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1 Centre for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor,
2000 Maribor, Slovenia; larisa.gorican@um.si (L.G.); tomaz.buedefeld@um.si (T.B.)

2 Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical
Engineering, University of Maribor, 2000 Maribor, Slovenia

3 Department of Otorhinolaryngology, Cervical and Maxillofacial Surgery, University Medical Centre Maribor,
Ljubljanska ulica 5, 2000 Maribor, Slovenia

4 Department for Science and Research, University Medical Centre Maribor, 2000 Maribor, Slovenia
* Correspondence: uros.potocnik@um.si; Tel.: +386-2-2345-854
† These authors contributed equally to this work.

Abstract: Epigenetic studies on the role of DNA-modifying enzymes in HNSCC tumorigenesis have
focused on a single enzyme or a group of enzymes. To acquire a more comprehensive insight into
the expression profile of methyltransferases and demethylases, in the present study, we examined
the mRNA expression of the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, the DNA
demethylases TET1, TET2, TET3, and TDG, and the RNA methyltransferase TRDMT1 by RT-qPCR
in paired tumor–normal tissue samples from HNSCC patients. We characterized their expression
patterns in relation to regional lymph node metastasis, invasion, HPV16 infection, and CpG73 methy-
lation. Here, we show that tumors with regional lymph node metastases (pN+) exhibited decreased
expression of DNMT1, 3A and 3B, and TET1 and 3 compared to non-metastatic tumors (pN0), suggest-
ing that metastasis requires a distinct expression profile of DNA methyltransferases/demethylases in
solid tumors. Furthermore, we identified the effect of perivascular invasion and HPV16 on DNMT3B
expression in HNSCC. Finally, the expression of TET2 and TDG was inversely correlated with the
hypermethylation of CpG73, which has previously been associated with poorer survival in HNSCC.
Our study further confirms the importance of DNA methyltransferases and demethylases as potential
prognostic biomarkers as well as molecular therapeutic targets for HNSCC.
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1. Introduction

Head and neck squamous carcinoma (HNSCC) is a group of cancers derived
from the mucosal epithelium in the oral cavity, pharynx, and larynx [1]. With over
600,000 new confirmed cases annually, HNSCC is the eighth most common cancer world-
wide [2]. People exposed to higher concentrations of carcinogens through occupational
exposure or due to alcohol and nicotine abuse and those infected with human papillo-
maviruses (HPVs) are at higher risk of developing HNSCC, with alcohol consumption,
smoking, and infection with HPV16/18 being the most common risk factors [3–7].

A hallmark of tumorigenesis is the reprogramming of DNA methylation patterns, in-
volving the global loss of methylation and regional hypermethylation of specific
genes [8–11]. Several studies have shown that extensive DNA hypomethylation and

Curr. Issues Mol. Biol. 2023, 45, 4632–4646. https://doi.org/10.3390/cimb45060294 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb45060294
https://doi.org/10.3390/cimb45060294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0002-5053-9122
https://orcid.org/0000-0003-0099-0940
https://orcid.org/0000-0003-1624-9428
https://doi.org/10.3390/cimb45060294
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb45060294?type=check_update&version=3


Curr. Issues Mol. Biol. 2023, 45 4633

hypermethylation in gene regulatory regions are associated with various clinicopathologi-
cal characteristics of HNSCC, including tumor invasiveness and metastasis as well as risk
factors such as tobacco and alcohol use and HPV infection [12–15]. The importance of DNA
epigenetic modifications in HNSCC has been corroborated by studies on the expression
and activity of DNA-modifying enzymes in tumorigenic processes. As an example, mRNA
expression of DNA methyltransferase 1 (DNMT1), 3A (DNMT3A), and 3B (DNMT3B)
was increased in tumors compared to normal tissue, and aberrant expression of DNMT1
showed a significant correlation with poor clinical outcomes and relapse-free survival in
HNSCC patients [16]. In addition to DNA methyltransferases, HNSCC tumors exhibited
decreased mRNA expression of the DNA demethylases Tet methylcytosine dioxygenase 1
(TET1) and 3 (TET3). Moreover, decreased TET3 expression was caused by methylation
of the regulatory regions of TET3 and was positively correlated with poorer survival of
HNSCC patients [17]. In another study, the expression of Tet methylcytosine dioxygenase 2
(TET2) was reduced in HNSCC patients, and the level of 5-hydroxymethylcytosine (5 hmC)
was associated with decreased overall survival [18].

