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Abstract: Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a
significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the
class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which
results in the formation of closed single-stranded circRNA molecules that lack 5′-end caps and 3′-end
poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for
miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous
RNAs. Numerous circRNAs are involved in the circRNA–miRNA–mRNA regulatory axes associated
with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and
coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887,
сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD)
with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and
circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs
are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated
information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD.
We also discuss the main modern approaches to detecting and studying circRNA–miRNA–mRNA
interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for
the treatment of cardiovascular diseases.
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1. Introduction

Coronary artery disease (CAD), caused by atherosclerotic processes, continues to be
the leading cause of morbidity and mortality in the adult population in developed countries.
This disease occurs as a result of chronic inflammation of the subendothelial layer of the
arteries, the accumulation of lipids and fibrous elements in their walls, the formation of
coronary plaques, and the narrowing of the lumen of the vessels. Atherosclerotic damage
to the vascular wall is associated with disruption of the functioning of multiple genes,
epigenetic modifications, and exposure to environmental factors [1–3].

Transcriptomic studies indicate that a large part of the human genome is transcribed
into non-coding RNAs (ncRNAs), which play a significant role in the pathogenesis of
cardiovascular disease (CVD) [4]. ncRNAs are involved in the regulation of transcription [5,6],
splicing, translation, and post-transcriptional regulation of gene expression [7]. Based
on length and structure, ncRNAs are classified into three main categories: microRNAs
(miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). miRNAs are 18–25 nu-
cleotides long. They can bind to a recognition element in the 3′-untranslated region (3′-UTR)
of mRNA, disrupting mRNA or inhibiting its translation and thus negatively controlling
gene expression. It is believed that miRNAs can regulate more than half of the genes
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encoding human proteins [8]. By inhibiting the expression of genes involved in reverse
cholesterol transport in macrophages, miRNAs play a key role in the regulation of lipid
disorders and atherogenesis [9–14]. Since complementarity of 6–8 bases is sufficient to form
a miRNA/mRNA duplex, a single miRNA molecule can target a wide range of different
mRNAs, while a single mRNA can be attacked by several miRNAs. This creates a complex
regulatory RNA–RNA network [15,16].

lncRNAs with a length of more than 200 nucleotides play an essential role in the
regulation of transcription and in the post-transcriptional regulation of the expression of
genes involved in the pathogenesis of atherosclerosis [9,17–19]. Depending on the specific
interaction with DNA, RNA or proteins, lncRNAs can participate in promoter activation
during transcription initiation and splicing, and change the stability and translation of
cytoplasmic mRNAs [20]. lncRNAs can compete with mRNA for miRNA binding. At the
same time, they reduce the effect of miRNA, which suppresses the expression of target
genes. Thus, lncRNAs promote an increase in the expression of these genes [21]. These
lncRNAs are considered as competing endogenous RNAs (ceRNAs).

Over the past decade, numerous studies have shown that circRNAs play a signif-
icant role in the pathogenesis of CAD and other CVDs [11,22–24]. circRNAs arise as a
result of non-canonical premature RNA (pre-mRNA) splicing, in which closed circular
molecules are formed [25]. circRNAs have broad post-transcriptional regulatory activ-
ity, acting as ceRNAs [21,26]. Acting as sponges for miRNAs [27,28], they are involved
in the circRNA-miRNA–mRNA regulatory axes associated with the pathogenesis of car-
diomyopathy, chronic heart failure, hypertension, atherosclerosis, and CAD [29–31]. With
their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers
and therapeutic targets. Circular RNAs, underestimated for a long time, are receiving
great attention now, evidenced by a noticeable growth in publications on their role in the
pathogenesis of various diseases. Here we review the recent data on the involvement of
circRNAs in coronary atherogenesis and highlight the main modern approaches to detect-
ing and studying circRNA–miRNA–mRNA interactions and the major efforts in the study
of mechanisms and the end-effects of circRNAs’ action on CAD. The directions of future
research of circRNAs, the perspectives for their application, and possible drawbacks in
CAD therapy are discussed as well.

2. Characteristics and Functions of circRNAs

RNA molecules that form a continuous structure were first described by Diener in
1971 when studying infectious single-stranded covalently closed RNA molecules that cause
spindle tuber disease of potato (PST viroid) [32]. The term “circular RNA” (circRNA) was
proposed in 1976 by Sanger et al. when they characterized the structure of viroids [33]. In
1979, the presence of circRNA in the cytoplasm of eukaryotic cells was demonstrated [34].
The detected circRNAs were considered non-functional or splicing by-products; however,
with the development of high-throughput sequencing and bioinformatics approaches, it
was found that circRNAs are highly expressed in all eukaryotic cells and perform certain
functions [35]. Recent studies have shown that circRNAs are critical regulators of cell
physiology and various pathologies by modulating gene expression [29,36–39].

