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Abstract: An essential indicator of Eucommia ulmoides Oliver (E. ulmoides) is the axillary bud; the
growth and developmental capacity of axillary buds could be used to efficiently determine the
structural integrity of branches and plant regeneration. We obtained axillary buds in different
positions on the stem, including upper buds (CK), tip buds (T1), and bottom buds (T2), which
provided optimal materials for the study of complicated regulatory networks that control bud
germination. This study used transcriptomes to analyze the levels of gene expression in three
different types of buds, and the results showed that 12,131 differentially expressed genes (DEGs) were
discovered via the pairwise comparison of transcriptome data gathered from CK to T2, while the
majority of DEGs (44.38%) were mainly found between CK and T1. These DEGs were closely related
to plant hormone signal transduction and the amino acid biosynthesis pathway. We also determined
changes in endogenous hormone contents during the process of bud germination. Interestingly,
except for indole-3-acetic acid (IAA) content, which showed a significant upward trend (p < 0.05) in
tip buds on day 4 compared with day 0, the other hormones showed no significant change during
the process of germination. Then, the expression patterns of genes involved in IAA biosynthesis
and signaling were examined through transcriptome analysis. Furthermore, the expression levels of
genes related to IAA biosynthesis and signal transduction were upregulated in tip buds. Particularly,
the expression of the IAA degradation gene Gretchen Hagen 3 (GH3.1) was downregulated on day 4,
which may support the concept that endogenous IAA promotes bud germination. Based on these
data, we propose that IAA synthesis and signal transduction lead to morphological changes in tip
buds during the germination process. On this basis, suggestions to improve the efficiency of the
production and application of E. ulmoides are put forward to provide guidance for future research.
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1. Introduction

E. ulmoides is the only species of the Eucommiaceae family [1]. E. ulmoides is one of the
most extensively researched Chinese herbal medicines today [2] and has received much
attention due to its medicinal and economic value [3,4]. It contains a variety of active
compounds, such as chlorogenic acid, which is the main active ingredient in many Chinese
medicinal herbs that has a definite effect on the treatment of hypertension [5]. As the
utility and worth of E. ulmoides has been recognized, E. ulmoides has been cultivated and
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propagated in large numbers. Shoot branching is the main determinant of plant structure
above ground, and it occurs through the growth of axillary shoot meristems called axillary
buds [6]. It has been reported that shoot branches develop from axillary shoot meristems,
which are established in the axils of each leaf base on the primary shoot axis and develop
into lateral branches [7]. Branching has a prominent and fundamental contribution to the
plant architecture [8] and determines the structural integrity of plant regeneration [9]. It
is an important process in the development of plants, which depends on the growth of
axillary buds [10]. Thus, the formation of axillary buds is a prerequisite and critical step
for the initiation of branching. There are three phases to the development of an axillary
bud: initiation in the axillary meristem in the leaf axil; the development of the axillary
meristem; and the subsequent outgrowth or dormancy of the axillary buds [11]. Therefore,
axillary bud development is advantageous to the sustainable and healthy development of
E. ulmoides resources.

Plant hormones are a class of natural organic substances that play important roles
in multiple physiological processes of plants at low concentrations (10−6 mol/dm3 or
less) [12]. The major classes of plant hormones are auxins, cytokinins (CTK), gibberellins
(GA), brassinolides, jasmonic acid, abscisic acid (ABA), ethylene, strigolactones, and sali-
cylic acid [13]. It has been established that endogenous plant hormones regulate masses
of physiological activities during the plant growth and development process [14]. Among
them, indole-3-acetic acid (IAA), the most common naturally occurring active auxin [15],
has been closely linked to the regulation of numerous aspects of plant growth and develop-
ment, including the elongation and division of cells [16], vascular development [17], axillary
bud germination [18], and the shoot architecture [19]. ABA is an important plant hormone
that regulates plant development and resistance to biotic and abiotic stresses [20]. Kinetin
(KT), a synthetic cytokinin plant hormone, belongs to the plant cytokinin family [21]. Zeatin
(ZT) was the first naturally occurring cytokinin to be discovered [22], which can promote
cell growth and regulate plant growth [23]. 6-Benzylaminopurine (6-BA), the first synthetic
cytokinin, is widely used in plants to break dormancy [24]. As we all know, GA3 is the
parent molecule of hundreds of gibberellins [25] and is the most important plant hormone
in releasing dormancy and promoting germination [26]. Additionally, IAA plays a vital
role in the regulation of flower bud growth [27] and bud elongation [28]. Moreover, some
previous studies have demonstrated that plant hormones, such as CTK, GA, and ABA, play
a pivotal role in regulating axillary bud growth [29–32].