Although the gene-regulatory networks underlying cell invasion have been char-
acterized, recent studies have shown that some genes, such as TIMP3 and PAX1, may
also be under epigenetic control involving DNA methylation [19,20]. On the contrary,
tumor invasion was found to be regulated by the hypomethylation of nuclear proteins,
such as SPANXA1/2 and CLDN4 [21,22]. In addition to altered methylation patterns,
changes in the expression of the methyltransferases DNMT1 and DNMT3B have also been
reported in advanced tumors, further suggesting a role of epigenetic regulation in HNSCC
invasiveness [23,24].

HPV infection of cells is another aspect of the pathobiology of HNSCC that is under
epigenetic control. HPV(+) HNSCC is associated with persistent expression of the onco-
genes E6 and E7, which, by targeting host tumor suppressors p53 and Rb, initiate neoplastic
transformation [25–29]. In addition, both HPV E6 and E7, by acting directly or indirectly
through p53, modulate the expression of DNMT1, 3A, and 3B, which consequently leads to
epigenetic reprogramming [30–34]. Indeed, numerous studies have shown distinct genome
methylation patterns in HPV(+) HNSCC compared to HPV(−) HNSCC associated with
alcohol and tobacco consumption [35–39]. Although HPV(+) HNSCC has a better prognosis
than HPV(−) HNSCC [40], the incidence of HPV(+) cancers is worrying, as the number of
patients has increased over the years [41,42]. Further research is therefore needed into the
molecular mechanisms involved in HPV-driven HNSCC.

Epigenetic events, such as genome-wide changes in DNA methylation patterns, play a
critical role in the development and progression of HNSCC. Genomic methylation patterns
result from the activity of various methyltransferases and demethylases affecting epigenetic
reprogramming on a genome-scale or at specific genomic sites. To date, studies on the effect
of methylation patterns in HNSCC have focused on a single enzyme or a group of enzymes,
while data on the expression patterns of both methyltransferases and demethylases are
lacking. Similarly, little is known about the epigenetic regulation of gene expression at the
level of RNA methylation involving RNA methyltransferases. To determine the expression
profile of methyltransferases and demethylases in HNSCC tumorigenesis, we performed
an expression analysis of the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B,
the DNA demethylases TET1, TET2, TET3, and TDG, and the RNA methyltransferase
TRDMT1 from the perspective of lymph node metastasis, invasion, and HPV16 infection
in HNSCC patients. Furthermore, we previously found that CpG73 hypermethylation
regulating miR-2682 expression is associated with tumor aggressiveness in HNSCC [43].
To further our knowledge of the epigenetic events controlling CpG73 methylation, we
examined a correlation between the expression profile of the studied methyltransferases
and demethylases and the level of CpG73 methylation.
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2. Materials and Methods
2.1. Patients and Sample Collection

This study included a total of 34 newly diagnosed HNSCC patients before chemora-
diation from a prospective cohort recruited between June 2015 and October 2019 at the
University Medical Centre (UMC) Maribor, Slovenia. A pair of tumors and normal tissues
were collected from each patient prior to pathological examination. Immediately after
collection, fresh tissue biopsies were placed in RNAlater Tissue Storage Reagent (Invit-
rogen, Vilnius, Lithuania), incubated at 4 ◦C and −20 ◦C for 24 h each, and stored at
−80 ◦C until further processing. Tumor staging was determined according to the 8th Edi-
tion TNM Classification for Head and Neck Cancer (UICC) by a pathologist. The study was
approved by the Medical Ethics Committee of UMC Maribor (reference number UKCMB-
KME11-5/15) and conducted according to the Declaration of Helsinki. Written informed
consent for participation was obtained from all patients. The patient characteristics are
summarized in Table 1. In terms of tumor invasion, metastasis, CpG73methylation, and
HPV16 infection, mRNA gene expression did not differ significantly between the sexes.
Therefore, female patients were not excluded from the analysis, and both male and female
patients were considered as one experimental group. One pair of tumor–normal tissues was
excluded from the analysis due to undetectable expression of the housekeeping genes ACTB
and GAPDH.