Most circRNAs are formed by backsplicing exons or introns of pre-mRNA genes
encoding proteins. As a result, the downstream 5′ splicing site is connected to the up-
stream 3′ splicing site. Thus, a circular RNA molecule with a 3′–5′-phosphodiester bond is
formed [40]. The absence of terminal structures increases their stability compared to linear
transcripts [35]. circRNAs can be formed from exons (ecircRNAs), introns (ciRNAs), or
exon-intron sequences (elciRNAs) [35,41]. ciRNAs and elciRNAs are located in the nucleus,
and their main function is cis-regulation of parental gene expression [40,42,43]. Most of
the known circRNAs are ecircRNAs. They are found predominantly in the cytoplasm.
The functions of circRNA include regulation of transcription mediated by polymerase II
(Pol II) [40], regulation of post-transcriptional gene expression as a sponge for miRNA or
protein [5,28,44,45], interaction with RNA-binding proteins (RBP), the ability to regulate
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their availability in the cell, modulation of protein–protein interactions [46,47] and acting
as a matrix for protein translation [48]. In addition to serving as miRNA sponges, circRNAs
are also associated with the storage and localization of miRNAs [49].

3. Biogenesis and Degradation of circRNAs

Biogenesis and degradation of circRNA have been described in sufficient detail [25,50–53].
The pathways for circRNA formation and degradation are summarized in Figure 1. Spliceo-
somal machinery is regarded as a primary procedure of circRNA formation. There are three
types of biogenesis model, including circularization driven by intron pairing (inverted
repeat pairing) [54–56], circularization driven by RNA-binding protein (RBP) Muscleblind
(MBL) [57], Quaking (QKI) [58], FUS [59], RBM3 [60], and others, as well as lariat-triggered
circularization [35,61]. Lariats contain a significant intronic sequence and involve a 2′–5′

phosphodiester linkage at a branch point. In lariat-driven circularization, intronic lariats
can be processed into circular intronic RNA (ciRNA) during splicing. The latter model is
more characteristic of ciRNAs. There are also known factors that affect the accumulation of
circRNAs in the cell. Among them are the restrictions on splicing and polyadelinylation
factors [62], reduced activity of the ADAR1 (which reduces pairing of lateral introns) [63],
and DHX9 (which unravels paired introns) enzymes [64], and the inhibition of poly (ADP-
ribose) polymerase 1 (PARP1) activity [65]. Furthermore, this regulation of PARP1 within
host genes acts to fine tune their transcriptional output, with implications in gene function.

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 4 
 

 

 
Figure 1. Biogenesis and degradation of circRNA. IR—inverted repeats. The green and pink colors 
indicate their different orientations. RBP—RNA binding protein, U1, U2—small nucleus RNAs, 
Red and green arrows show an increase and decrease in the amount of U1, U2, and enzyme activ-
ity, respectively. 

4. Main Approaches for Studying the Role of circRNA in the Pathogenesis of CAD 
High-throughput RNA sequencing (RNA-Seq) has made it possible to identify 

thousands of circRNAs involved in physiological processes and in the pathogenesis of 
various diseases [78–82]. The most commonly used way to detect differentially expressed 
circRNAs (DECs) includes a comparative analysis of their representation in experimental 
and control biological samples using microarrays or RNA-Seq. Sanger sequencing 
(Sanger-Seq) and exonuclease R processing are used to confirm the cyclic structure of the 
molecule. The expression level of DECs in biological samples is determined using the 
reverse transcription polymerase chain reaction (RT-PCR) method. Bioinformatics anal-
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respectively.
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Due to the stability of circRNAs compared to linear RNAs, circRNAs are capable
of accumulating in cells. However, ways to reduce their numbers are also known [53].
They include RNase H-dependent cleavage of circRNAs in the nucleus when circRNAs
interact with single-strand DNA during the formation of R-loops [66]. The pathways of
circRNA cleavage in the cytoplasm are also shown. One of them is related to the activity
of RNase L, which functions at the stage of the primary immune response to cleave viral
and some cellular RNAs [67,68]. circRNAs tend to form RNA duplexes of 16–26 bp and
act as endogenous inhibitors of double-stranded RNA-dependent protein kinase (PKR).
Thus, it has been suggested that RNase L-mediated circRNA degradation is required
for PKR activation during viral infection [68]. Another circRNA degradation pathway
involves the cleavage of m6A-containing RNAs via the YTHDF2–HRSP12–RNase–P/MRP
pathway [69]. Structure-mediated RNA decay (SRD) has also been described under the
influence of endoribonucleases, the signal for which is the binding of UPF1 and G3BP1
proteins to highly structured circRNA motifs [70]. In the pioneering study by Hansen et al.,
the circRNA degradation pathway was described in an AGO-dependent manner when
Ago2 cleaved circRNA after recognizing the microRNA complex [71]. It was noted that the
mechanism implemented in the nucleus is apparently not common [72,73]. The separate
pathway for the removal of circRNA from cells due to packaging and transportation in
exosomes has been described [74,75]. The exosomes are membrane-bound extracellular
vesicles (EVs) that are produced in the endosomal compartment of most eukaryotic cells [76].
EVs are nano-sized (30–150 nm) biovesicles containing DNA, RNA, and proteins. EVs
are released into the surrounding extracellular fluid upon fusion between multivesicular
bodies and the plasma membrane [77]. The level of circRNAs in a cell is determined by the
ratio of biogenesis and degradation rates.

