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Abstract: Poor visualization of polyps can limit colorectal cancer screening. Fluorescent antibodies
to mucin5AC (MUC5AC), a glycoprotein upregulated in adenomas and colorectal cancer, could
improve screening colonoscopy polyp detection rate. Adenomatous polyposis coli flox mice with a
Cdx2-Cre transgene (CPC-APC) develop colonic polyps that contain both dysplastic and malignant
tissue. Mice received MUC5AC-IR800 or IRdye800 as a control IV and were sacrificed after 48 h
for near-infrared imaging of their colons. A polyp-to-background ratio (PBR) was calculated for
each polyp by dividing the mean fluorescence intensity of the polyp by the mean fluorescence
intensity of the background tissue. The mean 25 µg PBR was 1.70 (±0.56); the mean 50 µg PBR was
2.64 (±0.97); the mean 100 µg PBR was 3.32 (±1.33); and the mean 150 µg PBR was 3.38 (±0.87).
The mean PBR of the dye-only control was 2.22 (±1.02), significantly less than the 150 µg arm
(p-value 0.008). The present study demonstrates the ability of fluorescent anti-MUC5AC antibodies
to specifically target and label colonic polyps containing high-grade dysplasia and intramucosal
adenocarcinoma in CPC-APC mice. This technology can potentially improve the detection rate and
decrease the miss rate of advanced colonic neoplasia and early cancer at colonoscopy.

Keywords: colorectal cancer; polyps; fluorescence; fluorescence labeling; mucin; detection; genetically
engineered mouse models

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the
United States [1]. Fortunately, the mortality of colon cancer is preventable if it is detected
early, especially if the colon cancer is found as a premalignant or malignant polyp without
any lymph node or metastatic spread [2]. For example, early colorectal cancer (T1) is
associated with a much higher 5-year survival rate of 91% compared to 14% if there is
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metastatic spread. Yet despite knowing this, the overall survival of patients with colon
cancer at 5 years is still only 65% due to its typically advanced stage at diagnosis [3].

Colonic mucosal cells can undergo a series of malignant transformations via the
tubular adenoma (TA) or the sessile serrated adenoma (SSA) pathways to form precancerous
polyps, which progress to colorectal cancer [4–8]. TAs exhibit cytological dysplasia and
are premalignant lesions accounting for 65–70% of CRCs, while the SSA is known to have
architectural dysplasia and accounts for 15–30% of CRCs [9].

Current clinical guidelines use colonoscopy as the gold standard for colon cancer
screening for all patients ages 45 or older, with screening beginning earlier if there is a
positive family history [10]. Even if an alternative modality of screening is used (i.e., fecal
testing of tumor DNA, fecal occult blood testing, CT colonography, etc.), a positive result
still leads to evaluation via colonoscopy. Accurate identification of premalignant polyps
during colonoscopy allows for endoscopic excision, which is both diagnostic and thera-
peutic in preventing further malignant transformation. However, despite improvements
in endoscopic technology, the miss rate for precancerous colon adenomas can still be as
high as 9% for TA and 27% for SSA, probably due to its flat mucosal appearance hindering
detection [11–14]. This issue is further complicated by the fact that many sessile lesions,
such as hyperplastic polyps (HP), are benign and nearly indistinguishable from the more
dangerous SSA, which accounts for only 20–30% of sessile polyps [7,15].

Hence, the problem can be summarized by two important features: (1) the fear of
missing dangerous colonic polyps, including TAs and SSAs, and (2) the high false positive
rate during colonoscopy. These conspire to waste significant medical resources on biopsies
of benign polyps without providing a meaningful improvement in colon cancer detection
rates. For these reasons, newer detection methodologies are urgently needed for colorectal
cancer screening.

The technology surrounding colonoscopy has advanced in recent decades to address
this issue. One such tool that has emerged is narrow-band imaging (NBI), which allows the
microvascular architecture to be visualized by applying specialized filters [16–20]. Unfortu-
nately, multiple studies have concluded that narrow-band imaging does not improve polyp
detection rates [21,22]. Sabbagh et al. did, however, show that detection of benign HPs was
reduced using narrow band imaging with 30.1% of polyps in the NBI group versus 41.6%
of polyps in the conventional group being HPs with a p-value of 0.009. This is important as
reduced detection and removal of benign HPs can help to reduce wasted medical resources.
However, for villous adenomas, tubulovillous adenomas, or even adenocarcinoma, no
improved detection was seen with NBI [21].

Another tool for improved detection is chromoendoscopy (CE). This technology uti-
lizes contrast or absorptive stains that are applied directly to the mucosa during conven-
tional endoscopy [23,24]. The most used stains are indigo carmine (contrast) and methylene
blue (absorptive). In a review, van den Broek et al. evaluated three randomized control
trials comparing chromoendoscopy to conventional colonoscopy [25]. The first, Brooker
et al., found improved detection of < 5 mm polyps with CE (p-value 0.026) though not
for overall detection rates of adenomas (p-value 0.06). CE was also associated with longer
withdrawal times, however (9:05 vs. 4:52 min) [26]. Hurlstone et al. found increased
detection rates with CE (112 vs. 57) though only highly experienced chromoendoscopists
participated in the study, which brings to question the value of widespread implementation
of this technology to more standard-trained endoscopists [27]. In the final study, Lapalus
et al. also only found a significant increase in detection for <5 mm polyps [28].