Table 1. Patient characteristics.

Clinicopathological Features Men (n = 30)
Number (%)

Women (n = 4)
Number (%)

Age at diagnosis 44–79 yrs.
(mean 61.5 yrs.)

50–65 yrs.
(mean 57.8 yrs.)

Site
Lip and oral cavity 4 (13.3%) 1 (25.0%)

Pharynx 20 (66.7%) 2 (50.0%)
Larynx 6 (20.0%) 1 (25.0%)

Invasion 1

Perivascular
Yes 9 (30.0%) 0 (0.0%)
No 20 (66.7%) 4 (100.0%)

Missing 1 (3.3%) /

Lymphovascular
Yes 7 (23.3%) 1 (25.0%)
No 18 (60.0%) 1 (25.0%)

Missing 5 (16.7%) 2 (50.0%)

Perineural
Yes 8 (26.7%) 0 (0.0%)
No 21 (70.0%) 4 (100.0%)

Missing 1 (3.3%) 0 (0.0%)

p16 status
Yes 7 (23.3%) /
No 12 (40.0%) 2 (50.0%)

Missing 11 (36.7%) 2 (50.0%)

Nicotine
Yes 26 (86.6%) 4 (100.0%)
No 2 (6.7%) /

Missing 2 (6.7%) /

Alcohol
Yes 26 (86.6%) 4 (100%)
No 2 (6.7%) /

Missing 2 (6.7%) /

Stage
pT (1–2) 8 (26.6%) 2 (50%)
pT (3–4) 20 (66.7%) 2 (50%)
Missing 2 (6.7%) /
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Table 1. Cont.

Clinicopathological Features Men (n = 30)
Number (%)

Women (n = 4)
Number (%)

pN (0) 6 (20%) 1 (25.0%)
pN (+) 22 (73.3%) 3 (75.0%)

Missing 2 (6.7%) /
1 Some tumors may have more than one type of invasion.

2.2. RNA Extraction and Quantitative Reverse Transcription PCR (RT-qPCR)

RNA was extracted from the tissues using Tri Reagent® (Sigma Aldrich, St. Louis, MO,
USA) according to the manufacturer’s instructions. Briefly, following homogenization, RNA
was extracted from the tissue using phenol-chloroform-isopropanol extraction, washed
two times in 1 mL of 75% ethanol, and dissolved in 50 µL of nuclease-free water. RNA
concentration was determined using a Synergy 2 microplate reader (Biotek, Winooski,
VT, USA), and RNA integrity was assessed using an Agilent Bioanalyzer 2100 (Agilent
Technologies, Waldbronn, Germany) or by gel electrophoresis.

cDNA was prepared from 500 ng RNA using a High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Vilnius, Lithuania) under the following thermal cycling
conditions on a T Professional Basic Gradient thermal cycler (Biometra, Göttingen, Ger-
many): 25 ◦C (10 min), 37 ◦C (120 min), and 85 ◦C (5 min). qPCR was carried out in a 10 µL
reaction containing 1× SYBR green reaction buffer (LightCycler®480 SYBR Green I Master,
Roche, Mannheim, Germany), 0.3 µM forward and reverse primer (each), nuclease-free
water, and 2 µL of 1/20 diluted cDNA on a QuantStudio 12 K Flex Real-Time PCR Sys-
tem (Applied Biosystems, Singapore, Singapore). The thermal cycling conditions were:
95 ◦C (10 min) and 40 cycles: 95 ◦C (10 s), 60 ◦C (10 s), and 72 ◦C (20 s). The primer
sequences of the studied genes are listed in Table 2. RT-qPCR was carried out in triplicate.
Ct values > 40 were considered negative. Gene expression was normalized to the internal
controls ACTB and GAPDH and quantified using the 2−∆∆Ct method.

Table 2. Primer sequences.

