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Abstract: A hepatocyte cell line was used to determine the hepatotoxicity of sedatives and opioids,
as the hepatotoxicity of these drugs has not yet been well characterized. This might pose a threat,
especially to critically ill patients, as they often receive high cumulative doses for daily analgosedation
and often already have impaired liver function due to an underlying disease or complications during
treatment. A well-established biosensor based on HepG2/C3A cells was used for the determination of
the hepatotoxicity of commonly used sedatives and opioids in the intensive care setting (midazolam,
propofol, s-ketamin, thiopental, fentanyl, remifentanil, and sufentanil). The incubation time was
2 × 3 days with clinically relevant (Cmax) and higher concentrations (C5× and C10×) of each drug
in cell culture medium or human plasma. Afterward, we measured the cell count, vitality, lactate
dehydrogenase (LDH), mitochondrial dehydrogenase activity, cytochrome P 450 1A2 (CYP1A2), and
albumin synthesis. All tested substances reduced the viability of hepatocyte cells, but sufentanil and
remifentanil showed more pronounced effects. The cell count was diminished by sufentanil in both
the medium and plasma and by remifentanil only in plasma. Sufentanil and remifentanil also led to
higher values of LDH in the cell culture supernatant. A reduction of mitochondrial dehydrogenase
activity was seen with the use of midazolam and s-ketamine. Microalbumin synthesis was reduced
in plasma after its incubation with higher concentrations of sufentanil and remifentanil. Remifentanil
and s-ketamine reduced CYP1A2 activity, while propofol and thiopental increased it. Our findings
suggest that none of the tested sedatives and opioids have pronounced hepatotoxicity. Sufentanil,
remifentanil, and s-ketamine showed moderate hepatotoxic effects in vitro. These drugs should be
given with caution to patients vulnerable to hepatotoxic drugs, e.g., patients with pre-existing liver
disease or liver impairment as part of their underlying disease (e.g., hypoxic hepatitis or cholestatic
liver dysfunction in sepsis). Further studies are indicated for this topic, which may use more complex
cell culture models and global pharmacovigilance reports, addressing the limitation of the used cell
model: HepG2/C3A cells have a lower metabolic capacity due to their low levels of CYP enzymes
compared to primary hepatocytes. However, while the test model is suitable for parental substances,
it is not for toxicity testing of metabolites.

Keywords: analgosedation; drug-induced liver injury (DILI); hepatotoxicity; intensive care; opi-
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1. Introduction

Providing adequate sedation and analgesia for critically ill patients is essential [1].
Therefore, many patients receive sedatives and analgesics (often opioids) during their stay
in an intensive care unit (ICU). There is also increasing evidence that the overuse of these
drugs leads to an increase in mortality and prolonged ICU and hospital stays [2–4]. Opioids
are drugs used to treat severe pain. Examples of opioids are buprenorphine, codeine,
oxycodone, tapentadol, and tramadol, which are used for the treatment of severe pain [5];
sufentanil, fentanyl, morphine, and remifentanil are used for sedation and analgesia in
ICU patients too [6]. The adverse effects of opioids are known to include delirium, bowel
dysfunction, and ICU-acquired infections [7]. ICU patient sedation is achieved by drugs
from different groups like benzodiazepines (lorazepam and midazolam) and the short-
acting intravenous anesthetics propofol, s-ketamine, and barbiturate [5,8]. The adverse
effects of these drugs differ widely, ranging from delirium, possible organ toxicity, and
hypotension to a disruption of the mitochondrial respiratory chain (propofol infusion
syndrome) [5,8]. Current sedation management has become more complex. With the
development of new drugs, e.g., alpha-2-agonists, in combination with lower concentrations
of “classical” sedation drugs are used [6].

Aside from these known adverse effects, there is also a higher risk of drug toxicity
for critically ill patients due to their hemodynamic instability or impaired organ function,
which leads to altered pharmacokinetics and pharmacodynamics [9,10]. Drug-induced
liver injury is a significant cause of acute liver failure, and the mortality rate in patients with
acute liver failure is approximately 80% [11]. Concerning drug-induced liver injury (DILI),
little is known about its impact on critically ill patients. The reason for this could be that in
ICUs, many factors can result in liver injury: an underlying disease, a complication during
treatment (e.g., sepsis), the administration of drugs over a long period and in sometimes
high doses, or a combination of multiple factors. Opioid-based medications and sedatives
may interact in combination with hepatotoxic medications (e.g., acetaminophen). This
increases the risk of liver damage if they are administered at the same time [12].