4. Main Approaches for Studying the Role of circRNA in the Pathogenesis of CAD

High-throughput RNA sequencing (RNA-Seq) has made it possible to identify thou-
sands of circRNAs involved in physiological processes and in the pathogenesis of various
diseases [78–82]. The most commonly used way to detect differentially expressed circRNAs
(DECs) includes a comparative analysis of their representation in experimental and control
biological samples using microarrays or RNA-Seq. Sanger sequencing (Sanger-Seq) and
exonuclease R processing are used to confirm the cyclic structure of the molecule. The
expression level of DECs in biological samples is determined using the reverse transcription
polymerase chain reaction (RT-PCR) method. Bioinformatics analysis is being applied to
elucidate the specific mechanisms by which circRNAs are involved in disease development.
First, the search for microRNA targets of circRNAs is carried out. The selected miRNAs are
then searched for mRNAs to which they can bind. The next step for the correct validation
of circRNA–miRNA–mRNA interactions is their experimental validation in pathological
conditions or in cell culture models of atherosclerosis in vitro. Dual-luciferase reporter
(DLR) analysis, RNA pull-down (RPD) assays, and RNA immunoprecipitation (RIP) are
used as experimental tools. Cultures of human aortic endothelial cells (HAEC), human
umbilical vein endothelial cells (HUVEC), or human aortic smooth muscle cells (HASMC)
treated with oxidized low-density lipoproteins (OX-LDL) are predominantly used to simu-
late atherosclerotic conditions [83]. Ox-LDLs induce an inflammatory response; proliferate,
migrate towards, and invade smooth muscle cells (HASMCs); block endothelial cell prolif-
eration; and induce cell apoptosis [84–86]. The scheme of methods and approaches used to
identify the role of circRNAs in the pathogenesis of CAD is presented in Figure 2.
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5. The Role of circRNAs in the Pathogenesis of CAD and Atherogenesis

The nature of cellular and molecular events in atherogenesis associated with CAD
is described in detail [87–89]. Atherosclerosis is considered a chronic inflammatory dis-
ease caused by the accumulation of lipids in the intima of the arteries and the develop-
ment of inflammatory reactions. The inflammatory process in atherogenesis is mediated
by chemokines, cytokines, adhesion molecules, and other factors produced by various
cells, including macrophages, endothelial cells (ECs), and vascular smooth muscle cells
(VSMCs) [90,91]. EC dysfunction, transformation, abnormal proliferation and migration
of VSMCs; formation of foam cells; and recruitment of macrophages, T-lymphocytes, and
platelets contribute to the progression of atherosclerosis [92]. In recent years, a large number
of studies have identified circRNAs involved in the regulation of gene expression associated
with CAD [4,93,94]. Microarray analysis of DECs in the plasma of three CAD patients found
that, compared to controls, 18 circRNAs were upregulated and six were downregulated [95].
Using miRanda software, the authors showed that nine circRNAs among them could poten-
tially bind to hsa-miR-130a-3p. The mRNA of transient receptor potential cation channel
subfamily M member 3 (TRPM3) was identified as a target for hsa-miR-130a-3p. Based
on these data, a circRNA–miRNA–mRNA network with nine circRNAs and one mRNA
was constructed for hsa-miR-130a-3p. Upon inhibition of hsa-miR-130a-3p, the identified
circRNAs promoted the expression of the TRPM3 gene. In another study, genome-wide
transcriptome analysis of circRNAs revealed 13,160 downregulated and 12,905 upregu-
lated circRNAs in peripheral blood mononuclear cells from five CAD patients and five
controls [78]. Possible target miRNAs were identified for 10 circRNAs using miRanda and
TargetScan software; their mRNA targets were identified; and circRNA–miRNA–mRNA
networks were constructed using Cytoscape. Whole-transcriptome profiling of circRNA
expression in segments of the coronary arteries of patients with CAD was performed.
circRNAs have been identified that may play an important role in the progression of human
coronary atherosclerosis and may serve as a diagnostic or therapeutic target against CAD.
It should be noted that the mechanism of circRNAs’ action in studied conditions remains
unknown [96,97].

A notable contribution to the study of the molecular mechanism of action of circRNAs
in atherosclerosis was made by experiments confirming the axes of circRNAs, miRNAs,
and mRNAs in the serum of CAD patients or in cultures of HAEC, HUVEC, or VSMC cells
treated with ox-LDL as models of atherosclerosis in vitro. Quantitative analysis revealed
both a decrease and an increase in the levels of different circRNAs in the studied biological
samples. Table 1 lists circRNAs that are downregulated in the serum of patients with
atherosclerosis or in cell cultures simulating atherosclerosis. The circRNA–miRNA–mRNA
axes, the methods used to validate them, the effect, and the potential applications of
circRNAs are also included for each circRNA.
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Table 1. List of atherogenesis-related circRNAs, whose expression level is decreased.