Gene Primer Sequence

DNMT1 F:
R:

5′-AGCCGAGCGAGCCAGAGATA-3′

5′-CGTGTCAGAGATGCCTGCTT-3′

DNMT3A F:
R:

5′-ATGGAATCGCTACAGGGCTC-3′

5′-CTTCTGTGTGACGCTGCG-3′

DNMT3B F:
R:

5′-ATGGCAAGTTCTCCGAGGTC-3′

5′-CGATAGGAGACGAGCTTATTGA-3′

TET1 F:
R:

5′-AGCTGTCTTGATCGAGTTATACA-3′

5′-CCCTTCTTTACCGGTGTACACTA-3′

TET2 F:
R:

5′-CTGGCAAACATTCAGCAGCA-3′

5′-TTGAATTCAGCAGCTCAGTCC-3′

TET3 F:
R:

5′-GGAACTCATGGAGGAGCGGTAT-3′

5′-GATCACAGCGTTCTGGCAGT-3′

TRDMT1 F:
R:

5′-TCTCCAACCTCTCTTGGCATTC-3′

5′-GGAACTCCATCAGTACCTGACCA-3′

TDG F:
R:

5′-TGGACGTTCAAGAGGTGCAA-3′

5′-CTTAACTCCACGCTCTCAATTAGC-3′

ERBB3 F:
R:

5′-TGAGGCGATACTTGGAACGG-3′

5′-TGGCCAGCATATGATCTGTC-3′



Curr. Issues Mol. Biol. 2023, 45 4636

Table 2. Cont.

Gene Primer Sequence

ACTB F:
R:

5′-CATCGAGCACGGCATCGTCA-3′

5′-TAGCACAGCCTGGATAGCAAC-3′

GAPDH F:
R:

5′-TGAGAACGGGAAGCTTGTCA-3′

5′-CCCTGCAAATGAGCCCCA-3′

2.3. Data Collection and Analysis

Methylation data for CpG73 were obtained from a previous study. The DNA was
isolated, and the percentage of methylated CpG73 was determined from the bisulfate-
converted DNA as described previously [43].

Protein expression in HNSCC was determined by in silico analysis of the mass spec-
trometry data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the
International Cancer Proteogenome Consortium (ICPC) datasets using UALCAN [44–46].

2.4. Statistical Analysis

Statistical analysis was performed using the Prism GraphPad software package (Prism
7.0, GraphPad Software, San Diego, CA, USA). The normal distribution of datasets was
examined by the D’Agostino–Person omnibus normality test and the Shapiro–Wilk test. The
effect of metastasis, invasion, and HPV16 on gene expression in normal and tumor tissue
was examined by two-factor repeated measures ANOVA with tissue type and metastasis,
tissue type and invasion or tissue type and HPV16 as independent factors, respectively.
Sidak’s multiple comparisons post hoc test was used to determine statistical differences
between groups. To examine the correlation between the percentage of CpG73 methylation
and gene expression, the first outliers were removed based on the Nalimov test (α = 0.05)
and the curated data were analyzed by Spearman’s rank-order correlation. Statistical
differences were considered significant at p < 0.05.

3. Results
3.1. Tumors with Regional Lymph Node Metastases (pN+ Tumors) of HNSCC Showed Diminished
mRNA Expression of DNMT1, DNMT3A, DNMT3B, TET1, and TET2

