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Abstract: Atherosclerosis is driven by intimal arterial macrophages accumulating cholesterol. Atheroscle-
rosis also predominantly occurs in areas consisting of proinflammatory arterial endothelial cells. At
time of writing, there are no available clinical treatments that precisely remove excess cholesterol from
lipid-laden intimal arterial macrophages. Delivery of anti-miR-33a-5p to macrophages has been shown to
increase apoAI-mediated cholesterol efflux via ABCA1 upregulation but delivering transgenes to intimal
arterial macrophages is challenging due to endothelial cell barrier integrity. In this study, we aimed
to test whether lipoparticles targeting proinflammatory endothelial cells can participate in endothelial
cell-derived exosome exploitation to facilitate exosome-mediated transgene delivery to macrophages. We
constructed lipoparticles that precisely target the proinflammatory endothelium and contain a plasmid
that expresses XMOTIF-tagged anti-miR-33a-5p (LP-pXMoAntimiR33a5p), as XMOTIF-tagged small
RNA demonstrates the capacity to be selectively shuttled into exosomes. The cultured cells used in our
study were immortalized mouse aortic endothelial cells (iMAECs) and RAW 264.7 macrophages. From
our results, we observed a significant decrease in miR-33a-5p expression in macrophages treated with ex-
osomes released basolaterally by LPS-challenged iMAECs incubated with LP-pXMoAntimiR33a5p when
compared to control macrophages. This decrease in miR-33a-5p expression in the treated macrophages
caused ABCA1 upregulation as determined by a significant increase in ABCA1 protein expression in
the treated macrophages when compared to the macrophage control group. The increase in ABCA1
protein also simulated ABCA1-dependent cholesterol efflux in treated macrophages—as we observed
a significant increase in apoAI-mediated cholesterol efflux—when compared to the control group of
macrophages. Based on these findings, strategies that involve combining proinflammatory-targeting
lipoparticles and exploitation of endothelial cell-derived exosomes appear to be promising approaches
for delivering atheroprotective transgenes to lipid-laden arterial intimal macrophages.

Keywords: antagomiR; HDL; intima; microRNA; nanoparticle; reverse cholesterol transport; vascular
inflammation

1. Introduction

Atherosclerosis is a chronic condition that causes narrowing of the arteries due to
plaque formation [1,2]. The most deleterious consequence of atherosclerosis is a vulnerable
plaque rupture causing a thrombus to form that can occlude the arterial lumen and possibly
lead to death from a myocardial infarction or ischemic stroke [3,4]. The two major drivers

Curr. Issues Mol. Biol. 2023, 45, 5631–5644. https://doi.org/10.3390/cimb45070355 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb45070355
https://doi.org/10.3390/cimb45070355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0003-2343-0719
https://doi.org/10.3390/cimb45070355
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb45070355?type=check_update&version=1


Curr. Issues Mol. Biol. 2023, 45 5632

of atherosclerosis are arterial cholesterol accumulation and vascular inflammation [5,6]. For
the latter, it is critical to emphasize that vascular inflammation in the context of atheroscle-
rosis does not occur systemically, but in atheroprone areas [7,8]. Indeed, atherosclerotic
inflammation is stimulated by endothelial dysfunction and induced by endothelial activa-
tion [9], which can cause both atherogenesis and atherosclerosis progression [10–12].

One of the most crucial proinflammatory adhesion molecules expressed by the en-
dothelium when endothelial activation occurs is VCAM-1 [13]. A main function of VCAM-1
is transendothelial migration of circulatory monocytes into the intima [14,15], whereby
monocytes differentiate into macrophages and engulf LDL that has entered the intima,
which can cause atherosclerosis development [16–18]. Therefore, VCAM-1 expression
within endothelial cells is thought to trigger atherosclerosis and it is well recognized that
robust endothelial VCAM-1 expression predominantly occurs in atheroprone regions and
atherosclerotic areas, but not in atheroresistant endothelial arterial cells [19].

Exploiting endothelial VCAM-1 expression as a target for atheroprotective therapy
has previously been successful [20]. Indeed, decorating nanoparticles with the VCAM-1-
binding peptide VHPK results in nanoparticles being precisely internalized by inflamed
endothelial cells [21,22]. Furthermore, data have shown that atherosclerosis can be pre-
vented in atherogenic mice that are administered VHPK-decorated nanoparticles containing
antiatherogenic anti-miR-712 [21]. However, this atheroprotective effect observed from
VHPK-decorated, nanoparticle-based anti-miR-712 delivery appears to be confined to in-
flamed endothelia [21]. Thus, a possible way to maximize the atheroprotective benefit of
nanoparticles is for effective delivery of atheroprotective transgenes to lipid-laden intimal
macrophages, which is a major cell type responsible for the development of atherosclerotic
plaque formation [23].