circRNA
(Host Gene) Source * Interactions

miRNA/mRNA Confirmation * Effect,
(Potential Application) Reference

circ_0026218 (CERS5) HUVEC miR-338-3p/SIRT6 Microarray, RT-PCR,
DLR, RIP

Proliferation ↑
Inflammation ↓

Oxidative stress ↓
Apoptosis ↓

(Target for therapy)

[98]

circ_0030042
(FOXO1) HUVEC miR-616-3p/RFX7 RT-PCR, DLR,

RIP, RPD

Proliferation ↑
Apoptosis ↓

Inflammation ↓
(Target for therapy)

[99]

circHIPK3
(HIPK3)

Serum, VSMC,
HUVEC

miR-106a-5p/MFN2
RT-PCR, DLR

Osteogenic and
cartilage differentiation ↓

Vascular calcification ↓
(Target for therapy)

[100]

miR-190b/ATG7 [101,102]

circMTO1
(MTO1) Serum, VSMC miR-182-5p/RASA1 RT-PCR, DLR

Apoptosis ↑
Proliferation ↓

(Target for therapy)
[103]

circ_0000345
(RSF1)

Serum, ASMC miR-647/PAPD5 RT-PCR,
DLR, RIP

Apoptosis ↑
Proliferation ↓
Inflammation ↓

(Target for therapy)

[84]

Serum, HAEC,
HUVEC

miR-758/CCND2,
miR-129-5p/TET2

RT-PCR,
DLR, RIP

Proliferation ↑
Apoptosis ↓

(Target for therapy)
[104,105]

circ_06206 (SCRG1) Serum, HUVEC miR-1268b/NR4A1 RNA-Seq, RT-PCR,
DLR

Angiogenesis ↓
(Target for therapy) [106]

circ_0093887
(Sirt1)

Serum, HAEC,
VSMC

miR-758-3p/BAMBI,
miR-876-3p/CCND2,
miR-876/SUCNRA,
miR-132/212/SIRT1

RT-PCR,
DLR, RIP, RPD

Proliferation ↑
Apoptosis ↓

Inflammation ↓
(Target for therapy)

[107–109]

circ_0001445
(SMARCA5) HUVEC miR-208b-

5p/ABCG1
RT-PCR, DLR,

RIP, RPD

Proliferation ↑
Inflammation ↓

Foam cells
transformation ↓

(Biomarker,
Target for therapy)

[110]

circSmoc1-2
(Smoc1-2) VSMC miR-874-

3p/ADAM19
RNA-Seq, RT-PCR,

Calcium assay, RISH

Vascular
calcification ↓

(Target for therapy)
[111]

circ_0107197 (TEX14) Serum, VSMC miR-6509-3p/THAP1 RT-PCR,
DLR, RIP

Apoptosis ↑
Proliferation ↓

(Target for therapy)
[112]

circ_0003423
(ZNF532) HUVEC miR-142-3p/SIRT3,

SOD2
RT-PCR,

DLR, RIP

Proliferation ↑
Oxidative stress ↓

Apoptosis ↓
(Target for therapy)

[113]

* Human Umbilical Vein Endothelial Cell (HUVEC), Vascular Smooth Muscle Cell (VSMC), Aortic Smooth Muscle
Cell (ASMC), Human Aortic Endothelial Cell (HAEC), Reverse transcription-polymerase chain reaction (RT-PCR),
Dual-luciferase reporter assay (DLR), RNA immune precipitation (RIP), pull-down assay (RPD), High-throughput
RNA sequencing (RNA-Seq), RNA in situ hybridization (RISH); ↑: increase; ↓: decrease.

Downregulated circRNAs in the plasma of patients suffering from atherosclerosis
have an anti-inflammatory effect, reduce oxidative stress, and reduce vascular calcification
(Table 1). The atheroprotective effect of the presented circRNAs is manifested by an increase
in proliferation and a decrease in apoptosis on cultures of HAEC and HUVEC endothelial
cells treated with ox-LDL, while a decrease in proliferation is noted on VSMC.

It should be noted that, being sponges for different miRNAs, individual circRNAs are
involved in several circRNA–miRNA–mRNA interactions. So, for circ_0000345, three axes
of circRNA–miRNA–mRNA were experimentally confirmed (Table 1) [84,104,105]. The
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reduced content of circ_0000345 in the serum of patients with atherosclerosis and in ASMC,
HAEC, and HUVEC cell cultures treated with ox-LDL was accompanied by an increase in
the content of various miRNAs. At the same time, circ_0000345 acts as a sponge for miR-647
miRNA and increases PAPD5 expression with a concomitant reduction in inflammatory
response, proliferation, and ASMC migration [84]. circ_0000345 was found to be able to
protect in vitro HAEC cell culture from ox-LDL-induced damage via the miR-758/CCND2
axis, promoting cell viability and cell proliferation, and inhibiting cell apoptosis [104,105].
A decrease in the level of miR-129-5p was found in experiments on the overexpression of
circ_0000345 in HUVEC cells. The results confirmed the competitive endogenous role of
circRNA. At the same time, the level of circ_0000345 correlated with an increase in the level
of Tet methylcytosine dioxygenase 2 (TET2) mRNA [105].