To obtain a more comprehensive insight into the epigenetic control of tumor aggres-
siveness, we performed an RT-qPCR analysis of the DNA methyltransferases DNMT1,
3A, and 3B, the DNA demethylases TET1, 2, 3, and TDG, and the RNA methyltransferase
TRDMT1 in relation to tumor metastasis and invasion. Tumors with regional lymph node
metastases (pN+) showed higher expression of DNMT1 (effect of pN: F (1, 29) = 4.428,
p < 0.05; effect of tissue: F (1, 29) = 9.193, p < 0.01; interaction pN x tissue: F (1, 29) = 11.67,
p < 0.01; Sidak’s multiple comparisons test: p < 0.01), 3A (effect of pN: F (1, 29) = 11.52,
p < 0.01; effect of tissue: F (1, 29) = 6.458, p < 0.05; interaction pN x tissue: F (1, 29) = 5.767,
p < 0.05; Sidak’s multiple comparisons test: p < 0.05) and 3B (effect of pN: F (1, 29) = 3.194,
p = 0.084; effect of tissue: F (1, 29) = 14.07, p < 0.001; interaction pN x tissue: F (1, 29) = 3.324,
p = 0.079; Sidak’s multiple comparisons test: p < 0.01) than the paired normal tissue
(Figure 1A–C). On the contrary, the expression of DNMT1, 3A, and 3B did not differ
between tumor and paired normal tissue in pN+ tumors and was diminished in compari-
son to non-metastatic (pN0) tumors (DNMT1 and 3A: Sidak’s multiple comparisons test,
p < 0.001; DNMT3B: Sidak’s multiple comparisons test, p < 0.05) (Figure 1A–C). Similarly,
pN+ tumors showed significantly lower expression of TET1 (effect of pN:
F (1, 29) = 6.068, p < 0.05; effect of tissue: F (1, 29) = 6.254, p < 0.05; interaction pN x tissue:
F (1, 29) = 4.119, p = 0.052; Sidak’s multiple comparisons test: p < 0.01) and 3 (effect of
pN: F (1, 29) = 3.658, p = 0.066; effect of tissue: F (1, 29) = 3.578, p < 0.069; interaction
pN x tissue: F (1, 29) = 8.624, p < 0.01; Sidak’s multiple comparisons test: p < 0.01) in
comparison to pN0 tumors and the expression of TET1 and 3 was significantly (TET1 and
3: Sidak’s multiple comparisons test: p < 0.05) higher in pN0 tumors than paired normal
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tissue (Figure 1D,F). The expression of TET1 and 3 did differ between tumor and paired
normal tissue in pN+ tumors (Figure 1D,F). These data indicate that a distinct expression
profile of DNA-methyltransferase/demethylases including a decreased expression of major
the methyltransferases DNMT1, 3A, and 3B and the DNA demethylases TET1 and 3 may
be required for solid tumors to develop regional lymph metastases.
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Figure 1. Tumors with regional lymph node metastases were associated with diminished expression
of DNMT1, 3A and 3B, TET2, and TDG. For each gene, paired normal tissue corresponding to pN0
tumors was used as a reference. Normal/tumor pN0 (n = 7), normal/tumor pN+ (n = 24). The data
are shown as the mean +/− S.E.M., * p < 0.05, ** p < 0.01, and *** p < 0.001. pN0—tumors without
regional lymph node metastases; pN+—tumors with regional lymph node metastases.

3.2. Perivascular Invasion (PVI) Was Associated with Diminished DNMT3B mRNA Expression
in HNSCC

Next, we analyzed the expression profile of methyltransferases/demethylases in
relation to tumor invasion into the surrounding tissue. In tumors with perivascular invasion
(PVI+), the expression of DNMT3B was significantly (F (1, 30) = 5.817, p < 0.05) higher
in tumors than the adjacent normal tissue. Post hoc analysis revealed that DNMT3B
expression was significantly (p < 0.01) higher in local tumors than in adjacent normal tissue.
In contrast, the difference did not reach significance in PVI+ tumors due to decreased
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DNMT3B expression in tumor tissue, indicating that PVI is driven in the absence of
DNMT3B (Figure 2C). The expression of DNMT1, DNMT3A, TET1, TET2, TET3, TDG, and
TRDMT1 was not associated with PVI in HNSCC (Figure 2). Similarly, the expression profile
of methyltransferases/demethylases did not differ between tumors with lymphovascular
and/or perineural invasion (Figures S1 and S2).
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Figure 2. Tumors with perivascular invasion showed diminished DNMT3B expression. For each
gene, paired normal tissue corresponding to local tumors was used as a reference. Normal/tumor
PVI− (n = 24); normal/tumor PVI+ (n = 8). The data are shown as the mean +/− S.E.M. * p < 0.05;
** p < 0.01.

