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Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease with a high prevalence in
the developed countries. It is associated with atopic and non-atopic diseases, and its close correlation
with atopic comorbidities has been genetically demonstrated. One of the main roles of genetic studies
is to comprehend the defects of the cutaneous barrier due to filaggrin deficit and epidermal spongiosis.
Recently, epigenetic studies started to analyze the influence of the environmental factors on gene
expression. The epigenome is considered to be a superior second code that controls the genome,
which includes alterations of the chromatin. The epigenetic changes do not alter the genetic code,
however, changes in the chromatin structure could activate or inhibit the transcription process of
certain genes and consequently, the translation process of the new mRNA into a polypeptide chain.
In-depth analysis of the transcriptomic, metabolomic and proteomic studies allow to unravel detailed
mechanisms that cause AD. The extracellular space and lipid metabolism are associated with AD
that is independent of the filaggrin expression. On the other hand, around 45 proteins are considered
as the principal components in the atopic skin. Moreover, genetic studies based on the disrupted
cutaneous barrier can lead to the development of new treatments targeting the cutaneous barrier or
cutaneous inflammation. Unfortunately, at present, there are no target therapies that focus on the
epigenetic process of AD. However, in the future, miR-143 could be an important objective for new
therapies, as it targets the miR-335:SOX axis, thereby restoring the miR-335 expression, and repairing
the cutaneous barrier defects.
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1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a high prevalence
in the high-income countries [1–5]. Moreover, in low- and middle-income countries too,
its prevalence has shown an increasing trend [6]. Both sexes are affected equally, with
a peak observed in the first year of life [7–10]. Children have a prevalence between 15
and 25%; in some countries, such as the United States the prevalence is 30% [11]. On the
other hand, adults have a prevalence between 1 and 10%, the presence of the disease being
associated with the late onset or persistence from childhood [12–23]. Although AD can
become symptomatic at any age, in 60% of the cases it develops in the first year of life,
in 80–90% of the cases it develops until the age of 5 and only 26% of the adults develop
the disease after 60 years of age. AD is considered to be an inherited and multifactorial
disease [11,13,14,21,24].
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The complex etiology of atopic dermatitis involving interactions between genetic pre-
disposition, favoring and triggering factors causes skin barrier abnormalities and immune
dysfunctions critical in the pathogenesis of the disease [7,11,12,25,26]. The positive history
of atopic diseases is the biggest risk factor known in the development of AD [11,12,23]. The
genetic factors increase the susceptibility for atopy but they do not always lead to clinical
manifestations of the disease [11,12,25]. The discovery of the filaggrin gene in 2006 had
a significant impact in the understanding of the atopic diseases in the subgroup related
with filaggrin deficit [27,28]. AD is associated with other atopic diseases from the atopic
march, such as allergic asthma, allergic rhinitis, and food allergies; it is also with non-atopic
diseases [1,29–33]. The neuropsychiatric disorders have a major impact on patients’ life.
Many people suffer from depression, and anxiety [33–36] and they have a higher risk of
suicide [33,37,38], sleep deprivation, and reduced quality of life. The chronic psychological
stress increases the symptoms of AD creating a vicious circle [33,39–42]. The serotonin
metabolism is altered by the high level of proinflammatory cytokines, leading to higher
levels of depression and anxiety [43–46].

Clinically, patients present with erythematous papules, plaques or vesicles, excoriated
papules or plaques or chronic lichenified hyperpigmented lesions [47]. Usually, children
have widespread polymorphic lesions that can involve any area of the body while adults
present with circumscribed localized lesions usually on the arms, legs, hands, neck and
the periorbital area, most of the time linearly distributed and lichenified. The lesions
have chronic relapses and are associated with pruritus. According to Hanifin and Rajka,
the diagnosis of AD requires the presence of at least three major criteria and three minor
criteria. Over the years, other simplified diagnosis methods have been published [8,48–52].
Histopathologically, acute lesions present with moderate spongiosis, mild acanthosis and
exocytosis of inflammatory cells. In subacute lesions, the degree of acanthosis increases.
With time, the lesions develop scales and crusts above the thickened epidermis and dermal
perivascular inflammatory infiltrate [53].