The protective effect of circ_0001445 is shown, the level of which is also markedly
reduced in the serum of patients with CAD [114]. Cai et al. found that overexpression of
hsa_circ_0001445 in ox-LDL-induced HAEC promoted cell proliferation, inhibited cell apop-
tosis, suppressed the inflammatory response, and suppressed the expression of TNF-α, IL-
1β and IL-16 [115]. It was shown that miRNA-640 was a direct target for hsa_circ_0001445.
The authors concluded that hsa_circ_0001445 had an atheroprotective effect via miRNA-640.
According to Yang et al., circ_0001445 possesses binding sites for miR-208b-5p, which in
turn targets ABCG1 mRNA [110]. Binding of miR-208b-5p with circ_0001445 or ABCG1
has been confirmed using a DLR, RIP, and RPD (Table 1) [115]. Being a sponge for miR-
208b-5p, circ_0001445 has an atheroprotective effect by inhibiting ox-LDL-induced HUVEC
inflammation, oxidative stress, apoptosis, and foam cell formation. New circRNA–miRNA–
mRNA regulatory networks have recently been constructed for hsa_circ_0001445 [116].
Bioinformatics analysis revealed an association of hsa_circ_0001445 with three miRNAs
(hsa-miR-507, hsa-miR-375-3p, and hsa-miR-942-5p). The interaction network of miRNAs
with 18 genes in the KEGG pathway was established; however, these results have yet to be
confirmed experimentally. Thus, atherogenesis-related circRNAs, whose expression level
is reduced in the plasma of patients with atherosclerosis, have an atheroprotective effect
under conditions of experimental atherosclerosis in vitro and can potentially be used for
CAD therapy.

Table 2 lists circRNAs that are upregulated in the serum of patients with atherosclerosis
or in cell culture models of atherosclerosis. The circRNA–miRNA–mRNA axes, the methods
used to validate them, the effect, and the potential applications of circRNAs are also
included for each circRNA.

Table 2. List of atherogenesis-related circRNAs, whose expression level is increased.

circRNA
(Host Gene) Source * Interactions

miRNA/mRNA Confirmation * Effect,(Potential
Application) Reference

circ_0002984
(ARHGAP32) Serum, VSMC miR-326-3p/VAMP3,

miR-665/FGF2
RT-PCR, DLR,

RIP, RPD

Inflammation↑
Proliferation ↑

(Target for therapy)
[117,118]

circ_0003645
(C16orf62) HUVEC miR-149-3p/TRAF7 RT-PCR,

DLR, RIP

Apoptosis ↑
Proliferation ↓

(Target for therapy)
[119]

circ_0005699
(C16orf62) HUVEC miR-450b-5P/NFKB1 RT-PCR, DLR Inflammation ↑

(Target for therapy) [120]

circ_0001946 (CDR1) Serum, mouse
ventricles miR-7-5p/PARP1 RT-PCR, DLR, target

prediction in silico

Apoptosis ↑
(Target for therapy,

Biomarker)
[121,122]

circ_0026218 (CERS5) Serum, HUVEC miR-188-3p/TLR4 RT-PCR, DLR,
RIP, RPD

Apoptosis ↑
Inflammation↑

Oxidative stress ↑
Proliferation ↓

(Target for therapy,
Biomarker)

[123]
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Table 2. Cont.

circRNA
(Host Gene) Source * Interactions

miRNA/mRNA Confirmation * Effect,(Potential
Application) Reference

circ_0029589 (CHFR) Serum, HUVEC

miR-15b-
5p/GADD45G,

miR-1197/RAB22A,
miR-370/FOXO1

Microarray, RT-PCR,
DLR, RPD

Apoptosis ↑
Inflammation ↑

Oxidative stress ↑
proliferation ↓

(Target for therapy)

[124–126]

circ_0003575
(CHMP5) HUVEC miR-532-5p/ROCK2 RT-PCR,

DLR, RIP

Apoptosis ↑
Inflammation ↑
Proliferation ↓

(Target for therapy)

[127]

circCOL1A1
(COL1A1) Serum, VSMC miR-30a-5p/SMAD1 RT-PCR, RISH, DLR,

RPD

VSMC transformation ↑
(Target for therapy,

Biomarker)
[128]

circ_0050486 (GPI)

THP-1
miR-1270,

miR-145/NF1A,
MMP16, USP31

RT-PCR, DLR
Inflammation ↑

Apoptosis ↑
(Target for therapy)

[129]