Plant hormone signal transduction plays a very important role in hormone-related
biochemical changes [33]. Changes in the expression of key genes in plant hormone anabolic
pathways as well as hormone signaling pathways reflect endogenous plant hormone
levels [34]. In the auxin signal transduction pathway, the main auxin-responsive genes
include three gene families: auxin/IAA (Aux/IAA), Gretchen Hagen 3 (GH3), and small
auxin up RNA (SAUR) [35]. AUX/IAA genes encode transcriptional repressors of auxin-
responsive genes, while genes of the GH3 family regulate the auxin pool through negative
feedback [36]. SAUR genes respond rapidly to auxin stimulation and can be transcribed by
auxin within minutes without de novo protein synthesis [37]. In addition, the genes of the
YUC family play an important role in IAA biosynthesis to maintain the auxin concentration
and regulate plant growth [38].

More and more research has been carried out regarding transcriptomes in E. ulmoides.
For example, the transcriptomes of female and male E. ulmoides flower buds were sequenced
using the Illumina platform for the identification of genes related to floral development [39].
The transcriptome analysis elucidated the mechanism of phenylpropanoid and flavonoid
regulation during the growth and development of E. ulmoides leaves [40]. Feng et al.’s [41]
research demonstrated that several glycolytic genes may play crucial roles in α-linolenic
acid accumulation in the kernels of E. ulmoides. However, research on the analysis of axillary
bud germination via the transcriptome of E. ulmoides is relatively rare. In this study, the
changes in hormone contents and the expression patterns of hormone-related genes were
investigated. Based on our data and results, we suggested that enhancing the IAA content
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could improve the morphological transformation during bud germination, which could
promote the proliferation efficiency of the bud to increase the E. ulmoides output. We expect
that our results will provide a better understanding for the regulation of bud germination
and development efficiency in E. ulmoides, which will be beneficial to future research on
improving the reproductive efficiency of E. ulmoides.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Plants were cultivated in the greenhouse at Northeast Forestry University (NEFU)
(45◦43′ N, 126◦38′ E), Harbin, Heilongjiang province in China. Three-year-old uniform-
growth E. ulmoides seedlings were transplanted into 35 cm in diameter and 45 cm deep pots
(one seedling per pot). The soil used for seedling growth was peat/vermiculite/perlite
(1:1:1, v/v/v). Then, the tip buds (T1) and upper buds (CK) were sampled after day 0, day
1, day 2, day 4, day 8, and day 12 (Figure 1D). Three biological repeats for each sample
were frozen in liquid nitrogen and immediately stored at −80 ◦C.
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buds (CK, red arrows). (B) Phenotypes of tip buds (T1, red arrows). (C) Phenotypes of bottom
dormant buds (T2, red arrows). (D) Phenotypes from the shoot apex to the branches in T1.

2.2. RNA Extraction, Library Preparation, and Transcriptome Sequencing

Total RNA was extracted using the TRIzol reagent (Sangon, Shanghai, China) accord-
ing to the manufacturer’s instruction. The RNA quality was measured using NanoDrop
2000 (Thermo Scientific, Waltham, MA, USA), and Total RNA was reverse transcribed to
cDNA using Biyuntian reverse transcription kit (Biyuntian, Shanghai, China) for library
construction and then sequenced. Nine libraries, including three replicates of three bud
samples, were created. Transcriptome sequencing was performed on an Illumina HiSeq
platform (Illumina Inc., San Diego, CA, USA).