Gene delivery to intimal and other subendothelial cells is extremely challenging due
to endothelial cells acting as a barrier that impedes transgenic subendothelial entry [24,25].
Therefore, nanoparticles and viral vectors are unlikely to cross the endothelium and enter
the intima to deliver atheroprotective transgenes to lipid-laden intimal macrophages. A
possible strategy to overcome this limitation of atheroprotective gene-based therapy is
utilizing endothelial cell-derived exosomes to deliver transgenes to intimal cells. Indeed,
incorporating an XMOTIF sequence to small RNA results in small RNA species being
selectively packaged into exosomes [26–28].

We previously used this XMOTIF technology to generate a helper-dependent ade-
noviral vector (HDAd) that expresses XMOTIF-tagged anti-miR-33a-5p (HDAdXMoAn-
timiR33a5p) [28]. Since miR-33a-5p is considered proatherogenic via silencing ABCA1
expression resulting in impaired apoAI-mediated cholesterol efflux, inhibiting miR-33a-
5p is considered atheroprotective via augmenting intracellular cholesterol removal, with
data supporting this notion [29–31]. When cultured endothelial cells are transduced with
HDAdXMoAntimiR33a5p, this results in enhanced exosomal uploading of anti-miR-33a-
5p into exosomes released by transduced endothelial cells. Moreover, when these anti-
miR-33a-5p-filled exosomes are exposed to cultured macrophages, this results in an in-
crease in both ABCA1 protein expression and apoAI-mediated cholesterol efflux in treated
macrophages [28].

Based on the prior mentioned successes of nanoparticle- and exosome-based athero-
protective therapies, we attempted to combine these two approaches to possibly allow
inflamed endothelial cells to package anti-miR-33a-5p into exosomes that have the potential
to be internalized by lipid-laden intimal macrophages. Thus, in this study, we aimed to
test the hypothesis that inflamed cultured endothelial cells exposed to VCAM-1-targeting
lipoparticles (LPs) containing a plasmid that expresses XMOTIF-tagged anti-miR-33a-
5p (LP-pXMoAntimiR33a5p) increases ABCA1-dependent cholesterol efflux in cultured
macrophages via endothelial cell-derived exosome-mediated transfer of anti-miR-33a-5p.
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2. Materials and Methods
2.1. Tissue Culture

Immortalized mouse aortic endothelial cells (iMAECs) [32] were cultured and main-
tained in conditions previously described [33]. The RAW 264.7 macrophage cell line was
purchased from ATCC (Manassas, VA, USA) and grown in medium that contained the
following: high-glucose Dulbecco’s modified Eagle’s medium (DMEM; Corning, New York,
NY, USA); FB essence (10%; VWR Life Science Seradigm, Radnor, PA, USA); and pen/strep
(1%; Corning). For the iMAECs and macrophages utilized within our in vitro experiments,
cells were allowed to grow to 70–80% confluency before conducting respective experiments.

2.2. iMAEC-Derived Exosome Isolation and Characterization

Exosomes were isolated from serum-free medium conditioned using iMAECs and
medium utilized in transwell assays, as described [28]. Briefly, serum-free DMEM was
collected, and serial centrifugation was conducted to effectively isolate exosomes from the
medium, with the exosomal pellet being resuspended in PBS. Exosome yield and purity
was assessed using Coomassie staining (Expedeon, Cambridgeshire, UK), immunoblotting,
nanoparticle tracking analyses (NTA) by NanoSight, and transmission electron microscopy
(TEM), as previously reported [28].