One of the main roles of genetic studies is to comprehend the defects of the cutaneous
barrier [27]. The evolution of technology has allowed for a more precise analysis of the
“nomes” (genome, epigenome, transcriptome, proteome, metabolome and phenome) for
understanding the mechanisms that cause AD. Genetic studies based on the disrupted
cutaneous barrier lead to the development of new treatments targeting the cutaneous
barrier or cutaneous inflammation [54–56].

2. Etiology, Pathogenesis, Physiopathology

The principal gene associated in several population with AD is the filaggrin gene,
which is responsible for the integrity of the epithelium. Even if its mutations are a strong
genetic risk factor in the European and Asian population, in African population their
detection rate is very low. Moreover, investigations across different ethnicities are still
limited [57]. Furthermore, the genetic factors increase the susceptibility for atopy, but
they do not necessarily determine the clinical manifestations of the disease (Figure 1). The
phenotype is the result of the complex interactions between the disrupted cutaneous barrier,
the immunological responses and the environment. The skin barrier is very complex, with
the capacity to maintain the equilibrium between the internal and the external environment.
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mis. The migration causes cutaneous inflammation that leads to other cutaneous barrier 

imbalances [62–67]. In contrast, the intestinal microbiome influences AD in three ways: 

immunological, metabolic and neuroendocrine [68]. Probiotics interact in different ways 

with the intestinal epithelium, maintaining their balance. By modulating the release of 

various cytokines, they can induce the activation of the immune system signals, but can 

also induce the opposite effect, that is, tolerance [68–71]. Colonization of the skin with 
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onization can have a protective role in AD, as recent studies have demonstrated that it 
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Figure 1. The etiology of atopic dermatitis. The complex etiology of the atopic dermatitis includes
interactions between genetic predisposition, favoring and triggering factors. All these factors cause
skin barrier abnormalities and immune dysfunctions critical in the pathogenesis of the disease.
Adapted from Nedoszytko et al. 2020 [58].

Patients with AD have a decreased bacterial diversity with decreased commensal
flora but with significant Staphylococcus aureus; a higher bacterial diversity is observed
after the treatment of the lesions or after their favorable evolution [59–61]. At the skin
level, the quantity of Staphylococcus aureus is associated with the severity of the dis-
ease and with the number of relapses [62]. The complex pathophysiological processes
associated with spongiosis and the consequences of filaggrin deficit lead to an excessive
colonization due to a modified pH and also because the bacteria can migrate easily into the
dermis. The migration causes cutaneous inflammation that leads to other cutaneous barrier
imbalances [62–67]. In contrast, the intestinal microbiome influences AD in three ways: im-
munological, metabolic and neuroendocrine [68]. Probiotics interact in different ways with
the intestinal epithelium, maintaining their balance. By modulating the release of various
cytokines, they can induce the activation of the immune system signals, but can also induce
the opposite effect, that is, tolerance [68–71]. Colonization of the skin with Staphylococcus
aureus influences the severity and the number of relapses of AD, the relationship between
them being directly proportional [62]. On the other hand, intestinal colonization can have a
protective role in AD, as recent studies have demonstrated that it promotes the maturation
of the immune system. There is little data about other Staphylococcus species, but several
studies have concluded that a colonization of the skin with these species can have a positive
impact in preventing AD by inhibiting the growth of Staphylococcus aureus [61,68,72].
On the other hand, a significant number of studies have demonstrated a high correlation
between the lower amount of Malassezia, the high amount of filamentous fungi and also
between Candida, Staphylococcus aureus and AD. The treatment targets to increase the
amount of Malassezia in order to decrease the fungal colonization [73].