2.3. De Novo Assembly and Functional Annotation Analysis of Illumina Sequencing

First, short reads with a certain length of overlap were combined to form longer
contigs. Then, clean reads were mapped back to the corresponding contigs based on
their paired-end information. These contigs were then further processed with sequence
clustering TGICL software (-F, version 2.1) to form longer sequences defined as unigenes.
The generated unigenes were used for BLASTX alignment (E-value < 0.00001) against
protein databases, including nonredundant, Swiss-Protein, Clusters of Orthologous Groups
for Eukaryotic Complete Genomes, and Kyoto Encyclopedia of Genes and Genomes protein
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databases. With NR annotation, the Gene Ontology annotation and functional classification
were performed using Blast2GO 2.5 and WEGO 2.0, respectively.

2.4. Identification of Differentially Expressed Genes (DEGs)

The level of gene expression was estimated by the value of the expected number of
fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM).
Identification of differentially expressed genes (DEGs) was conducted using the program
DESeq2 1.14.1. The resulting p-values were adjusted for controlling the false discovery rate.
Genes according to the p-values < 0.05 and an absolute |log 2 (fold change)| ≥ 1.0 were
identified as differential expression genes (DEGs). According to Zhang’s method, the DEGs
were used for GO and KEGG enrichment analyses [42].

2.5. Measurements of Relevant Hormone Contents

Eucommia ulmoides Oliver (E. ulmoides) bud tissue was snipped, fully ground to a fine
powder with liquid nitrogen, and transferred to a precooled 50 mL centrifuge tube that
contained 3 mL of precooled 50% acetonitrile. Subsequently, the mixture was centrifuged
at 10,000× g (10 min at 4 ◦C), and the supernatant was passed through a C18 extraction
cartridge (Waters, Milford, MA, USA). The liquid was stored in a 50 mL centrifuge tube
and taken to complete dryness in vacuo. Then, 1 mL of pre-cooled 30% acetonitrile was
added to the tube to completely dissolve the hormone and filtered the samples through
a 0.45 µm organic microfiltration membrane before loading. The samples were detected
by high-performance liquid chromatography (HPLC) 1525 system (Waters, Milford, MA,
USA).

2.6. Quantitative Real-Time PCR Validation

Nine genes were selected for validation using quantitative real-time PCR. Primer pairs
were designed for qRT-PCR using Primer 5.0 (Thermo Fisher, Waltham, MA, USA). PCR
reaction mixture contained 2 µL of diluted cDNA, 1.5 µL of reverse and forward primers,
5 µL of ddH2O, and 10 µL of the PCR master mix (Thermo Fisher Scientific, Waltham, MA,
USA). Next, cDNA was amplified by ABI 7300 system according to the standard protocol,
and the program was performed as follows: 95 ◦C for 2 min, followed by 40 cycles of 15 s
at 95 ◦C, 30 s at 52 ◦C for and 60 s at 72 ◦C, 95 ◦C for 15 s, 60 ◦C for 15 s, 95 ◦C for 15 s,
and 37 ◦C for 30 s. The amplification process was performed on the LightCycler® 480II
System (Roche, Basel, Switzerland; Roche Diagnostics, Indianapolis, IN, USA). The relative
expression of the target gene was calculated based on 2−∆∆Ct method [43] and using 40 s as
the internal reference gene.

3. Results
3.1. Quality Assessment and Repeat Correlation Analysis of RNA-seq Data

To analyze the germination processes associated with the different position of the stem
of axillary buds of E. ulmoides, nine cDNA libraries of E. ulmoides were sequenced, including
CK (upper buds), T1 (tip buds), and T2 (bottom buds). There were three replicates per
sample. A total of 71.10 Gb raw reads were generated, with raw reads count spanning from
21,090,187 to 42,863,152 and GC content between 46.39% and 48.21%. The highest average
comparison efficiency of reference sequences of axillary buds of E. ulmoides was 81.73%
(Table 1).