Opioids are relatively rare causes of drug-induced liver disease. Still, overdoses
of the more potent opioids have been associated with cases of acute liver injury, which
have a sudden onset and a pattern of acute toxicity, with marked elevations in serum
aminotransferase levels and an early onset of signs of liver failure. After cannabis, opioids
and cocaine are the most commonly consumed drugs [12–15].

The liver is the primary target of drug-induced toxicity, and hepatotoxicity is an
important endpoint in the safety assessment of drugs and chemicals. Therefore, assessing
potential hepatotoxicity represents a crucial step in developing new drugs [16]. In general,
DILI is a difficult field of research because most cases are unpredictable, idiosyncratic,
and rare, making them difficult to study. As a result, there has been limited progress in
controlling, understanding, or preventing DILI over the past 50 years. Several methods
have been developed to improve the assessment of the causes of hepatotoxicity because
diagnosis remains a major challenge. These species-specific causality assessment tools fall
into three categories: (1) probabilistic approaches, (2) expert judgments, and (3) algorithms
or scales [17,18]. However, there is generally an urgent need for models that predict
hepatotoxicity in humans [19].

Clinical trials are generally underpowered to detect trends in hepatotoxicity, so case
reports of adverse drug reactions are the primary source of toxicity data [20]. Current strate-
gies for testing the potential for DILI rely on in vivo animal models. While animal-based
toxicity testing was able to predict 70% of the experienced toxicity in humans in a retrospec-
tive analysis, human DILI is difficult to predict in animals, likely due to known interspecies
differences in drug metabolism, pharmacokinetics, and toxicity targets [19,21–24]. There-
fore, the collection of phenotypic information from appropriate registries and biological
samples from identified DILI cases is currently the most valuable resource for reproducing
the complexity of idiosyncratic DILIs [25]. LiverTox (https://livertox.nih.gov, accessed on
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10 January 2024), for example, is a clinical research database that provides an overview of
possible drug-induced hepatotoxicity. This database was developed by the Drug-Induced
Liver Injury Network (DILIN) and is published in NCBI’s LiverTox. The LiverTox Likeli-
hood Score is used to categorize the likelihood that a drug is associated with drug-induced
liver injury. It also includes a description of the pattern and history of liver injury, as well
as case studies supported by laboratory data and a comprehensive list of references [26].

There is an urgent need for human-relevant in vitro models for preclinical testing
during drug development processes [27]. In recent years, several in vitro systems have
been developed for toxicological applications [21]. We used an established and standard-
ized biosensor [28] with the well-established immortalized human HepG2/C3A cells, a
patented, highly functional clonal derivative of the human hepatoma cell line HepG2, to
test the hepatotoxicity of routinely used sedatives and opioids [29]. Evaluating multiple
endpoints on Hep G2 cells allows the prediction of human hepatotoxicity with a sensitivity
of over 80% and a specificity of 90% [30]. Accordingly, HepG2 cells and derivatives can
predict general human hepatotoxicity based on hepato-specific endpoints [19,31]. These
cell lines are characterized by their functional similarity to the human liver, physiological
response to toxic insults, and metabolic markers [28,29,32–40]. HepG2/C3A is able to syn-
thesize most plasma proteins, including albumin [41]. However, their main disadvantage
is their lower metabolic capacity due to low levels of CYP enzymes compared to primary
isolated hepatocytes. This makes them suitable test models for the parental substances
but not for the toxicity of metabolites [42]. HepG2/C3A is able to synthesize most plasma
proteins, including albumin [41]. They produce bile acids as well as glycogen and ex-
press many hepatic functions, such as cholesterol and triglyceride metabolism, lipoprotein
metabolism, or insulin signaling [42–44]. Differences are, however, a non-functional urea
cycle, low levels of phase-II enzymes (sulfotransferase, uridine diphosphate glucurono-
syltransferase, glutathione S-transferase, or N-acetyltransferase), and transport proteins
(organic anion transporting polypeptide C, bile salt export pump, and sodium-taurocholate
co-transporting polypeptide) [45]. Although there are low or absent basal levels of impor-
tant CYP enzymes (such as CYP3A4, CYP2C9, CYP2C19, CYP2A6, or CYP2D6) compared
to primary hepatocytes [46], similar inducibility has been shown for CYP 1A1, 1A2, 2B6,
and 3A4 [44,47]. On the other hand, primary isolated human hepatocytes are scarcely
available, exhibit inconsistent characteristics, and show CYP induction that varies from
donor to donor, which may depend on the patient’s medication.

The aim of the study was the testing of hepatotoxicity using clinically relevant concen-
trations of drugs during continuous analgosedation (steady-state plasma concentration).

