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Abstract

:

Despite the ongoing clinical trials and the introduction of novel treatments over the past few decades, ovarian cancer remains one of the most fatal malignancies in women worldwide. Platinum- and paclitaxel-based chemotherapy is effective in treating the majority of patients with ovarian cancer. However, more than 70% of patients experience recurrence and eventually develop chemoresistance. To improve clinical outcomes in patients with ovarian cancer, novel technologies must be developed for identifying molecular alterations following drug-based treatment of ovarian cancer. Recently, extracellular vesicles (EVs) have gained prominence as the mediators of tumor progression. In this study, we used mass spectrometry to identify the changes in EV protein signatures due to different chemotherapeutic agents used for treating ovarian cancer. By examining these alterations, we identified the specific protein induction patterns of cisplatin alone, paclitaxel alone, and a combination of cisplatin and paclitaxel. Specifically, we found that drug sensitivity was correlated with the expression levels of ANXA5, CD81, and RAB5C in patients receiving cisplatin with paclitaxel. Our findings suggest that chemotherapy-induced changes in EV protein signatures are crucial for the progression of ovarian cancer.
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1. Introduction


Global cancer statistics indicate that ovarian cancer is the third most fatal gynecological malignancy affecting women worldwide; a total of 313,959 new ovarian cancer cases and 207,252 deaths were reported globally in 2020 [1]. In Central and Eastern Europe, ovarian cancer has the highest incidence rate in the world (10.7/100,000) and a mortality rate of 5.6/100,000 [2]. There will be a worldwide increase of 55% in the incidence of ovarian cancer and an increase in ovarian cancer deaths of 67% based on population increase by 2035 [3]. Risk factors for ovarian cancer include infertility, endometriosis, obesity, age, and genetics (germline mutations in breast cancer susceptibility genes [BRCA1/BRCA2] and Lynch syndrome) [4]. The lifetime risk of BRCA1 caused by BRCA mutation is 40% to 60%, and the lifetime risk of BRCA2 is 11% to 27%. BRCA mutation can be detected in 14% to 18% of women with ovarian cancer, especially the high-grade serous ovarian cancer (HGSOC) subtype, which accounts for about 1% of the general population [5]. The symptoms of early-stage ovarian cancer are typically vague (such as indigestion and bloating), and because the ovary is small and located deep in the pelvic cavity, it is difficult to find the lesion which causes delayed referral for workup of malignancy [6]. Typically, no symptoms are observed during the early stages of ovarian cancer; moreover, clinical detection does not usually occur until later stages [7]. Beyond all the research being performed in ovarian cancer therapeutics, surgery is still a mainstay in the staging and treatment of ovarian cancer [8].



When the tumors are in advanced stages, which is the most usual situation, the standard of care for patients with ovarian cancer is cytoreductive surgery, followed by combination with chemotherapy [9]. Regimes have included cisplatin alone; a combination of doxorubicin, ifosfamide, dacarbazine, cyclophosphamide, and taxol; and various other combinations. Optimal cytoreduction followed by adjuvant platinum-based chemotherapy has been practiced based on case series and prospective trials [10]. Combination platinum chemotherapy in combination with paclitaxel, doxorubicin, ifosfamide, and other agents has been used with varying response rates. Approximately 80% of ovarian cancers are treated with cytoreductive surgery followed by adjuvant chemotherapy with carboplatin and paclitaxel or cisplatin and paclitaxel [11,12]. The drug mechanism of cisplatin is to prevent tumor growth by inhibiting the DNA synthesis of cancer cells; it is a non-specific cell cycle anti-tumor drug [13] and also the first gene complex to be approved by the US Food and Drug Administration (FDA) for the treatment of patients with OC. Response rates are good initially, but most patients treated with cisplatin eventually develop resistance through a variety of complex mechanisms, leading to treatment failure and increased mortality. Drug resistance may be caused by many reasons, including cell changes that occur before cisplatin binds to the cellular target as pre-target resistance, alterations of DNA–cisplatin adducts as on-target resistance, mutations or expression of downstream pathways that induce apoptosis changes as post-target drug resistance, and those not directly related to changes in cellular pathways and cisplatin-induced signals as off-target drug resistance [14]. Patient recurrence more than 6 months after front-line platinum-based therapy is considered platinum-sensitive, whereas platinum-resistant recurrence occurs after less than 6 months [15]. During the six months after the completion of major platinum-based chemotherapy, disease progression is usually closely related to platinum resistance. Due to its significant impact on patient survival time and quality, improving the response to platinum is an important challenge [16]. These chemotherapies are effective in treating the majority of patients with ovarian cancer. However, 70% of patients who receive this type of treatment relapse, and the recurring cancer is often resistant to standard platinum-based chemotherapy [17]. Because of its high recurrence and chemoresistance rates, 5-year survival rates in stage III and stage IV ovarian cancer are 42% and 26%, respectively [5]. Therefore, to improve the clinical outcomes of patients with ovarian cancer, new technologies must be developed for identifying the molecular alterations resulting from drug-based treatments of ovarian cancer.