The analysis of Pearson correlation demonstrated high correlations among the three
replicates of each sample (Figure 2A). According to the three different kinds of axil-
lary buds in E. ulmoides, the principal component analysis (PCA) divided samples into
three groups (Figure 2B). Taken together, these results confirmed the high accuracy of
transcriptome sequencing.
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Table 1. A summary of the transcriptome sequencing data of the nine libraries constructed using
corresponding samples at the three stages.

Sample Raw
Reads

Mapped
Reads Q30 (%)

GC
Content

(%)

Total
Reads

(%)

Mapped
Reads

(%)

Uniquely
Mapped

Reads
(%)

Multiple
Mapped

Reads
(%)

CK-1 21,090,187 16,622,007 93.13% 46.44% 100% 78.81% 31.39% 68.61%
CK-2 42,863,152 34,186,250 92.71% 46.39% 100% 79.76% 31.41% 68.59%
CK-3 19,543,667 15,452,823 93.02% 46.60% 100% 79.07% 31.73% 68.27%
T1-1 21,905,904 17,739,521 91.11% 46.46% 100% 80.98% 31.56% 68.44%
T1-2 29,965,914 24,595,359 93.04% 47.39% 100% 82.08% 31.96% 68.04%
T1-3 37,593,894 30,876,786 92.97% 47.12% 100% 82.13% 32.25% 67.75%
T2-1 21,323,173 16,947,499 91.49% 47.17% 100% 79.48% 30.62% 69.38%
T2-2 21,976,083 17,881,395 92.68% 48.21% 100% 81.37% 30.14% 69.86%
T2-3 21,443,839 17,003,703 91.71% 47.87% 100% 79.29% 30.40% 69.60%
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Figure 2. Pearson correlation coefficients of the sequencing data from three replicates of each sample
collected from upper buds (CK), tip buds (T1), and bottom buds (T2) (A). Principal component
analysis (PCA) of transcriptome data of the samples collected form CK, T1, and T2 (B).

3.2. Analysis of DEGs in Different Comparison Groups

The CK vs. T1, CK vs. T2, and T1 vs. T2 comparisons of DEGs provided a clearer
understanding of the up- and downregulation patterns between the three groups of samples.
The comparisons revealed 3137, 1255 and 2139 upregulated genes and 2,247,707 and
2628 downregulated genes, respectively (Figure 3A). The number of DEGs in CK vs. T1
was significantly higher than the total number of DEGs in CK vs. T2 and T1 vs. T2,
indicating that a large number of DEGs were involved in the germination of the tip bud
pathway. This result indicated that the group of CK vs. T1 was the main comparison.

DEGs were analyzed by hierarchical clustering analysis of transcript abundances
using the FPKM values to investigate the differences in gene expression trends between CK
and T1, and these DEGs had different transcriptome profiles in the two axillary bud from
different position of the stem (Figure 3B).
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3.3. GO and KEGG Enrichment Analysis of DEGs

GO analysis was performed on the set of DEGs identified between the CK and T1.
The GO classification results showed that 6244, 3205, and 5400 unigenes were assigned to
the GO categories of biological processes, cellular components, and molecular functions,
respectively (Figure 4). In the classification of cellular components, upregulated DEGs were
generally found in the cell, cell part, organelle, and membrane entries, while downregulated
DEGs were focused on the membrane, cell, cell part, and membrane part. A substantial
number of DEGs were linked to the catalytic, binding, and transporter activity in the
classification of molecular function. In the classification of biological processes, up- and
downregulated DEGs were mostly annotated to metabolic process, cellular process, and
single-organism process entries, especially in the metabolic process category, which had
the most concentrated DEGs.
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We also carried out KEGG pathway enrichment analysis on a group of DEGs screened
via transcriptome sequencing for CK vs. T1 (Figure 5). The KEGG classifications were
separated into cellular processes, environmental information processing, genetic informa-
tion processing, metabolism, and organismal systems categories. In the cellular processes
category, peroxisome (10 DEGs), phagosome (13 DEGs), and endocytosis (24 DEGs) were
significantly enriched in CK vs. T1. Plant hormone signal transduction (46 DEGs) was
significantly enriched in the environmental information processing category. Protein pro-
cessing in the endoplasmic reticulum (31 DEGs) was significantly enriched in the genetic
information processing category. The metabolism category had the largest number of
DEGs, and these genes were focused on the biosynthesis of amnio acids (60 DEGs), carbon
metabolism (59 DEGs), and starch and sucrose metabolism (55 DEGs) entries.
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To gain more perspective into the enrichment of these DEGs in KEGG pathways, we
performed separate KEGG enrichment analyses of DEGs from the group CK vs. T1 of
E. ulmoides, as shown in Figure 5. The upregulated and downregulated DEGs were closely
related to the biosynthesis of amino acids and plant hormone signal transduction pathway,
respectively (Figure 6).
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3.5. Quantification of Changes in Endogenous Plant Hormone Contents during Bud Development
in E. ulmoides