2. Materials and Methods
2.1. Cell Culture

Human hepatocellular carcinoma cells (HepG2/C3A, ATCC, ref. number CRL-10741)
maintained in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO Life Technologies,
Darmstadt, Germany), supplemented with 10% fetal bovine serum (FBS, Biochrome, Berlin,
Germany), 1% of 200 mM L-glutamine (Biochrome), and 1% of antibiotics solution (Peni-
cillin G:10.000 IE/mL/Streptomycin: 10 mg/mL; Biochrome, Berlin, Germany) were used.
Cells were routinely incubated under a humidified atmosphere containing 5% CO2 at 37 ◦C
and were regularly subcultured every 2–3 days.

2.2. Drug Solutions

A Cmax-based testing approach is a useful strategy to distinguish between safe and
hepatotoxic drugs; moreover, a multiple of the maximum plasma concentration (C max) of
the drugs studied was used because some hepatotoxic drugs show significant cytotoxicity in
the 10 to 100-fold Cmax range [21,43]. Therefore, the lowest test concentration of the various
sedative medications was the mean plasma level after initiation of continuous intravenous
therapy (C max, steady-state plasma concentration) based on clinical application data;
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additionally, to Cmax, we tested two higher concentrations of the drugs (5× Cmax, 10×
Cmax): midazolam (300, 1500, and 3000 ng/mL; mmol; ratiopharm, Ulm, Deutschland) [44],
propofol (2, 10, and 20 µg/mL; mmol; B.Braun, Melsungen, Deutschland) [45,46], s-ketamin
(1, 5, and 10 µg/mL; mmol; Pfizer, New York City, NY, USA) [47], thiopental (1, 5, and
10 mg/mL; mmol; Sandoz, Holzkirchen, Germany) [48], fentanyl (10, 50, and 100 ng/mL;
Janssen-Cilag GmbH, Neuss, Deutschland) [49], remifentanil (15, 75, and 150 ng/mL;
mmol; GSK, München, Deutschland) [50,51], and sufentanil (1, 5, and 10 ng/mL; mmol;
Janssen-Cilag GmbH, Neuss, Deutschland). All drugs were dissolved and diluted with
water, whereas propofol had to be dissolved with Dimethyl sulfoxide (DMSO) (0.1% (v/v)).
It was important to optimize the DMSO concentration in the cell culture experiments and to
consider the specific requirements of the cells used in order to evaluate the possible effects
or influences of DMSO itself. Appropriate control groups were included in the experiments
to compare the effects of DMSO-treated samples at a concentration of 0.9% with untreated
ones, and no negative effects on the cells could be observed (see Table S1, Supplement).

2.3. Treatment and Cytotoxicity Assay

The cell treatment procedure was conducted according to an established microtiter
plate assay for the screening of hepatotoxicity [28,33–40]: HepG2/C3A cells (5 × 105) were
plated in a 24-well plate and the cells were exposed to different concentrations (Cmax, 5×
Cmax, 10× Cmax) of the several sedating drugs (see Section 2.2) for 72 h in the medium
or heparinized plasma from healthy volunteers (pooled plasma). Afterward, the cells
were treated with the three concentrations of the drugs only in the culture medium for
72 h again. The negative controls served cells, which were incubated with the medium or
plasma (without agents). Each assay was performed in triplicate, and the experiments were
repeated at least five times.

The pH values (Radiometer, ABL, Willich, Germany) were screened at the beginning
of each experiment in the cell culture supernatant, and a normal range was found in the
medium and plasma (see Tables S2 and S3, Supplement).

The tests commonly used to evaluate cytotoxicity are the colorimetric assay with 2,3-
bis(2-methoxy-4-nitro-5-sulfophenyl)-S-(phenylamino) carbonyl-2-tetrazolium hydroxide
(XTT) and the trypan blue exclusion assay [52,53]. The XTT assay, which determines the
metabolic activity and proliferation of cells, was performed according to the manufac-
turer’s instructions (XTT, Roche Diagnostics GmbH, Mannheim, Germany) [54]. XTT is a
tetrazolium salt that cleaves to formazan by the succinate dehydrogenase system, which be-
longs to the mitochondrial respiratory chain. This is significant, as it is only active in viable
cells. The optical density (OD) was measured on a microplate reader (Anthos Reader 2001,
Anthos Labtec Instruments, Austria) at 450 nm after one hour of assay time. The trypan
blue exclusion test (0.4% (w/v); Sigma, Seelze, Germany) rapidly assesses cell viability. The
test is based on the principle that viable cells with intact cell membranes are not colored,
while trypan blue traverses the membrane in a dead cell [55]. The total cell counts/mL were
determined in a Neubauer-improved cell-counting chamber (peqlab, Erlangen, Germany)
by manually counting the number of colored (dead) cells and unstained (viable) cells with
light microscopy.

