ménard and 
Janse, 1997; Tomas et al., 1998; de Koning-Ward et al., 
2000b; Ménard and Nussenzweig, 2000). 

Homologous recombination provides a versatile 
system for manipulating the Plasmodium genome. On the 
one hand, double crossovers can span and delete tens 
of kilobases, and be used to introduce large deletions 
at chromosome ends (Pace et al., 2000). On the other 
hand, as few as ~300 bp of homology (and possibly 
less) are suffi cient for crossover formation and plasmid 

insertion is associated with short gene conversion tracts 
(Nunes et al., 1999). Therefore, point mutations can be 
introduced using small insertion plasmids. Also, strict 
homology between the targeting and target sequences is 
not required for productive recombination. For example, 
transfection in P. berghei with targeting vectors containing 
sequences from the C-rRNA gene resulted in disruption 
of the C- as well as the D-rRNA gene, which differ in 
~5% of their sequence (van Spaendonk et al., 2001). 
This implies that a targeting vector may occasionally 
integrate by homologous recombination elsewhere than 
at the expected locus, especially when recombination 
occurs between highly A/T-biased 3′ or 5′ untranslated 
sequences. Finally, the multiplicity of selectable markers 
permits complementation experiments, which provide 
defi nitive proof for the involvement of a protein in a 
defective phenotype (Sultan et al., 1999a; 2001; Thathy 
et al., 2002). The tools are thus available to perform 
DNA reverse genetics in Plasmodium according to the 
molecular Koch postulates of S. Falkow (1988).

There are important differences between gene-
targeting procedures and their outcomes in P. falciparum 
and P. berghei. The targets of electroporation are 

Figure 3. Targeted Plasmodium genes (as of February 2002). The Plasmodium life cycle in the two hosts, a vertebrate (lower part) and a mosquito (upper 
part), is shown. The parasite genes that have been manipulated by gene targeting are indicated below the respective parasite stage, with references in 
parentheses. 1, Triglia et al., 1998; 2, Fidock et al., 2000a; 3, Fidock et al., 2000b; 4, Reed et al., 2000b; 5, van Spaendonk et al., 2001; 6, Triglia et al., 
2000; 7, O'Donnell et al., 2000; 8, Baldi et al., 2000; 9, Taylor et al., 2001; 10, Kaneko et al., 2000; 11, Reed et al., 2000a; 12, Triglia et al., 2001; 13, Crabb 
et al., 1997a; 14, Trenholme et al., 2000; 15, Waterkeyn et al., 2000; 16, Lobo et al., 1999; 17, van Dijk et al., 2001; 18, Tomas et al., 2001; 19, Dressens et 
al., 1999; 20, Templeton et al., 2000; 21, Yuda et al., 1999; 22, Tsai et al., 2001; 23, Ménard et al., 1997; 24, Thathy et al., 2002; 25, Sultan et al., 1997; 26, 
Matuschewski et al., 2002; 27, Kappe et al., 1999; 28, Ménard and Nussenzweig, 2000; 29, Wengelnik et al., 1999; 30, Nunes et al., 1999.
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intraerythrocytic forms of the parasite (rings to schizonts) 
or extracellular merozoites, and selection occurs in 
vitro or in rodents, respectively. Crucially, linear DNA is 
the preferred substrate for homologous recombination 
in P. berghei, but not in P. falciparum. Linear DNA is 
presumably degraded in P. falciparum when it crosses the 
four membranes to the parasite nucleus, and this has two 
important consequences. One is that the time required for 
selecting integrants is longer in P. falciparum (3-4 months 
versus 2 weeks in P. berghei), because circular plasmids 
preferentially replicate episomally than integrate into the 
genome. Another consequence is that double crossover 
events can hardly be selected in P. falciparum, because 
circular replacement plasmids preferentially integrate via 
single crossovers (see Figure 2). 

One way to recover the rare double crossovers 
that may occur when transfecting circular replacement 
plasmids is to use a negative marker to counterselect 
the other transfection products (Figure 4). Two negative 
selectable markers, cytosine deaminase and thymidine 
kinase, have already been developed in P. falciparum
(Duraisingh et al., 2002). They will also serve for 
conducting more reliable protein structure-function 
analysis in both Plasmodium species. Indeed, so far 
all subtle gene modifi cations have been introduced in 
the presence of a selectable marker, which as a new 
transcription unit may affect gene expression in the 
targeted or unlinked loci in unpredictable ways. Figure 4 
shows the classical ‘hit and run’ procedure employed to 

circumvent this drawback and to introduce mutations in a 
fi nal locus devoid of exogenous sequence, based on the 
sequential use of positive and negative selection. 