We measured the content of GA3, IAA, KT, ABA, ZT, and 6-BA. There were significant
differences among the contents of the six endogenous hormones (Figure 8). KT and IAA
contents were higher than other hormones at day 4 in the tip buds, exhibiting a trend of first
increasing (day 2 to day 4) and then decreasing (day 4 to day 8) (Figure 8B). The ZT content
gradually increased during the early stage, demonstrating the diametrically opposite trend
in upper buds (Figure 8A), and ZT content in the tip buds was higher than upper buds
on day 2 and day 12 (Figure 8B). ABA content was the highest at day 8 in the upper buds,
while ABA content was not dominant in the tip buds. There was no significant difference
between the levels of GA3 and 6-BA in the upper and tip buds. Then, IAA content increased
significantly (p < 0.05) in tip buds on day 4 compared with day 0, and was higher than
upper buds on day 4.
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3.6. The Integrated Analysis of DEGs Related to IAA Biosynthesis and Signaling Pathway in
Tip Bud

We identified a number of DEGs involved in endogenous hormone synthesis and
signal transduction in CK vs. T1, including IAA, CTK, GA, ABA, brassinosteroid (BR),
jasmonic acid (JA), and ethylene. Particularly, most of the DEGs were involved in IAA
biosynthesis and the signaling pathway. In IAA biosynthesis and metabolism pathway,
tyrosine aminotransferase [EC:2.6.1.5], aspartate aminotransferase, cytoplasmic [EC:2.6.1.1],
histidinol-phosphate aminotransferase [EC:2.6.1.9], chorismate mutase [EC:5.4.99.5], trypto-
phan synthase alpha chain [EC:4.2.1.20], indole-3-pyruvate monooxygenase [EC:1.14.13.168],
aldehyde dehydrogenase 3F1 [EC:1.2.1.3], and amidase [EC:3.5.1.4] were upregulated
(Figure 9A). In the auxin signaling pathway, most of the genes encoding auxin influx
carrier (AUX1), auxin-responsive protein IAA (AUX/IAA), indole-3-acetic acid-amido
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synthetase GH3 family, and SAUR family proteins were upregulated in the course of tip
bud germination (Figure 9B).
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3.7. Validation and Expression Analysis of Key Enzyme Genes

To analyze the expression profiles of the key enzyme gene involved in the IAA signal-
ing pathway, the GH3.1 gene (this gene segment has 100% homology to GH3.1 gene from
the Diospyros lotus) was investigated by real-time quantitative PCR analysis (qRT-PCR)
during different stages of the germination process. The results showed that the expression
of the GH3.1 gene (LOC127802819) was significantly (p < 0.05) upregulated from day 0 to
day 2 (Figure 10), while the IAA content of tip buds (T1) was maintained in a low concen-
tration range (Figure 8B). On day 4, the gene was significantly downregulated (Figure 10),
but the content of IAA showed the opposite trend (Figure 8B). Then, the content of this
gene gradually increased from day 8 to day 12 (Figure 10). However, the IAA content still
showed the opposite trend at this stage and gradually decreased (Figure 8B).



Curr. Issues Mol. Biol. 2023, 45 7314Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 11 
 

 

 
Figure 10. The expression of the GH3.1 gene (this gene segment has 100% homology to GH3.1 gene 
from the Diospyros lotus) was detected in tip buds (T1) (Ribosomal 40S protein S9 as an internal 
control) during different processes of germination. Values are presented as mean ± SE (n = 3), and 
different letters mean a significant difference (p < 0.05) with n = 3. 