During the past decade, the vesicles released by different cell types have been shown to be important mediators between the cells [18]. Long considered as inert debris or a hallmark of cell injury, extracellular vesicles (EVs) include apoptotic bodies, microvesicles, and exosomes [19]. Considering each EV subtype lacks specific markers, the International Society for Extracellular Vesicles has suggested the generic term “EVs” for the vesicles naturally released from the cells [20]. EVs are lipid–bilayer membrane-enclosed vesicles secreted by cells into the extracellular space with a diameter of 40–1000 nm [21]. However, the biogenesis process of EVs is very complex, and the mechanism underlying EVs formation and secretion remains poorly understood. EVs are intercellular transport carriers released under physiological and pathological conditions over long distances to recipient cells which can carry and deliver various molecules, such as nucleotides (DNA, RNA, mRNAs, miRNAs, etc.), proteins, lipids, metabolites, etc., which affect receptor cells [22,23]. EV contents can resist degradation under the pathological environment and cross the biological barrier with higher stability and bioavailability under the protection of the lipid bilayer structure of the membrane [24]. EVs encapsulate and convey information to surrounding cells or distant cells that are present in the surrounding extracellular environment through several mechanisms [25]. For example, some EVs can deliver their content through different types of endocytosis, such as clathrin-mediated endocytosis that is dependent or independent of receptors, macropinocytosis, and raft domain-mediated endocytosis [26]. In addition, EVs can also fuse with the membrane of the recipient cell to release their cargo intracellularly, either directly or through specific receptors [27]. Moreover, EVs may also release their contents into the extracellular space and activate a fast response in the neighboring cells [28]. Finally, the membrane surfaces of EVs can trigger signaling cascades through receptor/ligand interactions without internalization [29]. Thus, EVs have the potential to deliver complex information to multiple cells in their tissue environment, depending on both the cellular source and the stimulus that engendered their biogenesis [30].



Multiple studies have indicated that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the EV biogenesis machinery or components thereof attractive targets for anticancer therapy [31]. The ways by which tumor-derived EVs are involved in tumor growth are numerous and include both the uptake of EVs carrying oncogenic material (such as RNA or protein) by tumor cells and inhibiting the release from normal cells of EVs with tumor-suppressive cargo [32]. In addition, tumor-derived EVs with protumorigenic activity regulate cancer development by promoting cancer aggressiveness, invasiveness, angiogenesis, and drug resistance [33], suggesting the important effects of tumor-derived EVs on cancer development, progression, and therapy. EV-mediated therapy resistance can potentially act through distinct but not mutually exclusive mechanisms, including transfer of proteins and miRNA that promote therapy resistance and transfer of drug transporters, act as decoys for antibody-based therapeutics, and prevent antibodies from accessing their ligand target [34,35]. Therefore, identifying prognostic biomarkers capable of detecting drug response in patients with ovarian cancer may help improve their clinical outcomes.