Serum, HAEC miR-182-5p/MYD88 RT-PCR,
DLR, RIP

Proliferation ↓
(Target for therapy,

Biomarker)
[130]

circ_0044073 (GRN) Serum, HUVEC,
HUVSMC miR-107/JAK1 RT-PCR,

DLR, RPD
Proliferation ↑

(Target for therapy) [92]

circ_0057583
(HECW2) Serum, CMEC miR-942-5p/TLR4 RT-PCR,

DLR, RPD

Apoptosis ↑
Proliferation ↓

(Target for therapy)
[31]

circ_0091822 (IRAK1) Serum, HUVEC miR-330-5p/TRIM14,
miR-661/RAB22A

RT-PCR,
DLR, RIP, RPD

Inflammation ↑
Apoptosis ↑

Oxidative stress ↑
Proliferation ↓

(Biomarker,
Target for therapy,)

[131,132]

circ_0018146 (ITGB1) Serum miR-342-3p/NFAM1 Microarray, RT-PCR,
DLR, RPD

Dendritic
cell maturation ↓

(Target for therapy,
Biomarker)

[133]

circ_0001879
(NIPSNAP3A)

Serum
HUVEC

miR-6873-
5p/HDAC9

RT-PCR,
DLR, RIP

Inflammation ↑
Proliferation ↓

Cholesterol transport ↓
(Target for therapy)

[134]

circ_0009135
(NPHP4)

Serum
Monocytes,

EVs
miR-1231/EGFR Microarray, RT-PCR,

DLR, RIP, RPD

Heterogeneous
adhesion ↑

(Target for therapy,
Biomarker)

[135]

circ_0033596 (PACS2) HUVEC miR-217-5p/CLIC4 RT-PCR,
DLR, RIP

Apoptosis ↑
Proliferation ↓

(Target for therapy)
[136]

circ_0008896
(PPAPDC1A) VSMC miR-633/CDC20B RT-PCR,

DLR, RIP
Proliferation ↑

(Target for therapy) [137]

circPTPRA
(PTPRA) Serum, VSMC miR-636/SP1 RT-PCR, DLR

Proliferation ↑
Apoptosis ↓

(Target for therapy,
Biomarker)

[138]

circ_0002194 (RELL1) HUVEC
miR-637/PACS2,

miR-6873-
3p/MYD88

Microarray, RT-PCR,
DLR, RIP,

Apoptosis ↑
Proliferation ↓
Inflammation ↑

Oxidative stress ↑
(Target for therapy)

[139,140]
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Table 2. Cont.

circRNA
(Host Gene) Source * Interactions

miRNA/mRNA Confirmation * Effect,(Potential
Application) Reference

circ_0124644
(ROBO2)

Serum, HASMC miR-149/TRAF6 Microarray, RT-PCR,
DLR, RPD

Proliferation ↑
Inflammation ↑

Apoptosis ↓
(Biomarker)

[141]

HUVEC,
Serum, CMEC

miR-370-3p/FOXO4,
miR-186-5p/TRIM14

RT-PCR, DLR,
RIP, RPD

Inflammation ↑
Apoptosis ↑

Proliferation ↓
(Biomarker,

Target for therapy)

[142,143]

circ_0001292 (SCAP) Serum, THP-1 miR-221-5p/PDE3B RT-PCR,
DLR, RPD

Inflammation ↑
Oxidative stress ↑

Lipid accumulation ↑
(Biomarker)

[144]

circ_102541
(SIPA1L1) Serum, HUVEC miR-296-5p/PLK1 RT-PCR,

DLR

Proliferation ↑
Apoptosis ↓

(Target for therapy,
Biomarker)

[145]

circ_0004104 (SPARC) Serum, HUVEC miR-942-5p/ROCK2 RT-PCR, DLR,
RIP, RPD

Inflammation ↑
Apoptosis ↑

Proliferation ↓
(Target for therapy,

Biomarker)

[146]

circ_0007478
(TM7SF3)

Serum, VSMC miR-638/ROCK2 RT-PCR,
DLR, RIP

Proliferation ↑
(Target for therapy

Biomarker) [147,148]

THP-1 miR-765/EFNA3 Microarray, RT-PCR,
DLR

Foam cells
transformation ↑

(Target for therapy,
Biomarker)

circ_0021155
(TMEM41B) VSMC miR-4459/TRPM7

RNA-Seq,
RISH,

RT-PCR, DLR

Proliferation ↑
VSMC transformation ↑

(Target for therapy)
[149]

circ_0072951
(TNPO1) Serum, VSMC miR-181b/NOTCH1 RT-PCR, DLR

Proliferation ↑
(Target for therapy,

Biomarker)
[150]

circ_0010283 (UBR4) Serum, VSMC

miR-107/ROCK,
miR-370–

3p/HMGB1,
miR-133a-3p/PAPPA

RT-PCR, DLR,
RIP, RPD

Proliferation ↑
(Target for therapy,

Biomarker)
[151–153]

circ_0086296
(UHRF2)

Carotid plaque,
HUVEC, aorta of

atherosclerotic mice

miR-576-3p/IFIT1,
STAT1

Microarray, RT-PCR,
RISH, Sanger-Seq,

DLR, RIP, RPD

Inflammation ↑
Lipid accumulation ↑
(Target for therapy)