Albumin production of the cultured hepatocytes was examined nephelometrically
from 0.2 mL of the cell culture medium supernatant (Immage 800, Beckman Coulter GmbH,
Krefeld Germany) [56].

Lactate dehydrogenase (LDH) levels in the supernatants were photometrically ana-
lyzed by the change in the absorbance at 340 nm with the automated chemistry analyzer
(Cobas Mira, Roche, Mannheim, Germany) according to the optimized standard method of
the Deutsche Gesellschaft für Klinische Chemie (DGKC) after 144 h of incubation [57].

The enzyme 7-ethoxy-resorufin-O-deethylase (EROD) activity was performed as de-
scribed by Donato et al. [58]. Before the measurement, hepatocytes were stimulated with
methylcholanthrene (3-MC, Sigma Aldrich, Seelze, Germany) for 72 h. The EROD assay
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was initiated by incubating the stimulated hepatocytes with 8 µM 7-ethoxyresorufin (Molec-
ular Probes, Eugene, OR, USA) and 10 µM dicumarol (Sigma Aldrich, Seelze, Germany)
for 1 h (37 ◦C, 5% CO2) in the culture medium. After 1 h of incubation under lightproof
conditions, the fluorescence of the metabolites from 7-ethoxy-resorufin by HepG2/C3A
cells was detected at 530 nm (excitation) and 584 nm (emission) by using a fluorescence
multiwell plate reader (Fluoroskan Ascent Lab Systems, Vienna, VA, USA). A resorufin
standard curve (0–80 pmol) was included for each plate.

2.4. Statistics

Statistical analysis was performed using SPSS Software Version 20 (SPSS Inc., Chicago,
IL, USA). Analysis among groups was performed using the Kruskal–Wallis test because data
were not normally distributed. Finally, the Mann–Whitney U test for pairwise comparison
was used. The data are presented as the median, 25th, and 75th quartiles with SPSS
Software Version 20 (SPSS Inc., Chicago, IL, USA). Significance was accepted at a p < 0.05
and is indicated with an “×” in the figures in Section 3.

3. Results
3.1. Sufentanil Reduces Cell Count

Only sufentanil significantly reduced the cell count at the clinically relevant concentra-
tion (Cmax) in the cell culture medium and plasma (the results for the Cmax in the medium
are shown in Figure 1A). After incubation with sufentanil, the cell count was reduced to
485 × 103/mL (medium) and 328 × 103/mL (plasma) compared to the negative control
(NC) (683 × 103/mL and 650 × 103/mL, respectively). Remifentanil reduced the cell count
in plasma (483 × 103/mL). No concentration-dependent effects were observed.
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posure groups is indicated by * p < 0.05, and × indicates outliers. 
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Figure 1. Test results for HepG2/C3A cells after exposure to Cmax (clinically relevant concentration)
of sedatives and opioids in a medium. Cell count (A), vitality (trypan blue staining) (B), release
of lactate dehydrogenase (LDH) (C), microalbumin concentration (D), activity of mitochondrial
dehydrogenases (XTT test) (E), and CYP1A2 activity (resorufin concentration) (F). Values represent
the median and 25th/75th percentiles. The significance between negative control (neg. control) and
exposure groups is indicated by * p < 0.05, and × indicates outliers.

3.2. Sufentanil Causes Highest Reduction in Vitality

Vitality in the cell culture medium or plasma was significantly decreased at the
Cmax for sufentanil (68%/69%), remifentanil (77%/80%), fentanyl (85%/82%), thiopental
(86%/81%), and propofol (86%/77%) compared to the NC (94%/90%) (the results for the
Cmax in the medium are shown in Figure 1B). A concentration-dependent effect was only
recorded for thiopental in plasma, with a decrease from 81% (Cmax) to 70% (C5×) and 67%
(C10×) (Figure 2).
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Figure 2. Vitality (trypan blue staining) of HepG2/C3A cells after exposure to thiopental in concen-
trations of 10 mg/mL (Cmax), 50 mg/mL (5× Cmax), and 100 mg/mL (10× Cmax) in plasma. Values
represent the median and 25th/75th percentiles. Significance between negative control (neg. control)
and exposure groups is indicated by * p < 0.05; significance between neg. control as well as Cmax and
exposure groups are indicated by ** p < 0.05, and × indicates outliers.