3.3. CpG73 Methylation Was Associated with the Diminished mRNA Expression of DNMT3B,
TET2, and TDG in HNSCC

Our previous study showed increased CpG73 methylation in HNSCC [43]. To further
our knowledge of the regulation of CpG73 methylation, the present study correlated the
level of CpG73 methylation with the expression profile of DNMT1, DNMT3A, DNMT3B,
TET1, TET2, TET3, TDG, and TRDM1 in tumor and normal tissues. In HNSCC tumor
tissues, increased CpG73 methylation levels were in correlation with decreased mRNA
expression of TET2 (p < 0.05) and TDG (p < 0.01) (Figure 3). Similarly, increased expression
of DNMT3B was found in tumors with decreased CpG73 methylation levels, indicating
that DNMT3B may not be involved in the methylation of CpG73 in HNSCC. TRDMT1
expression showed an inverse correlation with CpG73 methylation levels; however, the
correlation did not reach significance (p = 0.060). The expression of DNMT1, DNMT3A,
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TET1, and TET3 was not associated with CpG73 methylation in HNSCC tumors (Figure 3).
In normal tissue, the expression of the methyltransferases and demethylases studied did
not correlate with the level of CpG73 methylation (Figure S3).
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Figure 3. The level of CpG73 methylation was in negative correlation with the expression of DNMT3B,
TET2, and TDG in HNSCC. r = Spearman’s rank correlation coefficient for TDG: n = 15; for other
genes: n = 16.

3.4. HPV16 Was Associated with Increased DNMT3B mRNA Expression in HNSCC

We determined the expression profile of the DNA methyltransferases DNMT1,
DNMT3A, and DNMT3B, the DNA demethylases TET1, TET2, and TET3, and the RNA
methyltransferase TRDMT1 in HNSCC tumors driven by HPV16. Among all of the genes
studied, HPV16 was only associated with the expression of DNMT3B, which was signif-
icantly (F (1, 18) = 9.249, p < 0.01) higher in tumors compared to paired normal tissue,
and this difference was a result of significantly (p < 0.05) higher expression of DNMT3B
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in the tumor tissue compared to normal tissue in HPV16(+) but not HPV16(−) tumors,
as revealed by Sidak’s multiple comparison post hoc test (Figure 4C). Similarly, higher
expression in the tumor tissue than the normal tissue was found for DNMT3A; however,
the difference did not reach significance (p = 0.09) (Figure 4A). HPV16 did not affect the
expression of DNMT1, TET1, TET2, TET3, TDG, and TRDMT1 in HNSCC (Figure 4).
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Figure 4. HPV16(+) tumors showed altered DNMT3B expression. For each gene, paired normal tissue
corresponding to HPV16(−) tumors was used as a reference. Normal/tumor HPV16(−) (n = 14);
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3.5. HNSCC Tumors Exhibited Higher DNMT1, 3A and TDG Protein Expression

To gain a better understanding of the role of the studied methyltransferases/
demethylases in HNSCC as shown by their mRNA expression profiles, we determined
the expression of the DNA methyltransferases DNMT1 and 3A and the DNA demethylase
TDG at the protein level by in silico analysis. The protein expression of DNMT1, 3A, and
TDG was significantly higher in tumors compared to normal tissue (DNMT1, 3A, and TDG:
p < 0.001) (Figure 5A,C,E). Similarly, protein expression of the investigated enzymes was
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significantly higher in stage 1 (DNMT1, 3A: p < 0.05; TDG: p < 0.01), 2 (DNMT1, TDG:
p < 0.001; DNMT3A: p < 0.01), 3 (DNMT1, 3A, TDG: p < 0.001), and 4 (DNMT1, 3A, TDG:
p < 0.001) tumors than in normal tissue (Figure 5B,D,E). When DNMT1, 3A, and TDG
protein expression were compared across the tumor stages, DNMT3A protein expression
was higher in stage 4 tumors compared to stage 2 tumors alone (Figure 5C)
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4. Discussion

In the present study, we characterized the gene expression profile of the DNA methyl-
transferases DNMT1, DNMT3A, and DNMT3B, the DNA demethylases TET1, TET2, TET3,
and TDG, and the RNA methyltransferase TRDMT1 to gain a more comprehensive insight
into the epigenetic regulation of HNSCC aggressiveness and HPV-driven tumorigenesis by
DNA and RNA methylation.