3. The Genome

Since the first genome-wide association studies (GWAS) on AD were published in
the late 2000s, there were identified more than 30 loci, most of them associated with
the development of the cutaneous barrier and immunologic dysfunctions. These studies
are helpful in understanding the genetic risk [74–76]. On the other hand, the proteome-
wide association study (PheWAS) reverse the research design of GWAS, analyzing more
phenotypic variants associated with one genetic mutation. The purpose of the second type
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of study was to explain genetic pleiotropy [27,74,77]. Nowadays, it is possible to perform
more extensive studies on rare mutations with the aid of whole-exome sequencing (WES)
and whole-genome sequencing (WGS). WES analyzes the genetic sequencing of the exons
DNA that encodes proteins and regions of the exons from the non-coding RNA. WES is
rather helpful in studying rare diseases and in finding rare mutations that cause polygenic
diseases. WGS sequences intergenic regions and exons because many of the regulatory
mechanisms are situated in the intergenic regions of the DNA [27,78]. The mendelian
randomization (MR) is useful in investigating the causal relationships. It uses the genetic
variants to deduct the nongenetic variants caused by the environment. The genetic variants
are already present before the onset of the disease, leading to less confusions while studying
the risk factors (Figure 2) [74,79,80].
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Figure 2. From genome to metabolome. The evolution of technology allowed for a more precise
analysis of the “nomes” (genome, epigenome, transcriptome, proteome, metabolome and phenome)
for understanding the mechanisms that cause the AD. Genetic studies based on the disrupted
cutaneous barrier lead to the development of new treatments targeting the cutaneous barrier or
cutaneous inflammation. Adapted with permission from Ritchie et al. 2015 [81].

Studies on people from North America and Asia have shown that AD is associated with
cardiometabolic diseases, obesity or overweight, hypertension, coronary artery disease,
peripheral vascular disease, type II diabetes, etc. There is also a vicious circle among
genetic factors, inflammation, sedentary lifestyle and corticotherapy, which can precipitate
type II diabetes. In addition, due to pruritus, the quality of life decreases, sleep is affected,
people becomes more sedentary, all of which increases the morbidity and the mortality of
cardiovascular diseases [33,82–87]. For example, two potentially modifiable AD risk factors
were analyzed using GWAS: vitamin D and obesity. The relationship between low vitamin
D levels and AD resulted not to be a causal one [32,64], while the body mass index is highly
associated with AD [32,65]. Further, modifying the risk factors associated with AD can
decrease the incidence and the prevalence of the disease [74,82,88].

There are more than 70 genes associated with AD, and they are divided into five groups:
genes leading to cutaneous barrier disfunction, genes associated with altered innate re-
sponses, genes associated with acquired immune responses, genes associated with stress
response of the keratinocytes and genes involved in the vitamin D metabolism [58].

The filaggrin gene, located on chromosome 1q21.3, is responsible for the integrity
of the cutaneous epithelium. Filaggrin is a structural and functional insoluble protein.
Together with its precursor, profilaggrin and its degradation products, trans urocanic acid
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and pyrrolidone carboxylic acid, it contributes to the aggregation of intermediate filaments
of keratin, inhibition of TEWL (transepidermal water loss), epidermal hydration, acidifi-
cation, immunomodulation, and antibacterial effect. During keratinocyte differentiation,
profilaggrin is dephosphorylated and degraded into monomers, which concentrate in
the keratin cytoskeleton to form a large amount of protein–lipid matrix [59,89]. The null
mutations of the gene are a major risk factor for AD but also for other atopic diseases,
such as allergic asthma [28,58,90–92]. However, they show a certain population specificity,
with important differences observed across various ethnicities. The frequency of the null
mutations differs from country to country; around 10% of the Europeans are the carriers of
a null mutation situated on exon 3 of the filaggrin gene [13,74,93]. It was explained by the
natural immunization for infections which can be stimulated due to a permeable cutaneous
barrier caused by the mutation [27,94].

A child’s risk of developing AD is 1.5 times higher if one of the parents has one atopic
disease. The risk increases up to 3–5 times if one or both parents have AD. The concordance
rate between monozygotic twins is 72–86%, while between dizygotic twins is 21–23%,
which emphasizes the importance of the genetic component [58,91,92]. The carriers of
two mutant alleles are almost always affected by AD, while patients with heterozygous
mutations have an 8-fold risk of developing it [58,91]. Further, the number of filaggrin
monomers that repeat in a sequence is responsible for the clinical phenotype and the onset
and the severity of the disease [58,92].