In this study, we analyzed the changes in EV protein signatures due to different chemotherapeutic drugs used for the treatment of ovarian cancer. By examining these changes, we identified the specific protein induction patterns of cisplatin alone, paclitaxel alone, and cisplatin combined with paclitaxel. Drug sensitivity was found to be correlated with the expression levels of ANXA5, CD81, and RAB5C in patients receiving the combination of cisplatin with paclitaxel. Our findings suggest that chemotherapy-induced changes in EV protein signatures are crucial for the progression of ovarian cancer.




2. Materials and Methods


2.1. Cell Culture


The human ovarian cancer cell line ES2 was obtained from the Bioresource Collection and Research Center (Hsinchu, Taiwan). The cells were propagated in Roswell Park Memorial Institute 1640 medium (Life Technologies, Rockville, MD, USA) supplemented with 5% fetal bovine serum (Life Technologies, Rockville, MD, USA). Conditioned media containing ES2 cells treated with chemotherapeutic agents (10 µM for 24 h) were cultured in serum-free media for EV isolation.




2.2. EV Extraction and Size Determination


To isolate EVs from the ES2 cells, conditioned media containing ES2 cells treated with cisplatin alone, paclitaxel alone, and cisplatin combined with paclitaxel were collected. All media were centrifuged at 700× g to pelletize debris and cells; the supernatant was concentrated 1000 folds (by using centrifugal filter units; protein size cutoff: 100 kD) to a final volume of ≤500 μL. Subsequently, size exclusion chromatography with qEV columns (Izon Science, Christchurch, New Zealand) was performed as per the manufacturer’s instructions to separate the EVs from other supernatant constituents. Next, fractions containing EVs (fractions 1–3 after void volume) were pooled. The protein content was evaluated through a protein assay (Bio-Rad Laboratories, Hercules, CA, USA). Finally, to determine the size of the EVs, the nanoparticle tracking analysis was conducted using the qNANO instrument (Izon Science, Christchurch, New Zealand) as per the manufacturer’s instructions.




2.3. Proteomic Analysis of EVs


Complete proteomic profiling of EVs was performed through liquid chromatography (LC) with tandem mass spectrometry (MS/MS). Desalted peptides were subjected to LC-MS/MS by using an Orbitrap Elite hybrid ion trap/Orbitrap tandem mass spectrometer equipped with a 1D-LC (RP) Dionex UltiMate 3000 RSLCnano system (Tools Biotech, New Taipei City, Taiwan). Raw MS/MS spectra were analyzed using the Proteome Discoverer software (version 1.4; Thermo Fisher Scientific, Waltham, MA, USA). Then, for peptide identification, the MS/MS spectra were subjected to a search against the UniProt database (released on March 16, 2016; extracted for Homo sapiens; 20,199 sequences) by using the Mascot search engine (version 2.5, Matrix Science, London, UK). All proteins detectable by at least one unique peptide were deemed to be present in the sample (Table S1).




2.4. Gene Ontology and Functional Analysis


Specific upregulated and downregulated proteins in ovarian cancer cells treated with cisplatin combined with paclitaxel were subjected to a gene ontology (GO) analysis, which was performed using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt; http://www.webgestalt.org/option.php, accessed on 30 March 2021) [36]. Functional analysis of the aforementioned proteins in ovarian cancer cells treated with cisplatin combined with paclitaxel was conducted using the Enrichr [37] and ShinyGO [38] databases.




2.5. Cancer Treatment Response Gene Signature DataBase Analysis


The Cancer Treatment Response gene signature DataBase (http://ctrdb.ncpsb.org.cn/, accessed on 10 October 2022)—a unique tool for basic and clinical researchers to access, integrate, and reuse clinical transcriptome data pertaining to cancer drug response [39]—was used to determine the predictive values of ANXA5, CD81, and RAB5C for the chemotherapeutic sensitivity of ovarian cancer.