2.3. Generation and Characterization of LP-pXMoAntimiR33a5p

We generated LP-pXMoAntimiR33a5p by adapting the following protocol [21]: Briefly,
the following reagents for LP construction were purchased from Avanti Polar Lipids (Al-
abaster, AL, USA): cholesterol; 1,2-dioleoyl-3-trimethylammonium propane (DOTAP);
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
(DSPE-PEG2k); hydrogenated soy phosphatidylcholine (HSPC). The pUC57-derived plas-
mid pXMoAntimiR33a5p used to incorporate into LPs was purchased from System Bio-
sciences (Palo Alto, CA, USA) and contains an expression cassette that includes a U6
promoter that drives expression of XMOTIF-tagged anti-miR-33a-5p, along with a TTTTT
termination sequence. For each LP-pXMoAntimiR33a5p preparation, 500 mL of pXMoAn-
timiR33a5p (1 mg/mL) was added to 0.78 mg of DOTAP pre-dissolved in 500 mL of
chloroform and 1040 mL of methanol. After gently mixing to form a monophase, we
incubated this solution at room temperature for 30 min. Afterward, we added 500 mL of
DI water and 500 mL of chloroform to the solution to form an aqueous biphase, where we
mixed then spun this solution at 800 g for 10 min at 4 ◦C. We then added the organic phase to
the following dried lipids: 1.47 mg of cholesterol; 0.95 mg of DSPE-PEG2k; 4.55 mg of HSPC.
We transferred the mixed organic solution to a sterile tube, added 500 mL of DI water to the
sterile tube, vortexed the tube, and then emulsified the solution using sonication. We then
used a BUCHI Rotavapor® R-100 (New Castle, DE, USA) for evaporating the organic phase.
We subsequently added 500 mL of DI water to the preparation and conducted another
round of evaporation using the Rotavapor. We then extruded the LP preparation for a total
of 21 passages by using a 100 nm polycarbonate membrane at a temperature of 55 ◦C. A
purified, custom VHPK (Val-His-Pro-Lys-Gln-His-Arg-Gly-Gly-Ser-Lys(stearic_Lys(stearic)-
PEG27)-Gly-Cys) purchased from CPC Scientific (San Jose, CA, USA) was used for LP
decoration. Ten mg of lyophilized peptide was directly added to the LP preparation and
mixed/inverted and stirred with gentle agitation. LP-pXMoAntimiR33a5p was then pu-
rified using a Cytiva HiTrap column (Marlborough, MA, USA) and VHPK-rich fractions
were assessed using spectrophotometry [34] and HPLC. For HPLC analysis, the chro-
matographic system used was a ThermoFisher UltiMate 3000 HPLC system (Waltham,
MA, USA) with a quaternary pump, a semiautomatic Rheodyne injector with a 20 mL
loop, and VWD-3100 detector at 220 nm, and the HPLC column used was a Jupiter C4
300 Å 250 mm × 4.6 mm × 5 um from Phenomenex (Torrance, CA, USA). To assess pX-
MoAntimiR33a5p incorporation into the LPs, we performed a degradation assay. In brief,
LP-pXMoAntimiR33a5p preparations were divided equally into three separate treatment
groups and initially incubated for 15 min at room temperature with either PBS (1% total
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volume) or PBS-T at a 1% total volume to disrupt LPs. The PBS-T treatment group and
one of the PBS treatment groups were then treated with DNase I (Promega, Madison, WI,
USA), while the other PBS treatment group was incubated with vehicle. After incubating
the 3 groups in a water bath at 37 ◦C for 60 min, DNase I was heat inactivated, and PBS-T
was added to each treatment accordingly at a 1% total volume for each group. The plasmid
DNA from each treatment was then purified by using a DNA Clean & Concentrator kit
(Zymo Research) to use for analyzing pXMoAntimiR33a5p content outside of LPs versus
within intact LPs. Additional characterization of the LP-pXMoAntimiR33a5p preparations
included assessing the diameter size and physical characteristics of the particles within
these preparations using NTA and TEM [35], respectively.

2.4. Transwell Assays

To effectively separate basolaterally secreted exosomes from exosomes released api-
cally [36,37] by cultured iMAECs, we utilized a transwell system [36] (0.4 µm pore size;
Corning). iMAECs were initially maintained in the apical compartment of the transwell
using standard growth medium, and the bottom compartment was filled with PBS. Once
iMAECs reached optimal confluency, cells were rinsed with PBS and replenished with stan-
dard growth medium containing either vehicle only or lipopolysaccharide (LPS) (10 ng/mL;
Sigma-Aldrich, St. Louis, MO, USA). PBS was also removed from the bottom compartment
and this compartment was rinsed with PBS, then refilled with PBS. Twenty-four hours
after vehicle and LPS treatments, the cells and bottom compartments were rinsed with
PBS as described above, the bottom compartment refilled with PBS, and cells exposed to
LP-pXMoAntimiR33a5p (1 iMAEC per LP) diluted in standard growth medium. One-hour
after incubating iMAECs with LP-pXMoAntimiR33a5p, cells and bottom compartments
were again rinsed with PBS as described above, and both compartments were filled with
serum-free DMEM. Twenty-four hours later, medium from the apical and basolateral com-
partments were either used to treat cultured RAW 264.7 macrophages or exosomes from
this medium were isolated using ultracentrifugation [28].