Besides the filaggrin gene, there are two other important genes. One leads to cuta-
neous barrier disfunction by regulating the filaggrin expression: ovo-like transcriptional
repressor 1 (OLOV1), and the other one is associated with the innate immune response: in-
terleukin 13 (IL-13) [58,95]. OLOV1 is a transcription factor that regulates filaggrin expression
while IL-13 is responsible for type 2 T helper (Th2) cell responses [58]. The immune genes
polymorphism is also associated with an increased risk of AD via the Th2 cells [59,96,97]
since the Th2 responses predominate in AD. The Th2 responses decrease the production of
cutaneous barrier proteins (filaggrin, loricrin, involucrin, cell adhesion proteins, desmosines,
and claudins). Moreover, they impair the homeostasis of other epitheliums leading to an
imbalanced immune response, which, in the end, is associated with systemic inflammation,
airway hyperresponsiveness and alimentary allergies [59,89,98–103]. The IL-4 and IL-13
cytokines have an important role in producing chemokines, skin barrier disfunction due
to lowering filaggrin expression, suppression of the antimicrobial peptides and allergic
inflammation [59,98,104]. There are also other polymorphic genes involved in the develop-
ment of AD, such as signal transducer and activator of transcription (STAT), thymic stromal
lymphopoietin (TLSP), interferon regulatory factor 2, Toll-like receptor 2, high affinity Ig
E receptor α (FcεRI α), and vitamin D receptor; however, their importance is still under
evaluation (Figure 3) [59,105–112].
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Figure 3. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. The decrease in
filaggrin, ceramides, antimicrobial peptides and serine protease inhibitors have a negative impact on
AD, as the increase in serine proteases and the disorders of the tight junction affect the permeability
of the cutaneous barrier. On the other hand, the immune dysfunction increases the risk of AD via the
Th2 cells. Adapted from Yang et al. 2020 [113].
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All these genetic studies lead to the development of new treatments targeting the
impaired cutaneous barrier and skin inflammation. Unfortunately, there are only a few
systemic immunomodulatory biologic therapies approved for AD: Dupilumab (monoclonal
antibody blocking IL-4 and IL-13) and Tralokilumab (human monoclonal antibody blocking
IL-13). Lebrikizumab, another monoclonal antibody blocking IL-13, has the same mecha-
nisms of action as Tralokilumab but it is still in phase three of development [54–56]. In the
future, therapies could become more precise and also the adverse reactions and the costs
for the treatments could decrease. Once the genetic risk is identified at birth, newborns
could benefit from preventive treatments as daily emollients that prevent skin dryness and
repair the skin barrier. Some studies state that AD prevention could decrease the risk of
developing other comorbidities, such as asthma [74,114–116].

4. The Epigenome

The genetic studies demonstrated that the disease expresses in some carriers of mu-
tations but at the same time, it also manifests in patients that do not carry any muta-
tion [26,30,31]. Recently, the epigenetic studies started to analyze the influence of the
environmental factors on gene expression [26]. The epigenome is considered a superior
second code that controls the genome [26]. The epigenome includes alterations of the
chromatin (covalent alterations of histone proteins, DNA methylations, and non-coding
RNA-dependent regulations). These alterations can affect the DNA and the histone pro-
teins, thereby modifying the gene expression in the genome [26]. The epigenetic changes
do not directly modify the genetic code but changes in the chromatin structures could
activate or inhibit the transcription of some genes and, moreover, the translation of the new
mRNA [58,74,106,117–128].

The covalent alterations of histone proteins affect the chromatin compression level
from lightly to tightly packed; the one lightly compressed becomes accessible for transcrip-
tion [58,74,106,117,118,121]. The main epigenetic mechanism that has an impact on the
gene expression regulation is the methylation of the cytosine, mostly where cytosine is
followed by guanine. This mechanism blocks the transcription process, while the demethy-
lation of cytosine stimulates the transcription [58,106,118,124–126]. Last but not least, the
micro-RNAs are small non-coding proteins essential in regulating the posttranscriptional
gene expression in the nucleated cells, as they are involved in many cellular processes.
The micro-RNAs are involved in apoptosis, morphogenesis, proliferation, regulation of
the cellular metabolism, signal transduction and cell differentiation [58,124–126,129,130].
The transcription of mi-RNA results in pri-mi-RNA, which is processed by the enzyme
Drosha, generating pre-mi-RNA. Then, the mi-RNA leaves the nucleus and is processed in
the cytoplasm by the DICER enzyme into a single-stranded mi-RNA. Drosha is a class 2
ribonuclease III enzyme, that in humans, is encoded by the DROSHA (formerly RNASEN)
gene. It is the primary nuclease that executes the initiation step of miRNA processing in
the nucleus [131]. When a micro-RNA binds to a specific mRNA it destabilizes it, leading
to degradation in the cytoplasm and the removal of the mRNA. This process stops the
translation and the gene function is inhibited. About 1–3% of the human genome could be
regulated by epigenetic mechanisms [58,124–126,129,130].