Limitations of Gene Targeting in Plasmodium
Despite these exciting achievements, there are still 
numerous genes whose function cannot be properly 
investigated. This is the case of genes involved in 
parasite replication in erythrocytes (on which selection is 
based), including those important for merozoite invasion 
of erythrocytes, the most scrutinized step of the parasite 
life cycle and a primary vaccine target. Loss-of-function 
mutants in these genes die or are overgrown by non-
targeted parasites. Therefore, with currently available 
tools, the best possible evidence that a gene is important 
for invasion of erythrocytes is when it can be targeted 
with a nondisruptive construct but not with a disruptive 
construct (Cowman et al., 2000). This was reported for 
MSP-1 and AMA-1, along with direct evidence for their 
role in merozoite invasion via gain-of-function mutants 
created by trans-species exchange between human 
and rodent homologs (O’Donnell et al., 2000; Triglia et 
al., 2000). Nonetheless, failure to select loss-of-function 
mutants may be a misleading criterium for identifying 
important genes among uncharacterized sequences, 
given the poor targeting frequencies in Plasmodium. In 
addition, since impaired mutants cannot be selected, the 
defective phenotype and actual protein function cannot 
be studied. 

Figure 4. Using negative selectable markers in Plasmodium gene targeting. A negative marker allows for selecting parasites that do not express the marker, 
generally by conferring susceptibility to a drug. The negative marker is symbolized –M, the positive marker by +M, and the bacterial plasmid by a thick 
line. A) Upon positive selection, circular replacement plasmids will preferentially replicate episomally, rarely integrate via a single crossover (TAR or GET), 
and should also integrate via a double crossover (TAR and GET). For recovering the latter, a negative marker can be placed in the construct as shown, 
and negative pressure applied to counterselect episomes and single crossover integrations that all maintain the negative marker. B) Shown here is the 
modifi cation of a target gene (R to r) via a hit and run procedure. Positive selection recovers integration of the insertion plasmid (hit), which introduces the 
modifi cation (r, shown here ending in the fi rst gene duplicate after SCO between TA regions). Negative selection on such an integrant clone will recover 
parasites that undergo intrachromosomal recombination and plasmid excision (run), while leaving the modifcation (after SCO between GET regions). The 
reverse situation, i.e., a hit step via SCO between GET regions and a run step via SCO between TA regions also leads to a modifi ed gene.
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Other genes that cannot be at present fully 
characterized are those encoding multifunctional 
proteins. Knocking-out these genes only reveals the 
earliest non-redundant role of their product. One example 
is CS, known to be involved in sporozoite adhesion to the 
mosquito salivary glands and to mammalian hepatocytes, 
but which is fi rst essential for sporozoite formation in the 
oocyst (Ménard et al., 1997; Thathy et al., 2002). Thus 
the role of sporozoite surface-associated CS, the leading 
vaccine candidate against pre-erythrocytic stages of the 
parasite, cannot be dissected genetically. It is clear that 
unrestricted functional analysis of the genome requires 
the tools for activating or silencing genes at will. 

Missing Tools: A Brief Overview of Conditional 
Mutagenesis
Two types of tools have been widely used for conditional 
gene expression in eukaryotes: transcriptional regulators 
and site-specifi c recombinases. Their basic mechanisms 
of action and some of the possible applications for 
studying Plasmodium essential genes are illustrated in 
Figure 5.