[154]

circ_0003204 (USP36) Serum, VSMC miR-182-5p/KLF5,
miR-942-5p/HDAC9

RT-PCR, DLR, RPD,
RIP

Proliferation ↑
(Target for therapy,

Biomarker)
[155,156]

circ_0090231 (USP9X) Serum, HUVEC miR-9-5p/TXNIP,
miR-599/CLIC4

RT-PCR,
DLR, RIP

Apoptosis ↑
Oxidative stress ↑

Inflammation ↑
Proliferation ↓

(Target for therapy,
Biomarker)

[157,158]

circ_0006896
(VIRMA)

EVs,
HUVEC miR-1264/DNMT1 Microarray, RISH,

RT-PCR, DLR

Plaque formation ↑
Proliferation ↑

(Target for therapy,
Biomarker)

[159]

* Vascular Smooth Muscle Cell (VSMC), Human Umbilical Vein Endothelial Cell (HUVEC), Human leukemia
monocytic cell line (THP-1), Human Aortic Endothelial Cell (HAEC), Human Umbilical Vein Smooth Muscle
Cell (HUVSMC), Cardiac Microvascular Endothelial Cell (CMEC), Human Aortic Smooth Muscle Cell (HASMC),
Extracellular vesicles (EVs), Reverse transcription-polymerase chain reaction (RT-PCR), Dual-luciferase reporter
assay (DLR), RNA immune precipitation (RIP), pull-down assay (RPD), High-throughput RNA sequencing
(RNA-Seq), RNA in situ hybridization (RISH); ↑: increase; ↓: decrease.
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In the vast majority of cases, an increase in the content of circRNA is accompanied
by activation of inflammation, oxidative stress, abnormal proliferation and migration of
VSMC, and suppression of HUVEC proliferation. An increase in the level of circRNA can
lead to an increase in the expression of ICAM-1 and VCAM-1 [135], lipid metabolism dis-
turbances, the formation of foam cells [147,148], and other manifestations of atherosclerosis.
Thus, atherogenesis-related circRNAs, whose expression level is increased with an overall
proatherogenic effect, can be biomarkers and targets for CAD therapy.

One of the main risk factors for the development of atherosclerosis in humans is the
increased level of cholesterol in the serum [153]. Quite recently, more than a hundred
circRNA–miRNA–mRNA interactions involved in atherogenesis during foam cell forma-
tion have been described [160]. It was shown that 88 circRNAs, acting as sponges for
33 miRNAs, affect the expression of SR-A1, CD36, ACAT2, ABCA1, ABCG1, ADAM10,
APOA1, SCARB1. The protein products of these genes are involved in cholesterol uptake,
esterification, and efflux [161]. Thus, circRNAs are involved in coronary artery atherogene-
sis by various mechanisms with different circRNA–miRNA–mRNA interactions leading, in
turn, to atheroprotective or proatherogenic effects in CAD.

6. CircRNAs Are Promising Biomarkers and Therapeutic Targets for the Treatment
of CAD

The increased stability of circRNAs compared to linear transcripts, their specificity,
reproducibility, and difference in expression levels in normal and pathological conditions
have led to their identification as a diagnostic and prognostic marker of many diseases,
including CAD [81,160,162,163]. circRNAs can be isolated from biomaterials such as
cerebrospinal fluid, saliva, serum, plasma, and urine, as well as from circulating cells and
exosomes [164]. The results of circRNA measurement with RT-PCR or RNA-Seq can be
used for early diagnosis, treatment selection, disease prognosis, and treatment control [163].
The circRNA level can serve as a potential biomarker of CAD in different samples, such as:
peripheral blood (has_circ_0124644) [165]; mononuclear cells (BTBD7_hsa_circ_0000563,
hsa_circ_0001879, and has_circ_0004104) [47,166]; plasma and peripheral blood leukocytes
(hsa_circ_0001445) [114,116]; and extracellular vesicles (hsa_circ_0005540) [167]. As can
be seen from Tables 1 and 2, dozens of circRNAs are currently considered risk factors
for the development of CAD, making them potential biomarkers and possible targets for
the treatment of this pathology. To date, there is no unequivocal answer as to whether
circRNAs in blood cells or in other biomaterials reflect pathological processes occurring
in atherosclerosis and, in particular, in CAD. It is still a controversial question whether
signatures of gene expression in the blood can serve as biomarkers of disease states [168].
In a comparison of 15 studies in which 706 differentially expressed genes were identified,
only 23 genes were replicated in no more than two or three studies. The low level of
replication, according to the authors, is due to genetic differences in how an individual
responds to a disease. Studies with cohorts of more than 5000 people looking at the impact
of common genetic variants still failed to state that disease-specific genes may belong to
biomarkers. Based on the results of the study, it was concluded that in order to overcome
the heterogeneity of the response to the disease, it is necessary to use significantly larger
samples of the studied case-control cohorts. At the same time, it has been shown that
miRNAs are less affected by genetic differences and can more accurately reflect the disease
process [168]. Thus, the question of how genetic differences can affect the content of
circRNAs and whether they can be biomarkers remains open. In addition, it should be
taken into account that one circRNA can adsorb several miRNAs, one miRNA molecule
can target a wide range of different mRNAs, and individual circRNAs can be markers of
several diseases simultaneously. An interesting idea is to use the ratios of circRNA and
miRNA levels as biomarkers; for example, the circR-284/miR-221 ratio has been proposed
as a marker for predicting carotid artery disease and stroke [169].