Patients with AD have a different epigenetic profile due to variations in methylation
profile and alterations in the expression of some specific micro-RNAs. The atopy was
demonstrated to be imprinted in chromosomes 3, 6, 11, 13, and 14 [58,117,118,132–136].
Alterations in the expression of specific miRNAs are involved in regulating the expression
of some genes that determine LTh2 polarization in the functionality of some LTreg, inflam-
matory processes, formation of tight junctions, proliferation and apoptosis of epidermal
keratinocytes and also in the synthesis of cytokines and chemokines [133,135,137–141].

Some micro-RNAs were demonstrated to have more impact in the development of
AD, and thus they could become the target of new possible treatments in the future. Ten
species of miRNA are overexpressed in the atopic skin, while thirty-four species of miRNA
are downregulated (Table 1) [58,117,118,132–136].
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Table 1. MiRNA species related to AD.

MiRNA Species AD References

MiR-155

- overexpressed
- essential for the differentiation of Th17
and Treg
- associated with sustained inflammation,
severity of the disease, and the percentage
of Th17

[58,106,117,123,129,136–139,142–144]

Let-7-a-d-family
- downregulated
- overproduction of IL-13 and CCR17
- predominance of Th2 responses

[58,129,138]

MiR-375
- similar with Let-7-a-d-family
- induces the synthesis of TSLP
- blocks the expression of KLF5

[58,129,138]

MiR-151a
- regulates the beta2 receptor of IL-12
- increased
- biomarker AD

[58,143]

hsa-mir-144-3p - biomarker AD
- umbilical cord fluid [58,143]

MiR-29b - positive correlation with SCORAD [133]

MiR-143
- inhibits IL-13 (when IL-13 is expressed,
it downregulates filaggrin, involucrin and
loricrin)

[133]

MiR-335 and SOX work
codependently

- miR-335 is suppressed,
while SOX is upregulated [145]

Abbreviations: AD—atopic dermatitis; miR—microribonucleic acid; Th1—T helper cells 17; Treg—regulatory T
cells; IL-13—interleukin 13; TSLP—thymic stromal lymphopoietin; KLF5—Kruppel-like factor 5; SCORAD—tool
for scoring AD; SOX—a transcription factor.

MiR-155 is overexpressed in patients with AD and it is essential for the differ-
entiation of Th17 and regulatory T cells (Treg). Its overexpression is associated with
sustained inflammation, severity of the disease and the percentage of Th17 lympho-
cytes [58,106,118,124,129,136–139,142–144]. The downregulation of the miR molecules
from the Let-7-a-d family in patients with AD leads to the overproduction of IL-13 and
CCR7 that promotes the predominance of Th2 responses. MiR-375 acts similarly, inducing
the synthesis of thymic stromal lymphopoietin (TSLP), thereby blocking the expression
of the transcription factor Kruppel-like factor 5 (KLF5) [58,129,138]. MiR-151a is involved
in the pathogenesis of AD as it regulates the beta2 receptor of IL-12. It decreases the
expression of the receptor when the molecule is stimulated. Along with hsa-mir-144-3p,
it has been proposed as a possible biomarker in AD. The increased expression of hsa-mir-
144-3p was observed in the umbilical cord fluid. On the other hand, the increased level
of miR-151a was observed in the serum of AD patients [58,144]. MiR-29b has a positive
correlation with SCORAD (tool for scoring the AD) [133]. MiR-143 inhibits IL-13, that when
expressed, downregulates filaggrin, involucrin and loricrin [133]. MiR-335 and SOX work
codependently: miR-335 is suppressed in patients with AD while SOX is upregulated. On
the other hand, in healthy skin, the opposite phenomenon occurs. SOX6 is a transcription
factor that suppresses epidermal differentiation by recruiting components of SWI/SNF-
related matrix-associated actin-dependent regulator of chromatin subfamily A (SMARCA)
complexes involved in keratinocyte differentiation. The loss of miR-335, together with the
upregulation of SOX, affect the keratinocytes differentiation and cornification [145].