2.5. qPCR and RT-qPCR

Plasmid internalization efficiency of iMAECs exposed to LP-pXMoAntimiR33a5p was
assessed using qPCR. iMAECs were first allowed to grow to optimal confluency, rinsed
with PBS, and then replenished with standard growth medium that contained vehicle only
or LPS (10 ng/mL). Twenty-four hours after vehicle/LPS treatments, iMAECs were rinsed
with PBS, and then incubated with LP-pXMoAntimiR33a5p (1 iMAEC per LP) diluted in
standard growth medium. One hour after exposing iMAECs with LP-pXMoAntimiR33a5p,
iMAECs were rinsed with PBS and refed with standard growth medium for twenty-four
hours, before again rinsing iMAECs with PBS, then extracting gDNA and plasmid with
DNA QuickExtract™ DNA Extraction Solution (Middleton, WI, USA). This extracted DNA,
along with the purified DNA collected from the LP degradation assays, was used to measure
plasmid DNA content by using a primer pair specific for detecting the plasmid, pXMoAn-
timiR33a5p. To assess miR-33a-5p and anti-miR-33a-5p levels, we used RT-qPCR. Briefly, we
purified total RNA from the exosomes isolated from serum-free medium conditioned using
iMAECs via ultracentrifugation, as previously described [28]. For cellular RNA extraction,
we first treated cultured RAW 264.7 macrophages with serum-free medium conditioned us-
ing vehicle/LPS-treated iMAECs exposed to LP-pXMoAntimiR33a5p. Twenty-four hours
after this treatment, we rinsed the macrophages with PBS, and purified the total RNA from
these cells with a Direct-zol RNA purification kit (Zymo Research, Irvine, CA, USA). We syn-
thesized small RNA using the cellular RNA as template along with a qScript™ microRNA
cDNA Synthesis kit (Quantabio, Beverly, MA, USA). A Quantabio PerfeCTa SYBR Green
FastMix kit was utilized in all our qPCR reactions [38] and the U6 reference gene was also
measured when calculated total RNA input was identical among samples. For experiments
involving LP-pXMoAntimiR33a5p degradation assays, measuring pXMoAntimiR33a5p
levels in vehicle versus LPS-treated iMAECs incubated with LP-pXMoAntimiR33a5p, and
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measuring anti-miR-33a-5p content in exosomes secreted basolaterally versus apically in
LPS-challenged iMAECs exposed to LP-pXMoAntimiR33a5p, no reference “housekeeping”
gene or equal DNA/RNA input was used. Instead, we performed qPCR and RT-qPCR
reactions using equal sample volumes and then converted pXMoAntimiR33a5p content and
anti-miR-33a-5p expression levels into arbitrary units, as previously shown [28]. We used
the following primer pair to detect the plasmid pXMoAntimiR33a5p in our qPCR reactions
(fwd: 5′-GCTTAACTATGCGGCATCAGAG-3′; rev: 5′-TAATCGCCTTGCAGCACATC-3′).
For small RNA detection, we used the listed forward primers in our qPCR reactions (U6: 5′-
TGGCCCCTGCGCAAGGATG-3′; miR-33a-5p: 5′-CGCGTGCATTGTAGTTGCATTGC-3′;
anti-miR-33a-5p: 5′-TGCAATGCAACTACAATGCAC-3′). For these primer sets, we used
the universal/global small RNA reverse primer in our qPCR reactions (5′-GCATAGACCTG
AATGGCGGTA-3′).

2.6. SDS-PAGE and Immunoblotting

Lysates derived from cultured cells and exosomes were prepared as described [28,33,35,39]
to be used downstream for protein expression analysis. Briefly, iMAECs were treated with
either vehicle or LPS (10 ng/mL for 24 h) before rinsing cells with PBS and collecting
lysates. RAW 264.7 macrophages were incubated with serum-free medium conditioned
using vehicle/LPS-treated iMAECs exposed to LP-pXMoAntimiR33a5p for 48 h, before rins-
ing macrophages with PBS, and then collecting cell lysates. We also collected lysates from
the exosomes isolated from serum-free medium conditioned using iMAECs via ultracen-
trifugation [28]. Protein quantification of lysates was performed by using a BCA assay kit
(BioVision, Milpitas, CA, USA). To assess protein expression patterns in iMAECs and exosomal
lysates, proteins were separated on an SDS-PAGE gel followed by Coomassie staining. For
immunoblotting, protein lysates were also separated with an SDS-PAGE gel and the proteins
were transferred onto a PVDF membrane (Merck Millipore Ltd., Burlington, MA, USA). After
incubating PVDF membranes in blocking buffer then washing with TBST, the membranes
were incubated with the following primary antibodies: ABCA1 (1:1500 dilution, sc-58219;
Santa Cruz Biotechnology, Dallas, TX, USA); calregulin (1:500 dilution, sc-166837, Santa Cruz
Biotechnology); CD81 (1:500 dilution, sc-166029; Santa Cruz Biotechnology); VCAM-1 (1:1000
dilution, sc-13160, Santa Cruz Biotechnology); GAPDH (1:2000 dilution, sc-365062; Santa Cruz
Biotechnology). Post-incubation with primary antibodies, PVDF membranes were washed
with TBST, and then incubated with HRP-conjugated goat anti-mouse IgG secondary antibody
(1:15,000 dilution, AP181P; Sigma-Aldrich). After incubating PVDF membranes with secondary
antibody and washing with TBST, we used ECL (Immobilon ECL Ultra Western HRP Substrate;
MilliporeSigma, Billerica, MA, USA) and a ChemiDoc imager (Analytik Jena US, Upland, CA,
USA) for protein detection [38], and then quantified proteins with version 1.53a NIH ImageJ
software [40].