2.6. Statistical Analysis


For all data, significance was calculated using the one-sided Student t-test. A p value of <0.05 was considered to be statistically significant.





3. Results


3.1. Sizes of EVs Isolated from Drug-Treated ES2 Cells


To determine the characteristics of EVs produced after the treatment of ovarian cancer cells with different chemotherapeutic agents, we examined the quantity and quality of these EVs. The nanoparticle tracking analysis revealed a multimodal distribution of particles ranging from 80 to 700 nm (mean value: approximately 180 nm, Figure 1). The number and particle size distribution were higher for the EVs isolated from ES2 cells treated with cisplatin alone than for those isolated from ES2 cells treated with paclitaxel alone and with both cisplatin and paclitaxel (Figure 1B–D).




3.2. Differential Expression of EV Proteins in ES2 Cells Treated with Various Chemotherapeutic Drugs


We used mass spectrometry to characterize the protein signatures of EVs isolated from ES2 cells treated with different chemotherapeutic agents. In accordance with the statistical analysis results pertaining to protein expression levels (unpaired Student’s t-test, p < 0.05, with a fold-change cutoff of ≥1.5 for upregulation and downregulation), we identified 23 instances of upregulated (red) and 10 instances of downregulated (blue) EV proteins from the comparison between cisplatin-treated and mock ES2 cells, 51 upregulated (red) and 31 downregulated (blue) EV proteins from the comparison between paclitaxel-treated and mock ES2 cells, and 45 upregulated (red) and 28 downregulated (blue) EV proteins from the comparison between cisplatin–paclitaxel-treated and mock ES2 cells (Table 1; Figure 2A–C). The mass spectrometry results revealed the expression of the general surface marker CD63 on the EVs isolated from ES2 cells treated with different chemotherapeutic agents (Figure 2A–C). To identify molecular alterations following the drug-based treatment of ES2 cells, we compared the posttreatment expression data of EV proteins among the different treatments. The results indicate that 12 proteins were upregulated in response to chemotherapy; of them, five specific proteins were upregulated in ES2 cells treated with both cisplatin and paclitaxel (Figure 2D; Table 1). Five proteins exhibited contrasting expression levels in response to chemotherapy; five specific proteins were downregulated in ES2 cells treated with both cisplatin and paclitaxel (Figure 2E; Table 2).




3.3. Results of GO and Functional Enrichment Analyses of Specific Deregulated Proteins in EVs Isolated from ES2 Cells Treated with Both Cisplatin and Paclitaxel


Five specific proteins were upregulated in EVs isolated from ES2 cells treated with both cisplatin and paclitaxel; these proteins were further analyzed using WebGestalt [40] and ShinyGO [38]. For these proteins, the most prominent biological process–related GO terms were “response to stimulus” and “localization” (Figure 3A, left panel), the most prominent cellular component–related GO terms were “extracellular space” and “vesicle” (Figure 3A, middle panel), and the most prominent molecular function–related GO term was “protein binding” (Figure 3A, right panel). Figure 3B presents a chart graph depicting the relationships between these five specific upregulated proteins and enriched pathways. Five specific proteins were downregulated in ES2 cells treated with both cisplatin and paclitaxel. For these proteins, the most prominent biological process–related GO terms were “metabolic process”, “cellular component organization”, “response to stimulus”, “localization”, and “biological regulation” (Figure 3C, left panel); the most prominent cellular component–related GO terms were “extracellular space”, “cytosol”, “membrane”, and “vesicle” (Figure 3C, middle panel); and the most prominent molecular function–related GO term was “protein binding” (Figure 3C, right panel). Figure 3D depicts the relationships between these five specific downregulated proteins and enriched pathways.