HNSCC aggressiveness and reduced patient survival have previously been associated
with the aberrant expression of DNMT1, DNMT3A, and TET genes [16,17,19,47]. To better
understand the epigenetic control of cell invasion and metastasis in HNSCC, in the present
study, we examined the expression profile of DNA methyltransferases/demethylases in tu-
mors with perineural invasion (PNI), perivascular invasion (PVI), and/or lymphovascular
invasion (LVI) and in tumors with regional lymph node metastases (pN+).
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Epigenetic reprogramming of the genome, regulated by the interplay of various
methyltransferases and demethylases occurs during tumor development [8,9,11]. Hy-
pomethylation of CpG islands activates previously silenced proto-oncogenes, thus pro-
moting carcinogenesis. On the other hand, hypermethylation of promotor regions leads to
impaired transcription of tumor suppressor genes that regulate the cell cycle, metabolism,
differentiation, cell death, angiogenesis, and metastasis [48]. Here, we show increased
expression of the DNA-methyltransferases DNMT1, 3A, and 3B and the demethylases
TET1 and 3 in tumors in comparison to paired normal tissue, while no differences were
found for TET2 and TRDMT1. Furthermore, pN0 tumors exhibit increased expression of
DNMT1, 3A and 3B, and TET1 and 3 compared to paired normal tissue. Interestingly, the
expression of DNMT1, 3A and 3B, and TET1 and 3 did not differ between pN+ tumors and
paired normal tissue and was significantly decreased compared to pN0 tumors. A distinct
expression profile of DNA methyltransferases/demethylases in pN+ tumors suggests that
following the initial reprogramming of DNA methylation patterns (expression profile of
pN0), the development of regional lymph node metastases may require additional DNA
methylation pattern alterations (expression profile of pN+) in solid tumors. Furthermore,
our results suggest that these changes are directed towards global hypomethylation, which
may be necessary to induce the expression of pro-metastatic genes through specific tran-
scriptional events [49]. Finally, our study supports previous observations obtained by
the in silico analysis of HNSCC samples from The Cancer Genome Atlas (TCGA) dataset
indicating a significant correlation between the tumors with low DNMT1 expression and
poor survival [50].

Protein analysis showed increased expression of DNMT1, DNMT3A, and TDG in
tumors compared to normal tissue, which is consistent with our gene expression data and
further supports our initial observations. Moreover, DNMT3A exhibited a stage-dependent
expression pattern and showed an increase in protein expression in stage 4 compared
with stage 2. DNMT1 and TDG protein levels, on the other hand, showed no differences
across tumor stages. Interestingly, a recent IHC study also analyzed the protein expression
of DNMT1 and DNMT3A in relation to tumor stage. This study revealed significantly
increased expression of DNMT1 in lower tumor stages (I and II) compared with later
stages (III and IV), whereas no significant difference in expression was found for DNMT3A
between tumor stages [51]. The conflicting results may be attributed in part to different
methods, such as the use of mass spectrometry (MS) or immunohistochemistry (IHC) to
measure protein expression and highlight the need for further comprehensive studies to
conclusively clarify the role and expression patterns of DNMT1, DNMT3A, and TDG at
different stages of tumor development.