2.7. ApoAI-Mediated Cholesterol Efflux

RAW 264.7 macrophages were grown in standard growth medium until reaching
optimal confluency and then rinsed with PBS and subsequently treated for 24 h with
serum-free medium conditioned using vehicle- or LPS-treated iMAECs exposed to LP-
pXMoAntimiR33a5p. After treatments, we rinsed the cultured macrophages with PBS,
and then loaded the cells with [3H] cholesterol (1 µCi/mL; PerkinElmer, Waltham, MA,
USA) diluted in serum-free DMEM supplemented with 2 mg/mL of fatty acid-free bovine
serum albumin (Sigma-Aldrich). After loading macrophages with [3H] cholesterol for 24 h,
we rinsed the macrophages with PBS, and incubated the macrophages with 50 µg/mL
of apoAI (Academy Bio-Medical Company, Houston, TX, USA) diluted in serum-free
DMEM supplemented with fatty acid-free bovine serum albumin (2 mg/mL) for 24 h. We
then filtered the medium to remove any dissociated macrophages and counted the [3H]
in the medium and cell extracts by using a liquid scintillation counter (Tri-Carb 4910TR;
PerkinElmer). We calculated apoAI-mediated cholesterol in the treated macrophages as
previously described [28,39].
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2.8. Statistical Analysis

SigmaPlot v14.0 (Systat Software Inc., San Jose, CA, USA) was utilized for statistical
analyses. We assessed normality using a Shapiro–Wilk test and assessed equal variance by
using a Brown–Forsythe test. For the degradation assay, we performed a Kruskal–Wallis
one-way analysis of variance on ranks and Dunn’s method for post-hoc testing. For all
other statistical tests, we performed a Student’s t-test when both these normality and
equal variance assumptions were met, performed a Mann–Whitney rank-sum test when
normality was violated, and performed a Welch’s t-test when equal variances were not
assumed. Statistical significance was set at p-value of <0.05.

3. Results
3.1. iMAECs Secrete Exosomes

We and others have confirmed that cultured primary aortic endothelial cells secrete
exosomes [28,41], but to our knowledge, rigorous analysis for determining whether iMAECs
release exosomes has yet to be conducted. Therefore, we performed robust assessments of
the particles isolated from the serum-free medium conditioned using iMAECs to confirm
whether these isolated particles are exosomes. Coomassie staining of an SDS-PAGE gel
revealed differences in protein expression patterns of lysate derived from particles isolated
from the conditioned medium of iMAECs when compared to the protein profile of iMAEC
lysate (Figure 1A). We used these lysates to probe for the tetraspanin and exosome marker
CD81, as well as the endoplasmic reticulum protein and non-exosome marker calregulin.
As expected, CD81 protein was enriched within the iMAEC-derived exosomal lysate when
compared to iMAEC lysate, while calregulin was detected in iMAEC lysate but absent in
iMAEC-derived exosomal lysate (Figure 1B), which is predicted to occur when analyzing
exosomal versus cellular lysates [42]. We further characterized these particles secreted
by iMAECs using NTA via NanoSight, which showed iMAECs release a large number of
particles that are predominantly within the same size range as exosomes [42] (Figure 1C).
Lastly, we imaged these particles with TEM, which is considered the gold standard for
visualizing exosomes [43], and observed exosome-sized particles with distinctive traits
commonly attributed to exosomes [44,45] (Figure 1D). From these findings, we concluded
that iMAECs do release exosomes.
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Figure 1. Characterizing iMAEC-derived exosomes. (A) SDS-PAGE and Coomassie stain show-
ing distinct protein profiles of iMAEC lysate (EC) and iMAEC-derived exosomal (EXO) lysate.
(B) Immunoblotting of lysates for iMAECs and iMAEC-derived exosomes for probing of the exosome-
positive marker CD81 and exosome-negative marker calregulin. (C) Particle number and diameter
size determined in iMAEC-derived exosomal preparations via NTA. (D) Transmission electron
micrographs of exosomes within iMAEC-derived exosomal preparations.

3.2. Characterization of LP-pXMoAntimiR33a5p

We performed a degradation assay to assess incorporation of pXMoAntimiR33a5p
into LPs. While DNase alone failed to significantly degrade pXMoAntimiR33a5p within
LP-pXMoAntimiR33a5p preparations, the addition of detergent to promote LP lysis in
LP-pXMoAntimiR33a5p along with DNase resulted in effective pXMoAntimiR33a5p degra-
dation (Figure 2A), which implies pXMoAntimiR33a5p is protected within intact LPs. NTA