3.3. Remifentanil and Sufentanil Cause Higher Release of Lactate Dehydrogenase

In the medium, after 6 days, the lactate dehydrogenase (LDH) levels were significantly
increased at the Cmax after incubation with sufentanil (187 U/L) and remifentanil (193 U/L)
compared to the NC (148 U/L) (the results for the Cmax in the medium are shown in
Figure 1C) in the cell culture supernatant. There was no concentration-dependent effect. In
plasma, there was no significantly increased LDH release after 6 days for any of the drugs.

3.4. Sufentanil and Remifentanil Reduce Microalbumin Synthesis

A reduced microalbumin concentration in the cell culture supernatant compared
to the NC was not present in the medium at the Cmax concentrations for any of the
compounds (the results for the Cmax in the medium are shown in Figure 1D). After
incubation with higher concentrations of sufentanil and remifentanil (C5× − C10×), the
albumin concentration in the medium decreased (4.5 mg/L and 4.7 mg/L, respectively)
compared to the negative control (NC; 7.0 mg/L). In plasma, a significant reduction after
incubation with all three concentrations (Cmax, C5×, and C10×) of sufentanil (6.2 mg/L,
7.2 mg/L, and 8.1 mg/L) was seen compared to the NC (13.7 mg/L).

3.5. Midazolam and S-Ketamine Reduce Activity of Mitochondrial Dehydrogenases

The extinction (corresponding to the activity of mitochondrial dehydrogenases in
the XTT assay) was 1.5 for the NC in a medium. Midazolam (1.1) and s-ketamine (1.1)
showed a significantly reduced activity of mitochondrial dehydrogenases at the Cmax
concentrations (the results for the Cmax in the medium are shown in Figure 1E). There was
no concentration-dependent effect. No significant reduction in the XTT assay was observed
in plasma for any of the drugs.
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3.6. S-Ketamine and Remifentanil Reduce CYP1A2 Activity

A significant reduction in resorufin concentration (CYP1A2 enzyme activity) at the
Cmax compared to the NC (3.1 pmol/L) was observed after incubation with s-ketamine
(1.4 pmol/L) and remifentanil (2.7 pmol/L) (the results for the Cmax in the medium are
shown in Figure 1F). These effects were not concentration-dependent. A significant increase
in CYP1A2 activity was seen after incubation with propofol (4.5 pmol/L) and thiopental
(5.7 pmol/L). In plasma, CYP1A2 enzyme activity was significantly decreased compared
to the NC (3.0 pmol/L) for midazolam (1.7 pmol/L), propofol (1.7 pmol/L), s-ketamin
(1.6 pmol/L), fentanyl (1.0 pmol/L), remifentanil (1.6 pmol/L), and sufentanil (2.2 pmol/L)
at the Cmax concentrations. No concentration-dependent effects in plasma were seen.

In conclusion of the results, Table 1 summarizes the parameters for estimating the
hepatotoxic potential. The number of stars represents the degree of hepatotoxicity in terms
of impairment parameters and in relation to the negative control (NC) without a specific
ranking of the parameters among themselves.

Table 1. Comparison of tested sedatives and opioids in medium (M) and in plasma (P) at Cmax
(clinically relevant concentration) compared to NC (neg.Ctrl.).

Neg.Ctrl. Midazolam Propofol S-Ketamine Thiopental Sufentanil Remifentanil Fentanyl

M P M P M P M P M P M P M P M P

Cell Count
(×1000) 683 650 ↓ ↓ ↓

Vitality [%] 94 90 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
LDH [U/L] 148 168 ↑ ↑
XTT (OD) 1.5 0.8 ↓ ↓

MA [mg/L] 7 14 ↓
CYP1A2
[pmol/L] 3 3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Level of
hepatotoxicity

•
•

• • •
•

•
•
•

•
•

• • •
•
•

•
•
•
•

•
•
•

•
•
•

• •
•

The arrows show a significant (p < 0.05) increase (↑) or decrease (↓) in the corresponding category compared to
the negative control. The number of dots corresponds to the number of arrows of all assays and represents the
hepatotoxic potential of the different drugs in the medium and plasma.

4. Discussion

The diversity of concentration strategies makes it challenging to establish consensual
concentration criteria for classifying drugs as hepatotoxic ones. Typically, steady-state
drug concentrations in plasma (C ss) or maximum plasma drug concentrations (C max) are
commonly used; however, they are valid strategies to differentiate between hepatotoxic and
safe drugs. These test approaches do not consider the possible accumulation of drugs in the
liver or protein binding. Therefore, in this study, we used multiples of the maximum plasma
concentration (Cmax) (5×, 10×) of the investigated drugs to assess the toxic potential [59].
Xu et al. [43] reported that the 10 to 100-fold C max scaling factor represented a reasonable
threshold to differentiate safe versus hepatotoxic drugs. Nevertheless, C max values can be
easily measured and are accessible for reference compounds [21,60].