The most popular transcriptional regulatory systems 
are derived from the tetracycline resistance operon of 
bacterial Tn10 (Gossen and Bujard, 1992; Baron 10 (Gossen and Bujard, 1992; Baron 10 et al., 
1999; Urlinger et al., 2000). They have been developed 
into increasingly effi cient tools for controlling gene 
expression in model organisms from yeast to rodents, 
and have been used with success in various protozoan 
parasites (Wirtz and Clayton, 1995; Hamann et al., 
1997; Wirtz et al., 1999; Meissner et al., 2001; Yan et 
al., 2002). They consist of (i) a regulator (repressor 
or activator), (ii) operator sequences, which must be 
positioned around the transcriptional start site, and (iii) 
an effector (tetracycline or derivative) for modulating 
the regulator-operator interaction and turning ‘on’ or ‘off’ 
gene expression. When a tetracycline-responsive copy of 
a gene is borne by an episome, it can only be used for 
timely over-expression of dominant-negative, antisense 
or interfering constructs. A more direct approach is to 
insert the controllable copy in place of the endogenous 
gene by homologous recombination. This enables to shut 
down gene expression in all recombinants at a chosen 

A B

Figure 5. Tools for conditional gene expression. A) A promoter can be made drug-responsive by inserting 2 to 7 copies of 19-bp tetO (tetracycline operator) 
sequences around the transcriptional initiation site of the promoter, which are recognized by a regulator: TetR, tTA or rtTA. Left, a drug-responsive transgene 
can be borne by an episome and used to express dominant-negative constructs. Right, a controllable copy of a target gene can also be used to replace its 
chromosomal copy by double crossover. Ideally, the desired state (overexpression or tight repression) should be obtained by adding rather than removing 
the effector, because the former situation is associated with more rapid kinetics of expression switch. 
aTetR (tetracycline repressor) is limited by a narrow range of control. TetR dissociates from tetO upon tetracycline binding, leading to gene transcription.
btTA (tetracycline-controlled transactivator) is best suited for rapid repression of gene expression and knock-out approaches. In the absence of doxycycline, 
the gene is expressed; upon doxycycline addition, the gene is rapidly repressed.
crtTA (reverse tetracycline-controlled transactivator) is best suited for rapid expression of a transgene and dominant-negative approaches. In the absence 
of doxycycline, rtTA does not bind to tetO and the transgene is not expressed; upon doxycycline addition, it is rapidly expressed.
B) Cre (Flp) catalyses a recombination reaction between two identical 34-bp recognition sites called loxP (FRT). When the two sites are located on the FRT). When the two sites are located on the FRT
same molecule (chromosome), recombination will excise (invert) intervening DNA if the sites are in the same (opposite) orientation. Shown here is the 
deletion of the target gene promoter. When one site is on the linear chromosome and the other on a circular plasmid, recombinase inserts the plasmid at 
the chromosomal site. Shown here is plasmid integration leading to gene modifi cation. Timely expression of the recombinase may rely on stage-specifi c or 
inducible promoters, or other approaches.
dintrachromosomal deletion/excision is reversible but is energetically favoured over intermolecular integration.
ethe inherently unstable insertion product can be obtained by limited expression of the recombinase or by using mutant sites that are refractory to further 
excision.
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time, and to directly assess the consequences of the 
gradual loss of the product. Inducible promoters come 
with the clear advantages of reversibility, in allowing 
to generate truly conditional ‘on’ and ‘off’ states in one 
clone, and fl exibility, in enabling to create intermediary or 
temporary states that may be as informative on protein 
function as a constitutively ‘off’ state. In some situations, 
however, their effi ciency will ultimately depend on whether 
complete repression can be obtained, as well as on the 
kinetics of repression after effector addition/removal. 
Studies on essential products of parasite erythrocytic 
stages would greatly benefi t from these tools, particularly 
the transactivators suited to conditional gene silencing 
(see Figure 5 legend). The situation seems ideal for P. 
falciparum, which replicates in erythrocytes in vitro where 
effector levels can be more easily controlled. 