Curr. Issues Mol. Biol. 2023, 45 5637

was utilized to determine size and yield of particles within LP-pXMoAntimiR33a5p prepa-
rations, which detected a high number of particles <300 nm in size (Figure 2B). TEM images
of the particles within the LP-pXMoAntimiR33a5p preparations revealed particles exhibit-
ing physical characteristics commonly associated with LPs (Figure 2C). Therefore, these
results indicate that our preparations contain intact LPs that enclose pXMoAntimiR33a5p.
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Figure 2. Characterization of LP-pXMoAntimiR33a5p preparations. (A) Five LP-pXMoAntimiR33a5p
preparations were exposed to either detergent and DNase or DNase only and pXMoAntimiR33a5p
content within treated preparations were compared to pXMoAntimiR33a5p levels in vehicle-treated
control LP-pXMoAntimiR33a5p via qPCR. AU = arbitrary units. Bars are group means and
(*) shows statistical significance at p < 0.05. (B) Particle diameter size and number assessed in
LP-pXMoAntimiR33a5p using NTA. (C) TEM images of LP-pXMoAntimiR33a5p.

3.3. Proinflammatory iMAECs Exposed to LP-pXMoAntimiR33a5p Primarily Release
Anti-miR-33a-5p-Loaded Exosomes Basolaterally

To induce VCAM-1 expression in iMAECs, we challenged cells with LPS [46]. Com-
pared to vehicle-treated control iMAECs, LPS-challenged iMAECs showed robust ex-
pression of VCAM-1 protein (Figure 3A,B). When we exposed vehicle-treated and LPS-
challenged iMAECs to LP-pXMoAntimiR33a5p, we observed a significant increase in
pXMoAntimiR33a5p content within iMAECs challenged with LPS (Figure 3C), which im-
plies LP-pXMoAntimiR33a5p is selectively internalized by proinflammatory endothelial
cells. To determine whether this increase in pXMoAntimiR33a5p content also resulted in
increasing anti-miR-33a-5p levels in exosomes released basolaterally by LPS-challenged
iMAECs, we measured basolateral exosomal anti-miR-33a-5p levels in LPS-challenged
iMAECs versus vehicle control iMAECs. We reported a significant increase in basolateral
exosomal anti-miR-33a-5p content in the LPS-challenged iMAEC group when compared
to the vehicle control iMAEC group (Figure 3D). And to assess whether proinflammatory
iMAECs largely secrete exosomes apically or basolaterally, we measured anti-miR-33a-5p
levels in exosomes released basolaterally versus apically from LPS-challenged iMAECs
incubated with LP-pXMoAntimiR33a5p. In this experiment, we observed a significant
increase in anti-miR-33a-5p content from the exosomes secreted basolaterally compared to
the exosomes released apically (Figure 3E). Taken together, these results demonstrate that
proinflammatory iMAECs exposed to LP-pXMoAntimiR33a5p package anti-miR-33a-5p in
exosomes that are preferentially secreted basolaterally.
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3.4. ABCA1-Dependent Cholesterol Efflux Is Enhanced in Macrophages Exposed to Exosomes Secreted
Basolaterally by Proinflammatory Endothelial Cells Incubated with LP-pXMoAntimiR33a5p

We incubated cultured macrophages with medium containing exosomes secreted
basolaterally by vehicle/LPS-treated iMAECs exposed to LP-pXMoAntimiR33a5p to assess
the impact of miR-33a-5p expression within these treated macrophages. The macrophages
exposed to basolateral medium associated with LPS-challenged iMAECs showed significant
decreases in miR-33a-5p expression when compared to cultured macrophages incubated
with the basolateral medium associated with vehicle-treated iMAECs (Figure 4A). We also
observed a significant increase in ABCA1 protein expression in the macrophages incubated
with basolateral medium associated with LPS-challenged iMAECs when compared to
macrophages exposed to basolateral medium associated with vehicle-treated iMAECs
(Figure 4B,C). The macrophages incubated with basolateral medium associated with LPS-
challenged iMAECs also exhibited enhanced apoAI-mediated cholesterol efflux versus
cultured macrophages exposed to basolateral medium associated with vehicle-treated
iMAECs (Figure 4D). Therefore, these results suggest that enhanced ABCA1-dependent
cholesterol efflux occurs in macrophages that internalize anti-miR-33a-5p-filled exosomes
released basolaterally by inflamed endothelia that incorporated LP-pXMoAntimiR33a5p.
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Figure 4. Increased ABCA1-dependent cholesterol efflux occurs in macrophages that internalize
anti-miR-33a-5p-filled exosomes secreted basolaterally by proinflammatory iMAECs incubated with
LP-pXMoAntimiR33a5p. (A–D) Raw 264.7 macrophages were treated with serum-free medium con-
taining exosomes released basolaterally by iMAECs pretreated with either vehicle only or challenged
with LPS and then subsequently exposed to LP-pXMoAntimiR33a5p. (A) MiR-33a-5p expression
measured in treated macrophages via RT-qPCR. (B) Representative immunoblot of ABCA1 protein
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for treated macrophages. (C) Immunoblot quantification of ABCA1 protein in treated macrophages.
(D) ApoAI-mediated cholesterol efflux measured in treated macrophages. (A,C) AU = arbitrary
units. (A,C,D) Datapoints indicate biological triplicates from three independent experiments. Bars
are group means and (*) shows statistical significance at p < 0.05.