3.4. Results of Drug Sensitivity and Response Analyses of Deregulated Proteins in EVs Isolated from ES2 Cells Treated with Both Cisplatin and Paclitaxel


We extracted data from the Cancer Treatment Response gene signature DataBase [41] and identified the correlations between the expression of deregulated proteins (genes) and drug sensitivity. Among the five specific upregulated proteins (genes) in EVs isolated from ES2 cells treated with both cisplatin and paclitaxel, ANXA5 (Figure 4A), CD81 (Figure 4B), and RAB5C (Figure 4D) were significantly upregulated in chemoresistant patients compared with their expression levels in chemosensitive patients (GSE30161). However, we observed no correlations between drug sensitivity and the expression levels of the five specific downregulated proteins (genes) in EVs isolated from ES2 cells treated with both cisplatin and paclitaxel (Figure 4F–J).





4. Discussion


Despite the ongoing clinical trials and the introduction of novel treatments over the past few decades, ovarian cancer remains one of the most fatal malignancies in women worldwide [42]. Currently, platinum- and taxane-based chemotherapy is regarded as the treatment of choice for most patients with ovarian cancer [43]. However, despite the initial high response rates, standard chemotherapeutic approaches are associated with recurrence in the majority of patients [44]. Therefore, the current limitations of chemotherapeutic treatment options necessitate the development of novel therapeutic strategies.



Recent studies have indicated that EVs display multiple roles in tumor progression [45]. EVs secreted by different kinds of cells are a kind of vesicles consisting of lipid bilayer membranes and play important roles in cell-to-cell communication [46]. EVs from mesenchymal stem cells could transfer angiogenesis-related microRNAs [47]. Metastatic organotropism is associated with EVs and the integrins of EVs could be used to predict tumor metastasis [48]. Until now, most studies have focused on EVs’ microRNA transfer in various cancers. It is known that the functions of EVs are not restricted to maintaining normal biological processes but also encompass drug resistance [45]. However, the mechanisms by which proteins in exosomes affect the phenotype of recipient cells due to complicated and variable biological processes and the mechanisms of chemoresistance are still elusive [49]. EVs mediate drug resistance through various mechanisms, including drug sequestration [50] and protein or RNA transfer [51,52,53]. The protein signatures of EVs isolated from drug-resistant tumors vary from those of EVs isolated from drug-sensitive tumors [54]. Therefore, alterations in specific EV proteins can be used as a prognostic and diagnostic biomarker of cancer. Accumulating research indicates that EVs are the important vesicles disseminating drug resistance. MicroRNAs in EVs, which could change various pathways related to chemotherapy resistance, have been reported in different cancers [55]. Previous studies have shown that EVs secreted by bone marrow stromal cells (BMSCs), cancer-associated fibroblasts (CAFs), and tumor cells promote chemotherapy resistance in human tumors [56,57,58]. For instance, some researchers have shown that transient receptor potential channel 5 (TrpC-5)-containing EVs in breast cancer and P-glycoprotein (P-gp)-containing microvesicles in ovarian cancer are responsible for chemotherapeutic resistance [59,60]. Glutathione S-transferase P1 (GSTP1), which is associated with detoxification and glutathione conjugation, has been reported in adriamycin-resistant breast cancer cells [61,62]. However, in the above studies, the functional proteins were selected by subjective conjecture instead of screening objectively. Thus, only some well-known proteins were identified, and novel and pivotal components in the EVs were not explored. Notably, the transmission of proteins by EVs is significant in regulating chemotherapy resistance.