A second way to inactivate a gene in a temporally 
restricted manner is offered by site-specifi c recombinases. 
Two site-specifi c recombinases of the λ integrase 
family have been used for this purpose in a variety of 
eukaryotes: Cre of bacteriophage P1 and Flp of yeast 
(Sauer, 1998; Porter, 1998). These enzymes catalyse 
a reciprocal conservative recombination between two 
identical 34-bp target sequences and, depending on their 
position and orientation, recombination will insert, invert, 
or delete DNA (see the Figure 5 legend). Therefore, these 
systems offer the primary advantage of enabling not only 
to inactivate but also to modify or swap genes, and thus 
to investigate protein structure-function relationships. 
Recombination occurs regardless of DNA topology and 
host environment, and the Cre/loxP system has been 
shown to function in the apicomplexan Toxoplasma gondii 
(Brecht et al., 1999). Although it should be easy to design 
modifi cations and insert the LoxP or FRT site(s) into the 
Plasmodium genome by homologous recombination, the 
challenge is to express the recombinase conditionally. 
A fi rst possibility would be to use natural stage-specifi c 
promoters. If these prove not to be leaky before being 
activated, they would then be useful for truly conditionally 
inducing gene rearrangements at a defi ned stage of the 
parasite life. They would allow studies on essential genes 
not only in that particular stage, but also in erythrocytic 
stages after complete cycling of the parasite. A gene 
important for merozoite invasion could for example be 
deleted in a mosquito stage of the parasite, and after 
transmission to the mammalian host its function could 
be assessed in merozoite formation in the liver and in 
subsequent merozoite invasion of erythrocytes. Directly 
applying recombinase systems to parasite erythrocytic 
stages would require expressing the recombinase from 
an inducible promoter or using one of the recombinase 
variants that can be activated by an exogenous factor 
(Metzger and Chambon, 2001). It may become possible 
to use, as was recently performed with mammalian cells 
(Jo et al., 2001), a cell-permeable recombinase that could 
be directly added to cells/parasites bearing a manipulated 
(‘fl oxed’ or ‘fl rted’) gene. As increasingly sophisticated 
site-specifi c recombination systems are being developed, 
their usefulness in Plasmodium should be evaluated as 
they would offer virtually unlimited ways of analyzing the 
function of Plasmodium essential genes. 

Gene Identifi cation 
Plasmodium has been transfected almost exclusively for 
testing promoter activity or gene function, and reverse 
genetic techniques are now well established. On the other 
hand, attempts to identify genes and develop forward 
genetic screens have been scarce. 

Using Episomal Transfection (Promoter Trapping)
In bacteria, episomal transfection has been widely 
used to identify genes that are induced in response to 
defi ned conditions. The basic method consists in fusing 
a genomic library to a promoterless reporter gene 
whose product confers a selectable or easily screenable 
phenotype, for example antibiotic resistance (Figure 1). A 
simple variant, called differential fl uorescence induction, 
uses green fl uorescent protein as the reporter and relies 
on fl uorescence-activated cell sorting (FACS) to isolate 
bacteria with active transcriptional fusions (Valdivia and 
Falkow, 1997). In Plasmodium, a similar promoter-trap 
strategy could in theory be used for isolating promoters 
that are active during any step of the parasite life. A 
Plasmodium genomic library of 1-kb average insert size 
could be scanned in a few minutes by FACS, and active 
promoters rescued from fl uorescent parasites. However, 
the tens of thousands of clones necessary to cover the 
genome still represent many individual transfections, given 
the low transfection frequencies. Also, although it is clear 
that stage-specifi c promoters can be active when carried 
by episomes (Sultan et al., 1999a; 2001), little is known 
of their regulation throughout the cycle. In P. falciparum, 
episomes apparently do not properly assemble chromatin 
(Horrocks et al., 1998), a requirement for the correct 
developmental expression of many eukaryotic genes. 
Another problem is that distinct transfected plasmids 
may assemble into concatemers (Kadekoppala et al., 
2001). Therefore episomal transfection is not presently 
a suitable approach for identifying Plasmodium genes 
based on their expression profi le. 

Using Integrative Transfection (Insertional Mutagenesis)
A powerful way to identify genes that mediate biological 
processes, particularly in haploid organisms, is based on 
random mutagenesis and screening the resulting mutants 
for a defect in a phenotype of interest. Mutagenesis is 
typically induced by nonhomologous integration of a 
plasmid or insertion of a transposon, two methods that 
tag the mutated site and facilitate its recovery. In theory, 
saturation mutagenesis permits identifi cation of the 
function of any gene whose inactivation is not immediately 
lethal, and for which an appropriate selection or screen is 
available (for examples in bacterial pathogenesis studies, 
see Strauss and Falkow, 1997; Chiang et al., 1999; Wren, 
2000). In protozoa, effi cient random mutagenesis has been 
reported only in Toxoplasma and Leishmania, allowing in 
both cases to select for gene fusions and trap new genes. 
In Toxoplasma gondii, nonhomologous recombination 
can be obtained by incorporating discontinuous genomic 
DNA in transfection constructs, and current screens are 
targeting parasite genes induced by the transition from 
the tachyzoite to the bradyzoite stage (Roos et al., 1997). 
In Leishmania major, the Leishmania major, the Leishmania major Mos1 element of the mariner/mariner/mariner
Tc1 family of transposons, which are ubiquitous elements 
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of eukaryotic genomes, transposes effi ciently (~10-4; 
Gueiros-Filho and Beverley, 1997). 