Acute liver failure (ALF) is often drug-related [61]. In preclinical models (in vitro or in
rodents) and clinical trials, drug-induced hepatotoxicity (DILI) is rarely recognized [62].
Patients in intensive care might be particularly vulnerable to hepatotoxic drugs as they often
already have liver damage as part of the underlying disease (e.g., hypoxic hepatitis or liver
dysfunction in sepsis). As drugs for sedation and analgesia are given over a long period
of time, the question of possible hepatotoxicity arises here in particular. Additionally, all
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tested sedatives and opioids are hepatically metabolized mostly via CYP, with the exception
of remifentanil, which can lead to the accumulation of these drugs in the course of liver
insufficiency. On the other side, ICU patients often need 8 to 12 different drugs, and a
possible toxic interaction and summarization of the used compounds may lead to a higher
risk of organ toxicities.

In this study, commonly used sedatives and opioids (midazolam, propofol, thiopen-
tal, s-ketamine, fentanyl, remifentanil, and sufentanil) were tested for hepatotoxicity. An
established cytotoxicity screening model based on HepG2/C3A cells was used to inves-
tigate the effects on cell number and vitality, LDH release, mitochondrial function (XTT
assay), microalbumin synthesis, and activity of CYP1A2 [28,33–37,39,40]. However, none
of the tested drugs showed pronounced cytotoxicity (a reduction of cell count by at least
50%) [63], and all tested substances reduced hepatocyte vitality (summary, see Table 1).
Three drugs (sufentanil, remifentanil, and s-ketamin) presented a significant reduction in
three or more of the six test parameters that could be interpreted as a moderate hepatotoxic
effect (Table 1).

Animal testing is used in pharmaceutical and industrial research to predict human
toxicity. This is especially true since the modulation of the immune system and cross-
communication between organs cannot be achieved by developing DILI in vitro researchers
based on cells and tissues [64]. Nevertheless, the animal models poorly predict human
drug safety [65]. More and more researchers are questioning the scientific value of costly
animal experiments [66]. Most studies evaluating DILI use rats or mice as animal models to
determine drug toxicity; however, a drug’s toxicity may differ in rats or mice. These incon-
sistencies in the in vivo studies between different animal models affect the extrapolation of
experimental results to humans [67]. As alternatives to animal testing, several in vitro and
in silico methods or organ-on-chip technologies have been developed that use human liver
cells or tissue sections as potential screening assays to identify hepatotoxic substances [68].
They are cost-effective and provide the rapid performance of a robust safety assessment
for many chemicals with limited toxicological information [69–71]. Unfortunately, the
necessary standardization is lacking in DILI in vitro studies. There is no clear consensus
on which models can most accurately predict hepatotoxicity in humans. All models have
strengths and weaknesses, but no particular model is suitable for detecting multifactorial
DILI mechanisms alone, as none of the models consider all mechanisms [72]. The scientific
community can enable the comparison of many in vitro models, for example, by establish-
ing consensus on reference drugs with recommended test concentrations and exclusion
criteria for conducting and interpreting in vitro studies. Any drug testing with a wide
variety of options provides insight into the hepatotoxic potential [65,72]. The detection of
drug-induced liver toxicity in the assessment of general cytotoxicity can currently only be
characterized by a rationalized, multi-stage testing strategy.

Sufentanil and remifentanil reduced vitality and showed negative effects on cell
integrity (LDH release in the cell culture supernatant) and/or cell count. According to
the literature, the classic side effects of opioids include respiratory depression, nausea,
and constipation [73]. However, there is no known hepatotoxic potential [74]. On the
contrary, some studies even show a protective effect of sufentanil and remifentanil on the
liver in ischemia–reperfusion injury due to anti-inflammatory properties [75,76]. As the
hepatocytes used in our assay are tumor cells, it is important to note that there is ongoing
research about the anti-tumor effects of sufentanil and inhibition of the proliferation of
hepatocellular carcinoma cells (Hep3B) [77]. However, whether sufentanil may show
anti-tumor effects remains unclear, and further research is needed.