4. Discussion

In this study, we wanted to investigate whether treating proinflammatory iMAECs
with LP-pXMoAntimiR33a5p results in these cells releasing anti-miR-33a-5p-loaded exo-
somes basolaterally. However, a prerequisite for this is to determine if iMAECs are capable
of secreting exosomes, since immortalized cell lines are known to behave differently when
compared to their primary cell counterparts [47]. Therefore, we performed some initial
sets of experiments to confirm that iMAECs do release exosomes. We also showed when
iMAECs are exposed to LP-pXMoAntimiR33a5p; these VCAM-1-binding LPs selectively
target proinflammatory iMAECs, and the iMAECs that internalize LP-pXMoAntimiR33a5p
preferentially secrete anti-miR-33a-5p-filled exosomes basolaterally. Lastly, when we incu-
bated cultured macrophages with medium containing anti-miR-33a-5p-loaded exosomes
released basolaterally by proinflammatory iMAECs exposed to LP-pXMoAntimiR33a5p,
the treated macrophages exhibited increased ABCA1-dependent cholesterol efflux. Thus,
these proof-of-concept experiments imply anti-miR-33a-5p delivery to intimal macrophages
is possible by combining lipoparticle- and exosome-based approaches (Figure 5).
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delivery of anti-miR-33a-5p to lipid-laden arterial intimal macrophages instigated using VCAM-1-
binding lipoparticles containing pXMoAntimiR33a5p.

Cardiovascular disease is still the leading cause of global mortality [48] and atheroscle-
rosis is the major contributor for these deaths [49]. Unfortunately, treatments that have
focused on attenuating the main two drivers of atherosclerosis, vascular inflammation
and arterial cholesterol accumulation, remain suboptimal, as they only appear to demon-
strate partial efficacy [50–53]. More effective therapies geared toward cholesterol removal
from arterial lesions would likely require the promotion of cholesterol efflux from intimal
lipid-laden macrophages, as these cells are considered the main culprit in the development
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of atherosclerosis [54]. However, precisely targeting these cells remains challenging due
to these lipid-laden macrophages being located within the intimal of atherosclerotic le-
sions with the endothelium acting as a barrier [55], which prevents therapeutic entry into
the intima.

Nanotherapy is an attractive option for atherosclerosis [56,57] because it allows
transgenes and other therapeutic bioactives to be precisely delivered to atherosclerotic
lesions. For instance, nanoparticles that target macrophages have shown efficacy in treating
atherosclerosis in preclinical animal models [58,59]. However, this type of therapeutic
intervention would likely only be able to treat advanced atherosclerotic lesions that trigger
the development of leaky endothelium [60–63], because nanoparticles are considered too
large to bypass intact endothelia and reach lipid-laden intimal macrophages.

Since the intima lies directly underneath the endothelial cells, strategies that focus on
proinflammatory endothelia to deliver transgenes to intimal cells is a promising atheropro-
tective approach. One potential way to accomplish this is by delivering XMOTIF-tagged
transgenes to endothelial cells, as we and others have shown XMOTIF-tagged small RNA
transgenes that are introduced to endothelial cells and other cell types results in these
transgenes being packaged into exosomes [26–28]. In our study, we constructed VCAM-
1-binding LP-pXMoAntimiR33a5p to precisely target proinflammatory endothelial cells
so that XMOTIF-tagged anti-miR-33a-5p could be shuttled into endothelial cell-derived
exosomes; thus, these exosomes could be exploited as a form of atheroprotection. How-
ever, this strategy could be expanded to include different plasmids that express other
XMOTIF-tagged transgenes, as well as XMOTIF-tagged siRNA/shRNA. Indeed, by in-
corporating this transgenic material into different types of cell-targeting nanoparticles,
there is potential for effectively delivering small RNA transgenes to various cells through
exosome-mediated processes, which opens the possibility for potentially treating other
diseases besides atherosclerosis.