Unfortunately, such methods are not in sight in 
Plasmodium. Nonhomologous recombination does not 
occur using currently used vectors, or with frequencies 
incompatible with gene discovery. Transposition was 
reported only once, using the mariner element, but 
with apparently low effi ciency (Ben Mamoun et al., 
2000). Even if tools for random DNA insertion into the 
Plasmodium genome can be established, their utility 
for gene discovery would also necessitate increasing 
frequencies of transfection. 

What are the Prospects for Functional Genomics in 
Plasmodium?
In the absence of appropriate molecular genetic tools, 
genomic techniques will be crucial for classifying genes 
according to their pattern of expression (Figure 6). 
High-redundancy methods can be useful for providing 
transcriptome snapshots, such as massive cDNA 
sequencing projects (Carlton et al., 2001) and serial 
analysis of gene expression (Munasinghe et al., 
2000; Patankar et al., 2001). Several genome-wide 
techniques that compare relative levels of mRNAs in 
two conditions are also being applied to Plasmodium, 
including DNA microarray hybridization (Hayward et al., 
2000; Ben Mamoun et al., 2001), subtractive suppressive 
hybridization (Dessens et al., 2000), and differential 
display (Lau et al., 2000; Cui et al., 2001). So far 
these techniques have been used mainly for analyzing 
expression profi les in erythrocytic stages of the parasite, 
the only stages that yield the necessary amounts of 
mRNA. To facilitate similar studies with mosquito or liver 
stages, tools are being developed that should help to 
purify the small available numbers of parasites by FACS 
(Natarajan et al., 2001) or laser capture microdissection 
(Sacci et al., 2002). All these technologies will permit to 
down scale the genome to its expressed portion during a 
process of interest and to identify stage-specifi c genes. 
More focused screens (e.g. involving drug-treated or 
mutant parasites, or parasites in ex or ex or ex in vivo conditions) 
may narrow down to smaller subsets of co-expressed 
genes and provide sharper leads to investigators. But it 
is likely that in most cases these global mRNA techniques 
will leave us with large numbers of differentially expressed 
genes. As for the entire genome, sequencing will hardly 

by itself constitute a rationale for further analysis, 
although sequence may occasionally suggest function. 
The challenge remains to translate the fl ow of expression 
data into biological activities. 

Function could be addressed by a systematic, 
gene-by-gene approach. One possibility would be to 
systematically delete expressed genes by homologous 
(double crossover) recombination, and generate null 
mutants. However, the transition from gene sequence to 
parasite mutant takes at least 12 weeks in the relatively 
handy P. berghei system, making such large-scale P. berghei system, making such large-scale P. berghei
functional studies impractical in most laboratories. If it 
proves reliable in Plasmodium, RNAi technology would 
be a more rapid method for testing the function of 
many genes. Systematic functional studies using RNAi 
have been performed against the products encoded by 
entire chromosomes in Caenorhabditis elegans (Fraser Caenorhabditis elegans (Fraser Caenorhabditis elegans
et al., 2000; Gönczy et al., 2000) or the components of 
complete pathways in Drosophila (Clemens et al., 2000) 
(reviewed in Kuwabara and Coulson, 2000; Barstead, 
2001). RNAi would be an effi cient way to mine the 
Plasmodium genome for potential drug targets, or to 
screen for important genes that may deserve further 
analysis by homologous recombination.