4. Discussion 
The germination process generally includes two developmental stages: the formation 

of leaf axil meristems and axillary bud outgrowth [44,45]. The increased number of lateral 
branches is caused by the axillary buds of Arabidopsis [42]. Auxin, a key plant hormone, 
regulates various cellular processes by altering the expression of diverse genes in plants 
[43]. Auxin is considered a systemic regulator, which plays an essential role in the 
regulation of the bud outgrowth process [46]. Previous studies reported that auxin 
synthesis and transport are essential for axillary meristem development and axillary bud 
growth [47,48]. In this study, IAA content significantly increased (p < 0.05) on day 4 
compared with day 0 in upper axillary buds (Figure 8B), and the expression patterns of 
genes involved in IAA synthesis and metabolism were upregulated in tip buds to improve 
IAA concentration (Figure 9). In support of our findings, the content of IAA has gradually 
increased to promote the development of flower buds since the end of vernalization in 
Sorbonne [49]. Furthermore, young berries have the highest IAA level, which steadily 
decreases during the grape ripening process [50]. Moreover, the IAA content is higher in 
the early developmental stages and then declines throughout subsequent stages of berry 
development in the non-climacteric fruit [51]. However, in contrast herewith, the IAA 
content in tiller buds did not change significantly during the process of growth in wheat 
tillers [52]. Based on these results, we speculate that an increase in IAA content promotes 
bud germination and then maintains a stable level in the subsequent growth process. 

IAA signaling is known to regulate the expression levels of early and primary auxin 
response genes through Auxin Response Factors (ARFs) [53], which can bind to auxin 
response DNA elements (AuxRE) of the genes to regulate plant growth and development 
[54]. The GH3 gene family participates in auxin conjugate formation and controls auxin-
mediated signaling in plants [55]. It was shown that a group of auxin-inducible GH3 genes 
encode IAA-amido synthetase that regulates the endogenous IAA pool to reduce the 
concentration of free IAA through negative feedback [56]. A previous study demonstrated 
that IAA-amido synthase activity may explain the low levels of endogenous IAA in post-
harvest papaya fruits [57]. In this finding, the changes in plant hormone contents were in 
agreement with the expression of genes related to plant hormone synthesis and signal 
transduction. And the expression of the gene GH3.1 was significantly downregulated on 
day 4 (Figure 10), and the IAA content showed the exact opposite trend, with the highest 
on day 4 (Figure 8B). It was consistent with the finding that the auxin-responsive GH3 
gene family reduced free IAA levels by binding excess IAA to amino acids [58]. Yuki Aoi 
et al., concluded that the GH3 auxin-amido synthetases can alter the levels of IAA in a 

Figure 10. The expression of the GH3.1 gene (this gene segment has 100% homology to GH3.1 gene
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different letters mean a significant difference (p < 0.05) with n = 3.

4. Discussion

The germination process generally includes two developmental stages: the formation
of leaf axil meristems and axillary bud outgrowth [44,45]. The increased number of lateral
branches is caused by the axillary buds of Arabidopsis [46]. Auxin, a key plant hormone,
regulates various cellular processes by altering the expression of diverse genes in plants [47].
Auxin is considered a systemic regulator, which plays an essential role in the regulation
of the bud outgrowth process [48]. Previous studies reported that auxin synthesis and
transport are essential for axillary meristem development and axillary bud growth [49,50].
In this study, IAA content significantly increased (p < 0.05) on day 4 compared with day 0
in upper axillary buds (Figure 8B), and the expression patterns of genes involved in IAA
synthesis and metabolism were upregulated in tip buds to improve IAA concentration
(Figure 9). In support of our findings, the content of IAA has gradually increased to
promote the development of flower buds since the end of vernalization in Sorbonne [51].
Furthermore, young berries have the highest IAA level, which steadily decreases during the
grape ripening process [52]. Moreover, the IAA content is higher in the early developmental
stages and then declines throughout subsequent stages of berry development in the non-
climacteric fruit [53]. However, in contrast herewith, the IAA content in tiller buds did
not change significantly during the process of growth in wheat tillers [54]. Based on these
results, we speculate that an increase in IAA content promotes bud germination and then
maintains a stable level in the subsequent growth process.