Recent evidence has shown that tumor invasion into neighboring tissue is regulated
by various methyltransferases, such as DNMT1 and DNMT3B [23,24]. Our data are in line
with previous observations and provide new evidence that the expression of DNMT3B is
specifically altered in PVI+ tumors but not in PNI+ and LVI+ tumors. DNMT3B expression
was higher in PVI− tumors than paired normal tissue, while the difference between PVI+
tumors and paired normal tissue did not reach significance due to the decreased DNMT3B
expression in the tumors, indicating DNMT3B expression/activity was altered in PVI+
compared to PVI− HNSCC. Whether the observed differences in DNMT3B expression
between PVI+ and PVI- HNSCC are reflected in the methylation patterns is unknown
and warrants further investigation. Nevertheless, to the best of our knowledge, our
study is the first to describe altered DNMT3B expression in relation to PVI in HNSCC.
Of interest, DNMT3B overexpression has previously been associated with cell migration,
invasion, and metastasis and epithelial–mesenchymal transition (EMT) by suppressing
TIMP3 and E-cadherin, respectively, as suggested by in vitro studies using HNSCC cell
lines [19,24]. Moreover, DNMT3B expression has been associated with vascular invasion in
sporadic human renal cell carcinoma [52], further suggesting the role of DNMT3B in tumor
invasion. Unlike perivascular invasion, expression of the studied methyltransferases and
demethylases was not associated with perineural and lymphovascular invasion in HNSCC.
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We have previously demonstrated that CpG73 hypermethylation in HNSCC is asso-
ciated with decreased miR-2682 expression and shorter disease-free survival, suggesting
a role for CpG73/miR-2682 in HNSCC aggressiveness [43]. Similarly, miR-2682 has been
suggested to act as a tumor suppressor in osteosarcoma and pancreatic cancer [53,54]. Here,
we show that CpG73 methylation levels are inversely correlated with the expression of the
DNA demethylases TET2 and TDG, which may be responsible for CpG73 hypermethylation
in tumor cells, in line with previous observations that the inactivation of DNA demethylases
contributes to DNA hypermethylation often observed in cancer [55]. Interestingly, CpG73
methylation levels were also inversely correlated with DNMT3B expression, suggesting
that CpG73 hypermethylation in tumor cells is determined independently of DNMT3B.
Overall, our study suggests that DNMT1, 3A, and 3B are not biological determinants of
CpG73 hypermethylation in tumor cells. Further investigation is warranted to determine
the epigenetic mechanisms underlying the CpG73 methylation levels in HNSCC.

HPV-driven HNSCC tumorigenesis depends on the action of HPV E6 and E7 onco-
genes that affect the expression of tumor-suppressor genes, leading to tumorigenesis [25–29].
Amongst the affected genes are additionally the DNA methyltransferases DNMT1, 3A, and
3B, whose mRNA expression and/or activity was increased by HPV oncogenes as shown
in in vitro studies using cell lines harboring HPV [30–34]. In line with in vitro studies,
a growing body of evidence has shown that HPV-positive and -negative HNCSS differ
in methylation patterns on a global scale. For example, genome-wide hypomethylation,
as measured by methylation levels of LINE and Alu elements, was more pronounced in
HPV-negative than HPV-positive HNSCC [35]. In another study, unsupervised clustering
analysis of 1505 CpG sites across 807 genes in 68 HNSCC tumor samples revealed differ-
ences in methylation patterns between HPV-positive and HPV-negative tumors [36]. In a
recent study, a global analysis of 63 cases of HPV-positive and 263 HPV-negative HNSCC
tumors identified 4371 hypermethylated and 2044 hypomethylated regions associated with
HPV status. Moreover, the same study also revealed that 60% of differentially methylated
genes that were hypermethylated in HPV-negative tumors were hypomethylated in HPV-
positive tumors [38]. Altogether, these data indicate that tumorigenesis in HPV-positive
HNSCC takes place in the presence of distinct DNA methylation reprogramming regulated
by HPV oncogenes. In our study, we found a difference in DNMT3B expression between
HPV16(+) and HPV16(−) tumors, with HPV16(+) tumors exhibiting higher DNMT3B
expression than paired normal tissue, while the difference did not reach significance in
HPV16(−) tumors. Our results are in line with a previous observation showing increased
DNMT3B expression in OSCCC [56], and together with an in vitro study on primary hu-
man keratinocytes [34], they indicate the role of DNMT3B in HPV-associated malignancies,
including HNSCC.

In summary, the studies have confirmed that global reprogramming of DNA methy-
lation patterns plays a critical role in HNSCC development and progression. Our results,
although based on a small sample size, illustrate that HNSCC tumors with perivascular
invasion and regional lymph node metastases are characterized by a specific expression pro-
file of DNA methyltransferases/demethylases compared to local tumors. This strengthens
the rationale for further investigation of the interplay between DNA-modifying enzymes
in HNSCC tumorigenesis. We acknowledge that our study’s limited sample size is a key
limitation and could affect the statistical power of our findings. Therefore, our observations
need to be validated in independent cohorts to define novel potential prognostic biomarkers
and molecular therapeutic targets confidently.
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