A study by Zhao et al. found from patient samples that Midkine is a potential diagnostic marker in ovarian cancer for cisplatin/paclitaxel combination clinical therapy [63]. In our study, we examined the differential expression of EV proteins following the treatment of ovarian cancer cells with different chemotherapeutic agents by mass spectrometry analysis. We found that drug sensitivity was correlated with the expression levels of ANXA5, CD81, and RAB5C in patients receiving both cisplatin and paclitaxel. ANXA promotes resistance to several drugs, which indicates its importance in treatment resistance [64]. We found that the expression of ANXA5 was significantly upregulated in chemoresistant patients receiving platinum- and paclitaxel-based chemotherapy compared to chemosensitive patients receiving the same therapy. This finding is consistent with those of a study reporting an association between ANXA5 and drug resistance in ovarian cancer [15]. The mechanisms underlying ANXA-mediated drug resistance remain unclear. Recent research points out that the application of fusion protein combines ANXA5, an ovarian tumor- and tumor vasculature-targeting protein, with mutated cystathionine gamma-lyase (mCTH), an enzyme that converts selenomethionine (SeMet) into toxic methylselenol, which generates reactive oxygen species, leading to eventual tumor cell death [65]. Altogether, targeting ANXA5 may help eliminate drug resistance and improve treatment efficacy. However, most drug studies involving ANXA proteins are still in the laboratory stage, with very few clinical applications. Although the role of CD81 in the drug resistance of ovarian cancer remains unclear, studies have indicated a correlation between CD81 and drug resistance in patients with gastric cancer [66]. Hence, CD81 can be used as a therapeutic target to eliminate drug resistance and increase drug sensitivity. However, research on the clinical application of CD81 is still in its infancy. RAB5C is a guanosine triphosphatase that participates in endosomal membrane fusion reactions and can regulate endosome sorting [67]. This compound plays a role in tumorigenesis by promoting the migration of tumor cells [68]. Onodera et al. [69] reported that RAB5C promotes the invasion of breast cancer cells. However, the role of RAB5C in drug resistance remains unclear. Our results indicate a negative correlation between an elevated expression level of RAB5C and the sensitivity of patients with ovarian cancer to platinum- and paclitaxel-based chemotherapeutic regimens. Therefore, downregulating the expression of RAB5C may aid in the treatment of ovarian cancer.




5. Conclusions


Aberrant expression of ANXA5, CD81, and RAB5C affects the sensitivity of ovarian cancer cells to platinum- and paclitaxel-based chemotherapeutic agents. Therefore, ANXA5, CD81, and RAB5C may serve as therapeutic targets in drug-resistant ovarian cancer.
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Figure 1. Particle size distribution and number of EVs isolated from ES2 cells treated with different chemotherapeutic agents. The figure shows representative histograms of the size distribution of EVs in mock ES2 cells (A), ES2 cells treated with cisplatin alone (B), ES2 cells treated with paclitaxel alone (C), and ES2 cells treated with both cisplatin and paclitaxel (D). 
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Figure 2. Protein expression levels in ES2 cells treated with different chemotherapeutic agents. The figure shows differentially expressed proteins in EVs isolated from ES2 cells treated with cisplatin alone (A), ES2 cells treated with paclitaxel alone (B), and ES2 cells treated with both cisplatin and paclitaxel (C) (unpaired Student’s t test, p < 0.05, with a fold-change cutoff of ≥1.5 for upregulation and downregulation). (D) Protein number refers to the number of upregulated proteins in each pair of ES2 cells treated with different chemotherapeutic agents. The Wayne diagram depicts the intersection of differentially expressed genes. (E) Protein number refers to the number of downregulated proteins in each pair of ES2 cells treated with different chemotherapeutic agents. The Wayne diagram shows the intersection of differentially expressed genes. 
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Figure 3. Results of GO and functional enrichment analyses of the top five upregulated and downregulated proteins in EVs isolated from ES2 cells treated with both cisplatin and paclitaxel. Results of the GO analysis of the top-five upregulated proteins (A) and top five downregulated proteins (C) Results of the pathway enrichment analysis of five upregulated proteins (B) and five downregulated proteins (D). The results are presented in the following three categories: biological process, cellular component, and molecular function. Each bar represents the number of proteins. GO, gene ontology. 
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Figure 4. Results of drug sensitivity analysis of differentially expressed proteins in EVs isolated from cisplatin-treated ES2 cells. (A–E) Expression levels of five upregulated proteins (genes) in response to the combination of cisplatin and paclitaxel. (F–J) Expression levels of five downregulated proteins (genes) in response to the combination of cisplatin and paclitaxel. * p < 0.05 and ** p < 0.01. 
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Table 1. Upregulation of proteins in EVs isolated from ES2 cells treated with different chemotherapeutic agents.
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	Protein ID
	Gene Name
	Cisplatin
	Paclitaxel
	Cisplatin + Paclitaxel