S-ketamine, the chiral form of ketamine, is a short-acting anesthetic that intensive care
physicians widely use due to its favorable hemodynamic, anti-epileptic, opioid-sparing, and
bronchodilatory characteristics. Acute side effects include adverse psychological reactions
and temporary increases in heart rate and blood pressure [78]. After long-term use, urinary
symptoms and hepatotoxicity (hepatic and biliary damage, increased liver enzymes, and
even ALF) are known [74,79–81]. In our assay, s-ketamine negatively influenced vitality,
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but unlike what we expected, we did not demonstrate a negative effect on the cell count
and LDH release. This difference could be because our incubation period was only six days
(in contrast to long-term use) or the concentration was not high enough. For concentrations
of 100 µg/mL and higher (ten times the highest concentration we tested), Lee et al. showed
a reduction in the HepG2 cell count and an increased release of LDH [82].

For propofol, midazolam, partly thiopental, and fentanyl, our results are in line
with what we found in the literature: we saw a reduction in hepatocyte vitality without
an increase in LDH or a reduction in cell count, which would be consistent with a low
probability of hepatotoxicity. None of these drugs is known to be hepatotoxic besides some
case reports [83,84]. In addition, higher concentrations of thiopental in plasma led to a
marked decrease in the vitality of the test cells. The mechanisms behind this finding are
unclear. Thiopental is metabolized in the liver, and the degradation products are eliminated
by the kidneys.

Mitochondrial dysfunction plays a key role in the pathophysiology of DILI, and
HepG2/C3A cells seem to be an optimal sensor in this regard due to the high content of
mitochondria [85]. We found mitochondrial dysfunction (measured by the XTT test) for
midazolam and s-ketamin. Midazolam is a short-acting benzodiazepine with sedative
and anxiolytic effects. Its spectrum of side effects includes hypotension, agitation, and,
especially in combination with opioids, apnea, and hypoxia [86–88]. Our results support
the findings of Colleoni et al., who demonstrated a negative effect of midazolam on mito-
chondrial electron transfer [89] due to its high plasma protein binding of up to 97% [90,91],
a normal mitochondrial function (and vitality) was measured in the plasma test as expected.
Our results also support the findings of different studies on mitochondrial dysfunction
for s-ketamin: it is known to lead to dysfunction of mitochondrial enzymes, e.g., NADH
dehydrogenase, and even to mitochondrial degeneration [92–95]. Other than expected,
the effect was abolished in plasma, although s-ketamin does have a low plasma protein
binding (10–30%) [96]. Although there is some evidence in the literature, we did not find
mitochondrial dysfunction for fentanyl and remifentanil. One study by Vilela et al. did
show a restriction of mitochondrial function in neuronal cells for both drugs [97]. With
HepG2, a slight restriction of the respiratory chain by fentanyl and an improvement by
remifentanil were seen [98,99]. For propofol, one major side effect is propofol infusion
syndrome. This means the occurrence of heart failure, cardiac arrhythmias, lactic acidosis,
renal insufficiency, rhabdomyolysis, hypertriglyceridemia, and hepatomegaly, mainly after
long-term use of propofol (>6 days). Even though it is believed to be due to a disturbance
of the mitochondrial respiratory chain or fatty acid oxidation [100,101], we did not see
mitochondrial dysfunction in HepG2 cells.

HepG2/C3A is capable of synthesizing most plasma proteins, including albumin [41].
For example, albumin production by HepG2/C3A cells is used in the ELAD liver support
system [102]. In toxicological studies, albumin synthesis serves as a parameter to assess
hepatocyte function: after cell damage, such as after incubation with acetaminophen,
microalbumin synthesis is reduced [103]. Our results did not show a significant decrease
in the albumin concentration for any of the tested drugs, except for higher concentrations
of sufentanil and remifentanil. There is no evidence in the current literature on this
topic. Still, a study from 1987 showed a 50% decrease in albumin secretion of human
hepatocytes when exposed to different opioids like morphine, heroin, and methadone in
higher concentrations [31].