Herein, we want to highlight the limitations of this study. One potential limitation
is using immortalized cells instead of primary cells in our sets of experiments, as im-
mortalized cells may behave unlike primary cells and respond to various interventions
differently [47]. The macrophage cell line we selected in this study was RAW 264.7 [64],
and in a prior study involving endothelial cell-derived exosome-mediated transfer of
anti-miR-33a-5p to macrophages, THP-1 cells were used [28]. Future studies should be
conducted to determine whether exosome-mediated delivery of anti-miR-33a-5p to primary
macrophages also results in enhancing ABCA1-dependent cholesterol efflux. In addition,
iMAECs may also react differently to LP-pXMoAntimiR33a5p and proinflammatory stimuli
when compared to primary arterial endothelial cells. For instance, while we observed a
striking increase in basolateral exosomal anti-miR-33a-5p levels when compared to apical
anti-miR-33a-5p levels when anti-miR-33a-5p content was assessed in LPS-challenged
iMAECs incubated with LP-pXMoAntimiR33a5p, it is possible that a more bidirectional
pattern of exosome release may occur if primary arterial endothelial cells are exposed to
these same conditions. Thus, future studies should be devoted to directly testing whether
exosomes from primary arterial proinflammatory endothelial cells predominantly secrete
exosomes basolaterally, so that these exosomes may be exploited as atheroprotective agents
in vivo. Lastly, it may be possible that the increase in ABCA1 protein expression observed
in macrophages from anti-miR-33a-5p inhibition may have atheroprotective properties that
extend beyond enhancing apoAI-mediated cholesterol efflux. For instance, ABCA1 has
been shown to have the capacity to participate in HDL-mediated cholesterol efflux and
demonstrate anti-inflammatory effects [39,65–67]. Future experiments should analyze if
endothelial cell-derived exosome-mediated transfer of anti-miR-33a-5p to macrophages
may also exhibit any other atheroprotective qualities outside of apoAI-mediated cholesterol
efflux. Lastly, two other limitations in our study are not extensively characterizing the
lipoparticles [21] and not directly analyzing LP-pXMoAntimiR33a5p stability. While our
current data indirectly suggest that LP-pXMoAntimiR33a5p are stable in cultured condi-
tions, these particles will need to be resistant to degradation when administered to animal



Curr. Issues Mol. Biol. 2023, 45 5641

models and remain stable in vivo to demonstrate any beneficial atheroprotective effect.
With this in mind, future studies involving atherogenic animal models should also assess
LP-pXMoAntimiR33a5p stability.

As we envision transitioning into testing our LP-pXMoAntimiR33a5p delivery method
in vivo for atheroprotective efficacy, there are a few vital factors to point out. Perform-
ing partial carotid ligation surgery in mice causes mouse carotid arteries to become
highly inflamed, which results in robust VCAM-1 expression and also promotes the
rapid development of atherosclerotic lesions within the carotid arteries [21]. Using this
strategy would be optimal to test whether administering (e.g., tail vein injection) LP-
pXMoAntimiR33a5p to experimental mice post-ligation results in promoting atheroscle-
rosis regression within their carotid arteries. Another approach would be to test whether
injecting LP-pXMoAntimiR33a5p into mice immediately before and subsequently after
partial carotid ligation surgery may prevent carotid artery atherogenesis. From a clini-
cal perspective, dosage frequency should also be taken into consideration when testing
efficacy of LP-pXMoAntimiR33a5p in atherogenic animal models. Since LPs will most
likely need to be injected intravenously, a weekly injection plan would be ideal, though
2–3 times a week may offer more atheroprotective benefit. Hence, various injection regi-
mens should be initially tested in atherogenic mice to determine which protocol provides
the most atheroprotection. If administering LP-pXMoAntimiR33a5p in vivo does result
in an antiatherogenic effect, then experiments directly testing whether atheroprotection
occurs from exosome-mediated transfer of anti-miR-33a-5p to intimal macrophages should
be conducted. This can be accomplished by coupling laser capture microdissection with
(RT-)qPCR [68] so that collection of arterial endothelium and intimal macrophages can be
performed, followed by DNA/RNA isolation. This extracted nucleic acid can be subse-
quently used for PCR reactions to test whether pXMoAntimiR33a5p is exclusively found
within arterial endothelium, while anti-miR-33a-5p detection primarily occurs in intimal
macrophages. Furthermore, if miR-33a-5p expression is shown to be reduced within the in-
timal macrophages derived from mice injected with LP-pXMoAntimiR33a5p that have been
shown to be protected from developing atherosclerosis, then this would offer compelling
evidence that the atheroprotective effect observed in these mice is mediated by miR-33a-5p
inhibition within these cells. Safety of LP-pXMoAntimiR33a5p is a concern as well and if
administering LP-pXMoAntimiR33a5p to atherogenic animal models is atheroprotective,
then rigorously testing whether injecting these particles in vivo is safe should be performed
by conducting safety profile experiments in addition to performing LP-pXMoAntimiR33a5p
biodistribution and clearance experiments as previously described [21].

In conclusion, LP-pXMoAntimiR33a5p appears to be a promising agent for treat-
ing atherosclerosis, as this therapeutic has the potential to facilitate exosome-mediated
transfer of anti-miR-33a-5p to lipid-laden intimal cells when internalized by proinflam-
matory endothelial cells. Future directions should focus on in vivo studies that directly
test whether treating atherogenic animal models with LP-pXMoAntimiR33a5p results in
atheroprotection.
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