	P08133
	ANXA6
	ANXA6
	—
	—



	P35613
	BSG
	BSG
	—
	—



	Q01518
	CAP1
	CAP1
	—
	—



	P68104
	EEF1A1
	EEF1A1
	—
	—



	P06733
	ENO1
	ENO1
	—
	—



	P07195
	LDHB
	LDHB
	—
	—



	P60709
	ACTB
	—
	ACTB
	—



	P68032
	ACTC1
	—
	ACTC1
	—



	P04083
	ANXA1
	—
	ANXA1
	—



	P06899
	H2BC11
	—
	H2BC11
	—



	O60814
	H2BC12
	—
	H2BC12
	—



	Q86YZ3
	HRNR
	—
	HRNR
	—



	P11279
	LAMP1
	—
	LAMP1
	—



	P02788
	LTF
	—
	LTF
	—



	P08758
	ANXA5
	—
	—
	ANXA5



	P60033
	CD81
	—
	—
	CD81



	Q92820
	GGH
	—
	—
	GGH



	P51148
	RAB5C
	—
	—
	RAB5C



	O00560
	SDCBP
	—
	—
	SDCBP



	P25311
	AZGP1
	AZGP1
	AZGP1
	AZGP1



	P08962
	CD63
	CD63
	CD63
	CD63



	P01040
	CSTA
	CSTA
	CSTA
	CSTA



	P20930
	FLG
	FLG
	FLG
	FLG



	P01859
	IGHG2
	IGHG2
	IGHG2
	IGHG2



	P01834
	IGKC
	IGKC
	IGKC
	IGKC



	P0DOY2
	IGLC2
	IGLC2
	IGLC2
	IGLC2



	P13473
	LAMP2
	LAMP2
	LAMP2
	LAMP2



	P61626
	LYZ
	LYZ
	LYZ
	LYZ



	Q06830
	PRDX1
	PRDX1
	PRDX1
	PRDX1



	P60900
	PSMA6
	PSMA6
	PSMA6
	PSMA6



	P31151
	S100A7
	S100A7
	S100A7
	S100A7



	P04075
	ALDOA
	ALDOA
	ALDOA
	—



	P69905
	HBA1
	HBA1
	HBA1
	—



	P00338
	LDHA
	LDHA
	LDHA
	—



	P0CG48
	UBC
	UBC
	UBC
	—



	P61204
	ARF3
	ARF3
	—
	ARF3



	P02768
	ALB
	—
	ALB
	ALB



	P07355
	ANXA2
	—
	ANXA2
	ANXA2



	P05089
	ARG1
	—
	ARG1
	ARG1



	P31944
	CASP14
	—
	CASP14
	CASP14



	P04040
	CAT
	—
	CAT
	CAT



	P07339
	CTSD
	—
	CTSD
	CTSD



	P81605
	DCD
	—
	DCD
	DCD



	Q08554
	DSC1
	—
	DSC1
	DSC1



	Q02413
	DSG1
	—
	DSG1
	DSG1



	P15924
	DSP
	—
	DSP
	DSP



	Q01469
	FABP5
	—
	FABP5
	FABP5



	Q5D862
	FLG2
	—
	FLG2
	FLG2



	P04406
	GAPDH
	—
	GAPDH
	GAPDH



	O75223
	GGCT
	—
	GGCT
	GGCT



	Q16777
	H2AC20
	—
	H2AC20
	H2AC20



	P14923
	JUP
	—
	JUP
	JUP



	P31025
	LCN1
	—
	LCN1
	LCN1



	P12273
	PIP
	—
	PIP
	PIP



	P53801
	PTTG1IP
	—
	PTTG1IP
	PTTG1IP



	P05109
	S100A8
	—
	S100A8
	S100A8



	P06702
	S100A9
	—
	S100A9
	S100A9



	O95969