The use of circRNAs as therapeutic targets in CAD has been widely discussed [24,29,170].
An attractive therapy strategy is the creation and use of artificial circRNAs in the form



Curr. Issues Mol. Biol. 2023, 45 6692

of miRNA sponges [171]. The advantages and disadvantages of the methodology of cir-
cRNA synthesis in vitro have been thoroughly reviewed recently [170]. The use of newly
synthesized circRNAs is restricted by imperfect cyclization, the presence of extraneous
fragments, their off-target effects, and the activation of the immune response. The future
improvement of circRNA synthesis technologies is required to receive safe preparations.
However, RNA delivery to cells and organs is a serious problem that needs to be solved
for clinical applications. Most often, viral systems are used for RNA delivery. Due to its
low immunogenicity, adeno-associated virus (AAV) is one of the most promising delivery
systems in translational medicine. Since AAVs do not integrate DNA into the genome of
host cells, this avoids unwanted off-target changes in gene expression. Currently, most ani-
mal studies studying the cardiovascular system are focused on the application of circRNA
through AAV delivery systems. A limitation of the use of AAV is the presence of a large
population of neutralizing antibodies against it [170].

New horizons in modern CAD therapy for successful drug delivery were opened by
EVs (exosomes) [172]. Such key qualities of EVs as low immunogenicity, high physicochem-
ical stability, the ability to penetrate tissues, and the innate ability to bind to other cells
ensured their therapeutic application [173]. Recently, the therapeutic potential of exosomes
derived from circRNA_0002113 lacking mesenchymal stem cells in myocardial infarction
has been shown. So, the circRNA_0002113/miR-188-3p/RUNX1 axis-mediated alleviation
of apoptosis serves as a novel strategy to treat myocardial ischemia/reperfusion injury [174].
circRNAs in exosomes are being tested as potential CAD treatments, but it should be noted
that the use of circRNAs in exosomes is also limited by the lack of data on the functioning
of the exosomes themselves (low efficiency and safety of the proposed technologies).

Besides the difficulties in circRNA’s development and the systems of safe delivery, the
existence of several points of application, several mechanisms of action, and their involve-
ment in the progression of multiple human diseases are major drawbacks in circRNA’s use
for diagnostics and therapy. Indeed, one circRNA can adsorb several miRNAs, one miRNA
molecule can target a wide range of different mRNAs with the involvement of correspond-
ing protein products in the development of several pathologies, and individual circRNAs
can be markers of several diseases simultaneously. Many circRNAs, in particular circMTO1,
circHIPK3, сirc_0001946, circPTPRA, and circCOL1A1, are potential targets for therapy
or biomarkers of CAD (Tables 1 and 2), and play critical roles in cancer progression as
well [175–179]. Additional comprehensive studies of the action mechanisms of individual
circRNAs and the involved regulatory networks are needed.

7. Conclusions

The latest achievements of the numerous studies of the expression and action mecha-
nisms of tens of atherogenesis-related circRNAs associated with CAD are discussed here.
circRNAs, as microRNA sponges, can be risk factors, potential biomarkers, and therapeutic
agents for coronary artery disease. Atherogenesis-related circRNAs with decreased plasma
levels in patients with atherosclerosis or in vitro conditions as a model of atherosclerosis
possess anti-inflammatory and atheroprotective effects, decrease oxidative stress, and may
be used potentially for CAD treatment. Other circRNAs with increased expression possess
a proatherogenic effect and may serve as diagnostic and therapeutic targets. Thus, the
studies of circRNAs involved in atherosclerosis of coronary arteries and their participation
in various circRNA–miRNA–mRNA regulatory axes contribute both to understanding
CAD development and their potential use for diagnostics and therapy.

8. Future Directions

The practical use of circRNAs at present is largely restricted. A majority of studies
evidence the role of circRNAs as microRNA sponges; however, the full set of circRNA
functions remains to be answered. Recent studies have established that circRNAs regulate
gene expression by associating with RNA-binding proteins [46,47,180]. Accumulating
studies indicate that circRNA encode proteins or peptides [181–185] that challenges the
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general opinion on their non-coding properties. Future studies of circular RNAs may
be directed toward their regulatory and translational potential and their biogenesis and
degradation. Due to the involvement of a large number of circular RNAs in various
physiological and pathological processes and in the pathogenesis of various diseases, the
full spectrum of circRNAs circulating in the bloodstream of CAD patients, the underlying
network characteristics, and the use of large cohorts are the primary requests for the
selection of promissory circRNAs as biomarkers or therapeutic agents. The relationship
between circRNA activity and the genomic architecture of individuals and populations
has to be considered in personalizing health care. We believe the successful treatment
of cardiovascular diseases by circRNA is based upon the new circRNA–miRNA–mRNA
regulatory axes and fundamental principles of circRNA biology.
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