Facundes et al. tried to demonstrate whether IgG molecules from AD patients could
regulate the functional properties of the thymic gamma-delta T cells (Tγδ), interact with
the cell membranes of the Tγδ cells and also determine if they can control the miRNA
expression. They concluded that the IgG molecules inhibit the expression of α4β7 integrin



Curr. Issues Mol. Biol. 2023, 45 5222

molecules, stimulate cutaneous lymphocyte-associated antigen (CLA) expression, interact
with the Tγδ cell membrane through the receptors that are functionally differentiated by
CTL activity and also interconnect with miR-181b-5p [146].

A lot of risk factors can alter the epigenome, from environment (pollution, and mi-
crobes) to therapy and supplement (probiotics, prebiotics, and folic acid), to pet allergens,
obesity, stress, and smoking. The epigenetic changes during pregnancy could also affect
the newborn, and then the offspring epigenome [58].

Smoking during pregnancy is associated with the early onset of atopic diseases in
childhood [26]. Indirectly, it decreases Treg cells in the blood of the umbilical cord, which
is associated with high risk of developing AD and alimentary allergies [26]. On the other
hand, it increases the expression of miR-223 in the umbilical cord, which is associated with
the decrease in Treg lymphocytes and an increased risk of developing AD under the age of
three [26]. Furthermore, miR-223 inhibits the insulin growth factor 1 receptor (IGF1R) that
has an important role in cellular metabolism, cellular proliferation and apoptosis [26]. The
pollution decreases the expression of interferon gamma (IFNG) by methylation, leading to
the development of Th2 dependent allergic reactions [26].

There is a positive association between the composition of commensal bacteria and
the risk of developing allergies [58,147–154]. The children treated with antibiotics from an
early age are at risk of developing allergies [26]. Moreover, the alteration of the function
and the composition of the intestinal microbiome is involved in the pathogenesis of the
metabolic diseases through pathways that involve covalent alterations of histone proteins,
DNA methylations and non-coding RNA-dependent regulations [155–157]. A comparison
between the methylation profile of the newborn blood cells from the umbilical cord of
those living in rural areas and those living in urban areas revealed that in the blood cells
of those living in urban areas, there was a decrease in IL-13 production with a lower
activity of the Th2 cells, which is beneficial in allergy prevention [26]. Early exposure to
microorganisms may influence the regulation of the gene expression, thus promoting a Th1
response [58,158–162].

A study found that the promoter gene Forkhead Box P3 (FOXP3) suffers demethylation
in children whose mothers drink unpasteurized cow milk during pregnancy. Breastfeeding
with unpasteurized cow milk leads to increased demethylation of the FOXP3 promoter
gene in peripheral blood cells and increased Ltreg cells [58,158–161].

Simpson et al. performed a study on breast milk from 415 women, analyzing the
miRNA profile, the influence of probiotics on the miRNA and the relationship between
some changes in the miRNA profile and the development of AD in newborns. The expres-
sion of some miRNA differed between the placebo group and the group taking probiotics,
however, further studies are still needed [130].

To date, there are no target therapies that focus on the epigenetic process of AD. In the
future, MiR-143 could be an important target for new therapies. Furthermore, Liew et al.
have recently demonstrated that Belinostat, whose target is the miR-335:SOX axis, restores
miR-335 expression, thereby repairing the cutaneous barrier defects [133,145].

5. The Transcriptome, Proteome and Metabolome

The transcriptomic, metabolomic and proteomic analyses are quite laborious studies
that help us better understand the pathological mechanisms of the disrupted skin barrier.