Yet for most laboratories, a direct screen for 
genes of interest or essential genes would be a more 
appealing prospect than the gene-by-gene approach. 
New opportunities for generating random mutants 
in Plasmodium may arise from the construction of 
(differentially) expressed gene libraries, which reduces 
the initial pool of genes and allows their mutagenesis 
in other organisms. Cloned genes could for example be 
mutagenized in E. coli and mutated alleles subsequently E. coli and mutated alleles subsequently E. coli
introduced into Plasmodium for replacement of their 
chromosomal copy by homologous recombination. Such 
‘shuttle mutagenesis’ has been used in yeast, after Tn3
or Tn7 mutagenesis in 7 mutagenesis in 7 E. coli (Kumar and Snyder, 2001). E. coli (Kumar and Snyder, 2001). E. coli
There is now a wide choice of mutagenizing agents, 
including multifunctional transposons which use the 
same insertion event to determine (i) when the gene is 
expressed (via reporter fusion), (ii) where the product 
is localized in the cell (via formation of epitope-tagged 
products), and (iii) the consequence of the absence of 
the product (via gene inactivation) (Ross-Macdonald 
et al., 1997; 1999). To avoid having to screen mutants 
individually, molecular barcodes have been developed 
for bacterial pathogenesis studies (Hensel et al., 1995) 
and yeast functional genomics (Shoemaker et al., 1996; 
Winzeler et al., 1999). These short sequences serve as 
clone identifi ers and allow large numbers of mutants to 
be pooled and analyzed simultaneously by comparative 
hybridization on fi lters or high-density arrays. In bacteria 
for example, these tags associated with classical 
transposition (signature-tagged transposition method, 
STM) have served to isolate mutants that were unable to 
survive in the host (Hensel et al., 1995). Establishing such 
tools in Plasmodium would permit to envisage focused 
approaches to virtually any aspect of parasite biology.

Animal models of malaria should be particularly 
valuable for functional genomic studies and tackling basic 
aspects of parasite biology. Rodent Plasmodium species, 
including P. berghei and P. berghei and P. berghei P. yoelii (Mota P. yoelii (Mota P. yoelii et al., 2001), are 

Figure 6. An outlook at functional genomics in Plasmodium.
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practical because they can be studied routinely and safely 
in the laboratory, and in vivo throughout their life cycle. 
Double crossover recombination is readily obtained with 
linear DNA, allowing in principle shuttle strategies. An 
additional attractive feature of rodent systems is that the 
three actors (parasite, mosquito and vertebrate host) can 
be genetically manipulated, and the sequence of their 
genome is, or will soon be known. P. knowlesi and P. knowlesi and P. knowlesi P. 
cynomologi, which infect primates and are closely related 
to the human parasite P. vivax, can also be manipulated 
by double crossover recombination (van der Wel, 1997; 
Kocken et al., 1999; 2002). However, their use for 
large-scale studies is prohibited by ethical and practical 
reasons. P. falciparum remains the mandatory target for 
studying specifi c virulence traits, such as cytoadherence 
of infected erythrocytes. This system offers the advantage 
of an erythrocytic cycle that can be studied in vitro and 
synchronized, but is limited by the diffi culty to produce 
mosquito stages of the parasite and the time consuming 
molecular genetic procedures. A precise understanding of 
malaria pathogenesis will necessitate that each system 
contributes its part.

Conclusion
The landscape of malaria research has changed 
dramatically in the last decade. The sequence of the 
genome of several Plasmodium species is now known, 
genomic techniques have been developed, and the 
parasite can be transfected. The molecular genetics 
toolbox, however, is far from complete. On the one hand, 
understanding the function of a given gene (reverse 
genetics) is straightforward, and we should soon have 
the tools for manipulating any gene. On the other hand, 
identifi cation of genes based on their function (forward 
genetics) is still problematic. The powerful genomic 
techniques will continue to categorize the genome into 
subsets of interest, and may suggest function of groups 
of genes, but only constitute a fi rst step. Molecular 
genetic methods must be adapted to translate the 
wealth of sequence and expression data into biological 
functions, and to link them to investigator-driven research 
addressing specifi c questions that can only be answered 
by a reductionist approach. 

These are exciting times for the malaria research 
community. The blending of these new technologies will 
lead to an increasingly sophisticated view of parasite 
biology, and uncover the molecular details behind 
the unique features of this ancient eukaryote. More 
importantly, they hold great promise to help reducing the 
burden of malaria in allowing a systematic hunt for drug 
targets and a rational choice of vaccine candidates, and 
will certainly lead us to other intervention strategies that 
are now unforseeable.
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