The activity of CYP1A2, one of the most important CYP450 enzymes, especially for
catalyzing many reactions involved in drug metabolism, was diminished by s-ketamine
and remifentanil. For remifentanil, there is no evidence in the literature regarding the
influence on CYP450 enzymes. In the organism, it is exclusively metabolized via tissue-
independent esterases, which makes it unique among all opioids with a context-sensitive
half-time of 3.5 min, regardless of infusion time [104]. Despite the fact that s-ketamine is
metabolized to norketamine via CYP3A4 and CYP2B6, our results show that s-ketamine
acts as an inhibitor of the CYP1A2 enzyme. In the literature, there is evidence that ketamine
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can act as an inhibitor or inducer of CYP1A2, depending on the route and duration of
administration [105]. Two tested drugs, propofol and thiopental, increased the activity
of CYP1A2. For propofol, this confirms the results of a study on rabbits [106]. However,
studies in human hepatic microsomes showed that propofol appears to be a weak inhibitor
of CYP 1A2, 2C9, and 3A4 isoenzymes [107]. Propofol itself is metabolized via CYP2B6 and
CYP2C9 [108]. Although the exact degradation pathways for thiopental are unknown, the
literature shows that it acts as an inducer of CYP3A3 and 3A4 [109]. An inducing effect
on CYP1A2, as we see in our results, is not known. Midazolam, fentanyl, and sufentanil
are metabolized almost exclusively by CYP3A4 [110,111]. In agreement with Vrzal et al.,
we did not detect any effect on CYP1A2 activity for midazolam [112]. For fentanyl and
sufentanil, there is no evidence in the literature of the effects of the CYP450 system. All
substances are excreted from the urine after metabolism via the before-mentioned CYP
enzymes (and glucuronidation for some).

The use of DMSO as a solvent for propofol had no negative effects on cell viability
and functionality in the experiments, and no solvent-related effects were observed in the
propofol experiments using DMSO as a solvent (data in Supplementary Table S1). DMSO
is widely used in biomedical research, toxicology, pharmacology, and cell biology. It is
used as a solvent for cryopreservation and can have different effects depending on the
concentration and cell type studied. Below a concentration of 10%, DMSO is generally
considered non-toxic, but its cytotoxicity is concentration-dependent [113,114]. We could
also exclude any pH-related effects on the test results, as the tested pH of all drugs at the
Cmax was in the range of the negative control (data in Supplementary Tables S2 and S3).

Three major limitations in this study could be addressed in further research. First,
the metabolic capacity of HepG2/C3A cells is restricted regarding certain enzymes (e.g.,
cytochrome enzymes), degradation pathways (e.g., plasma esterases), and transport pro-
teins (e.g., bile salt export pump), which could lead to possible over- or underestimation
of hepatotoxicity. The used cells are suitable for testing parental substances but not for
determining metabolite-dependent toxicity [42]. Second, other cells typical for the liver
(e.g., Kupffer cells) are missing in this assay, and some evidence suggests that certain drugs
(e.g., diclofenac) lead to hepatoxicity via pro-inflammatory signals by these cells [115].
Third, it should be considered that HepG2/C3A are tumor cells, and an anti-tumor effect
could be misinterpreted as possible hepatotoxicity. For propofol and sufentanil, anti-tumor
effects via micro-RNAs and cyclooxygenase have been described [116–118].

Despite these limitations, our study demonstrates a moderate hepatotoxic effect of
sufentanil, remifentanil, and s-ketamine in a well-characterized model of in vitro hepato-
toxicity and biosensoring [28,33–40]. Whether these results can be translated into clinical
practice should be further observed depending on further studies that may use a more
complex cell culture model of the human liver; for instance, by inducing more enzymes
(e.g., CYP3A4), [119] and/or the use of co-culture of hepatocytes and Kupffer cells [120]
and the use of 3D models and global pharmacovigilance reports. Regarding drug-induced
liver injury (DILI), however, little is known about the hepatotoxicity of examined drugs
in critically ill patients. The reason for this could be that in the ICU, many factors can
result in liver injury: an underlying disease, a complication during treatment (e.g., sepsis),
administration of drugs over a long period and sometimes high doses, or the combination
of multiple factors.

5. Conclusions

Sufentanil, remifentanil, and s-ketamine showed moderate hepatotoxic effects when
in vitro. These drugs should be given with caution in patients vulnerable to hepatotoxic
drugs, e.g., patients with pre-existing liver disease or liver impairment as part of the
underlying disease. Further studies, especially in critically ill patients, are indicated.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cimb46040189/s1, Table S1: Test results for HepG2/C3A cells after
exposure to 0.9% DMSO (dimethyl sulfoxide) compared with pure cell culture medium after 3 days
incubation. Values are represented as median and min/max. LDH: lactate dehydrogenase; Table S2:
pH for HepG2/C3A cells in the medium after exposure to sedatives and opioids in concentrations
Cmax, C5×, and C10×. Values represent the median and 25th/75th percentiles. Significance between
negative control and exposure groups is indicated by * p < 0.05; Table S3: pH for HepG2/C3A cells
in plasma after exposure to sedatives and opioids in concentrations Cmax, C5×, and C10×. Values
represent the median and 25th/75th percentiles. The significance between negative control and
exposure groups is indicated by * p < 0.05.
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