	SCGB1D2
	—
	SCGB1D2
	SCGB1D2



	Q96P63
	SERPINB12
	—
	SERPINB12
	SERPINB12



	P29508
	SERPINB3
	—
	SERPINB3
	SERPINB3



	P22735
	TGM1
	—
	TGM1
	TGM1



	Q08188
	TGM3
	—
	TGM3
	TGM3



	P10599
	TXN
	—
	TXN
	TXN










 





Table 2. Downregulation of proteins in EVs isolated from ES2 cells treated with different chemotherapeutic agents.
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	Protein ID
	Gene Name
	Cisplatin
	Paclitaxel
	Cisplatin + Paclitaxel





	P04040
	CAT
	CAT
	—
	—



	Q00610
	CTSD
	CTSD
	—
	—



	P02788
	LTF
	LTF
	—
	—



	P22735
	TGM1
	TGM1
	—
	—



	P60033
	CD81
	—
	CD81
	—



	Q99829
	CPNE1
	—
	CPNE1
	—



	O75131
	CPNE3
	—
	CPNE3
	—



	P0DMV8
	HSPA1A
	—
	HSPA1A
	—



	P05556
	ITGB1
	—
	ITGB1
	—



	P00558
	PGK1
	—
	PGK1
	—



	P51148
	RAB5C
	—
	RAB5C
	—



	O00560
	SDCBP
	—
	SDCBP
	—



	P02786
	TFRC
	—
	TFRC
	—



	P04075
	ALDOA
	—
	—
	ALDOA



	P69905
	HBA1
	—
	—
	HBA1



	P07900
	HSP90AA1
	—
	—
	HSP90AA1



	P61106
	RAB14
	—
	—
	RAB14



	P55072
	VCP
	—
	—
	VCP



	P54709
	ATP1B3
	ATP1B3
	ATP1B3
	ATP1B3



	Q00610
	CLTC
	CLTC
	CLTC
	CLTC



	P60842
	EIF4A1
	EIF4A1
	EIF4A1
	EIF4A1



	Q08380
	LGALS3BP
	LGALS3BP
	LGALS3BP
	LGALS3BP



	Q9NZM1
	MYOF
	MYOF
	MYOF
	MYOF



	Q86YZ3
	HRNR
	HRNR
	—
	HRNR



	O43707
	ACTN4
	—
	ACTN4
	ACTN4



	P05023
	ATP1A1
	—
	ATP1A1
	ATP1A1



	P35613
	BSG
	—
	BSG
	BSG



	P62879
	GNB2
	—
	GNB2
	GNB2



	P04439
	HLA-A
	—
	HLA-A
	HLA-A



	P26006
	ITGA3
	—
	ITGA3
	ITGA3



	P26038
	MME
	—
	MME
	MME



	Q9NZM1
	MSN
	—
	MSN
	MSN



	O75340
	PDCD6
	—
	PDCD6
	PDCD6



	Q8WUM4
	PDCD6IP
	—
	PDCD6IP
	PDCD6IP



	P62937
	PPIA
	—
	PPIA
	PPIA



	P26022
	PTX3
	—
	PTX3
	PTX3



	P61586
	RHOA
	—
	RHOA
	RHOA



	P27105
	STOM
	—
	STOM
	STOM



	P68363
	TUBA1B
	—
	TUBA1B
	TUBA1B



	P62258
	YWHAE
	—
	YWHAE
	YWHAE



	P63104
	YWHAZ
	—
	YWHAZ
	YWHAZ
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