IAA signaling is known to regulate the expression levels of early and primary auxin
response genes through Auxin Response Factors (ARFs) [55], which can bind to auxin
response DNA elements (AuxRE) of the genes to regulate plant growth and develop-
ment [56]. The GH3 gene family participates in auxin conjugate formation and controls
auxin-mediated signaling in plants [57]. It was shown that a group of auxin-inducible GH3
genes encode IAA-amido synthetase that regulates the endogenous IAA pool to reduce the
concentration of free IAA through negative feedback [58]. A previous study demonstrated
that IAA-amido synthase activity may explain the low levels of endogenous IAA in post-
harvest papaya fruits [59]. In this finding, the changes in plant hormone contents were
in agreement with the expression of genes related to plant hormone synthesis and signal
transduction. And the expression of the gene GH3.1 was significantly downregulated on
day 4 (Figure 10), and the IAA content showed the exact opposite trend, with the highest
on day 4 (Figure 8B). It was consistent with the finding that the auxin-responsive GH3 gene
family reduced free IAA levels by binding excess IAA to amino acids [60]. Yuki Aoi et al.,
concluded that the GH3 auxin-amido synthetases can alter the levels of IAA in a GH3-
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dependent manner in Arabidopsis [61]. Moreover, an excess of auxin was conjugated with
amino acids via the GH3 family of genes to maintain auxin homeostasis [62].

Regarding IAA synthesis pathways, plants mainly synthesize IAA from tryptophan
via the indole pyruvate pathway, tryptamine pathway, indole acetaldoxime pathway, and
indole acetamide pathway [63]. It has been reported that the tryptophan-dependent IAA
synthesis pathway in plants is an important pathway for IAA biosynthesis [64]. In this
study, the increased expression of genes involved in tryptophan metabolism corresponded
to the increased IAA content observed in tip buds. The germination process of the buds
requires the continuous support of endogenous IAA, and its content is higher in the
germination stage, which may be due to the upregulation of the IAA synthesis of the YUC
gene family and the downregulation of the IAA degradation genes GH3.1. On this basis,
we preliminarily evaluated the effect of endogenous IAA content on bud germination
and development in E. ulmoides, which provides a theoretical basis for the application of
exogenous IAA to improve proliferation the efficiency of bud in production.

5. Conclusions

In this study, through the transcriptomic analysis of three different positions of axillary
buds, it was found that a majority of DEGs (44.38%) were mainly found between CK (upper
buds) and T1 (tip buds). It showed that DEGs were annotated in amino acid biosynthesis
and plant hormone signal transduction pathways through the enrichment result of KEGG.
We then analyzed the changes in exogenous hormone contents during bud initiation and
development. Interestingly, the IAA content significantly increased (p < 0.05) in tip buds
(T1) on day 4 compared with day 0 and showed much higher IAA content than upper
buds (CK) on day 4. Furthermore, we analyzed the expression patterns of genes related to
IAA biosynthesis and signal transduction through transcriptome analysis. Among them,
the expression of IAA degradation gene GH3.1 (this gene segment has 100% homology to
GH3.1 gene from the Diospyros lotus) was downregulated on day 4, and IAA synthesis of
the YUC gene family was upregulated in tip buds. Based on these findings, we found that
the content of endogenous IAA showed an increase during bud germination, which was
in agreement with the expression patterns of genes involved in IAA synthesis and signal
transduction, demonstrating that increasing the IAA content was to the advantage of bud
germination. Based on our study, we proposed that appropriately enhancing IAA content
could improve the germination efficiency and proliferation efficiency of buds, which could
be realized through the application of exogenous IAA concentration in the medium of
buds in tissue culture production of E. ulmoides. All in all, our study provides a theoretical
basis for the application of exogenous IAA to improve the bud proliferation efficiency of
E. ulmoides in production.
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