Cole et al. collected a high number of transcriptomes of atopic skin and demonstrated
the importance of the extracellular space and lipidic metabolism [163]. Independent of the
mutation type of the filaggrin gene, the carriers have an aberrant defense response. The
study used the direct RNA sequencing for quantifying the entire transcriptome of the atopic
skin of 26 patients. The conclusion was that even if seven genes that encode the extracellular
region proteins are closely related to filaggrin expression, filaggrin expression does not
modify the lipid composition of the horny layer. The expression of cartilage intermediate
layer protein gene (CILP) leads to the most significant reduction in the expression of
the null mutant filaggrin gene compared to the wild type. An overlap of the functional
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networks of proteins was identified that form the defense response through IFN 1. The
amplification of this network can be associated with the response of the dysfunctional
skin to viral infections in AD patients. However, this amplification could be a partially
functional, suboptimal mechanism to compensate the high frequency of viral infections,
including eczema herpeticum [163].

Using skin tape stripping, Goleva et al. identified around 45 proteins as the principal
components in the anomalies of the atopic skin; most of them are expressed in patients
with AD and food allergies [164]. The most important ones are the keratin intermediate
filaments (KRT 5, KRT 8, KRT 10, KRT 14, KRT 16, KRT 17, and KRT 77), the proteins
associated with inflammatory response (S100 calcium binding proteins, alarmins, and serine
proteinase inhibitor glade B members), and the antioxidant and glycolytic enzymes. A high
level of antioxidant and glycolytic enzymes prove the high energy need of those patients and
also their need for defense with antioxidants at the skin barrier level [164]. All these anomalies
are statistically correlated with the TEWL measured using the Tewameter device, along with
total serum IgE (immunoglobulin E) and Staphylococcus aureus colonization [164–167]. The
endotype of patients with AD and food allergies unfortunately persists into adulthood as
well. TEWL allows for a non-invasive measurement of transcutaneous water loss. However,
besides the impaired integrity of the cutaneous epithelium, TEWL can be influenced by
skin thickness, skin temperature, anatomical site and also by the activity of the sweat
glands [168–170]. Thus, its investigation may be crucial and it can explain the differences
between various populations.

Transcutaneous water loss may precede the clinical manifestations of AD (eczema),
so TEWL could be useful in the prevention of AD. Measurement of transcutaneous water
loss in the first days of life could predict the development of AD in children independent
of the filaggrin gene. The main proteins identified via skin tape stripping are positively
associated with transcutaneous water loss and allergic sensitization [164,171].

There are numerous metabolites and metabolic pathways associated with atopic dis-
eases since childhood, especially with allergic asthma. The easiest way is to analyze them
from urine samples. The principal metabolites associated with AD are tryptophan, in-
doleacetic acid (increased in patients with AD and elevated total serum IgE), glycolic acid,
taurocholic acid, taurochenodeoxycholic and glycochenodeoxycholic (decreased in patients
with AD independent of the total serum IgE level), and cholic and chenodeoxycholic (in-
creased in patients with AD and elevated total serum IgE) [172–174]. Other metabolites
associated with AD are the acid 2-hydroxybutyrate (increased in patients with AD), hydrox-
yloctadecadienoic acids (increased in patients with AD and elevated total serum IgE), and
sphingomyelins (altered levels in patients with AD and elevated total serum IgE) [172–175].

However, even if important progress has been achieved, investigations across different
ethnic groups are still limited, and hence further studies on transcriptomes, proteomes, and
metabolomes are needed for a more accurate understanding of these processes [163,164,172].

6. Conclusions

In the last two decades, the understanding of AD has significantly improved. The
genetic studies based on the disrupted cutaneous barrier can lead to the development of
immunomodulatory systemic biological therapies [26]. Further, DNA and RNA sequencing
will substantially improve the prevention and the target therapies of the disease [54–56].
Along with other findings on genetic associations in AD and once the costs for genotyping
becomes lower and the drugs become rather precise, the adverse reactions will decrease
and the treatments will become less expensive [74]. On the other hand, preventing the risk
factors of epigenetic changes, such as pollution, smoking, obesity, and stress, will decrease
the incidence and prevalence of AD in the future. Moreover, the recent advances in the
research of transcriptomes, proteomes and metabolomes, strengthen our confidence that
they will have an important impact in unraveling the AD mechanisms, thereby opening
new therapeutic pathways. Even though there are only a few systemic immunomodulatory
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biologic therapies approved for AD at present, in the future miRNAs could be an important
target for new therapies.
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