Despite these advances in technology for screening colonoscopies, improved detection
of premalignant and malignant lesions has yet to be consistently shown. The present
study details a novel method of enhancing polyp detection during endoluminal view using
targeted fluorescence. The basis of this uses a modified model of the APC mouse, termed
CPC-APC, developed by Hinoi et al., in which mice develop spontaneous colonic polyps
that contain both dysplastic and malignant tissue [29]. This model produces polyps that
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are analogous to the tumorigenesis seen in colorectal cancer with the deletion of APC gene
by a Cre recombinase under the control of a colon-specific (CDX2) promotor.

Previously, our laboratory has demonstrated the ability to label orthotopic xenograft
mouse models of colon cancer with a mucin 4 antibody conjugated to a near-infrared (NIR)
fluorophore [30]. The mucin family of glycoproteins contains twenty-four mucin proteins
(MUC1–MUC24) which are involved in cell signaling and barrier protection [31]. Mucins have
been shown to have diverse expression profiles among numerous organ systems and between
normal vs. premalignant vs. malignant tissues within the colon [32]. MUC4 is known to
be expressed within the normal colon [33,34], while MUC5AC is absent [35–37], making it a
superior target for the detection of premalignant and malignant colonic tissues. MUC5AC has
been shown to be expressed in ~50% of colorectal cancers (CRCs), while MUC4 overexpression
is only seen in ~25% of CRCs [38,39]. MUC5AC is also more commonly expressed in poorly
differentiated CRCs compared to well-to-moderately differentiated CRCs [40].

MUC5AC is a promising marker for the identification of polyps undergoing malignant
transformation, as it has been shown to be a distinguishing feature between SSA and HP
polyps. MUC5AC has been reported to be expressed in 11.1–43.4% of benign hyperplastic
polyps, while two independent groups have both reported its expression in 61% of sessile
serrated adenomas [41,42]. The absence of MUC5AC expression within the normal colon,
its overexpression in 50% of CRCs, and its ability to aid in distinguishing HPs from SSAs,
make MUC5AC a potentially superior target to MUC4 for labeling premalignant and
malignant polyps. We have previously demonstrated the ability of MUC5AC-IR800 to
label pancreatic cancers and in the present study explore its application within colorectal
cancer [43]. The present work demonstrates the use of MUC5AC conjugated with a NIR
fluorescent dye for specific targeting of mixed dysplastic-malignant polyps in the CPC-APC
mouse model.

2. Materials and Methods
2.1. Antibody Conjugation

Monoclonal mucin 5AC antibody (45M1, Novus Biologicals, Littleton CO, USA) was
conjugated to the near-infrared (NIR) dye IRDye800CW NHS ester (LI-COR Biosciences,
Lincoln, NE, USA), establishing MUC5AC-IR800. The dye was conjugated to the antibody
per the manufacturer’s protocol and incubated at room temperature for 2 h on a shaker
plate. After incubation, the antibody-dye conjugate was added to gel-desalting columns
(Thermo Fisher Scientific, Waltham, MA, USA) to remove the excess unbound dye. The
final product was stored at 4 ◦C.

2.2. Mouse Models

The CPC-APC mouse model [29] is a conditional knockout of the adenomatous poly-
posis coli (APC) gene, which spontaneously develops distal colorectal polyps at approxi-
mately 10 weeks of age. The experimental genotype CDX2-Cre+; APCflox/+ is generated
by crossing C57BL/6_CDX2-Cre+ with C57BL/6_APCflox/+ or C57BL/6_APCflox/flox. Ear
tissue samples were collected on day 28 for genotyping. Mice were closely monitored for
complications associated with the development of polyps: anal bleeding, anal prolapse,
weight loss, and lethargy. Moribund mice and mice that lost >15% of body weight were
euthanized. All animal breeding and experiments were approved and conducted under
protocol S18086 in accordance with Institutional Animal Care and Use Committee (IACUC)
guidelines at the University of California, San Diego. Mice were caged in groups of 1–5 in a
HEPA-filtered facility and fed a standard autoclaved diet.

2.3. Antibody-Conjugate Administration and Imaging

Mice were randomized into 4 different dose arms of MUC5AC-IR800: 25 µg (n = 3),
50 µg (n = 3), 100 µg (n = 3), and 150 µg (n = 3). The control (n = 2) mice received dye-only
injections. To determine the amount of dye for the control arm, the moles of dye in the
150 µg arm were calculated, and the control arm received an equivalent dose of IRDye800.
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The mice were anesthetized with an intraperitoneal injection of a solution of xylazine,
ketamine, and phosphate-buffered saline (PBS). They were placed on a heating pad at 35 ◦C
for approximately 5 min to encourage vasodilation of their tail veins. The antibody-dye
conjugate, or the control, was then administered via tail vein injection.

After 48 h, the mice were euthanized by CO2 inhalation, which was then confirmed
with cervical dislocation. The colon and rectum were removed, opened, placed on a petri
dish, and imaged with the Pearl Trilogy Small Animal Imaging System (LI-COR, Lincoln,
NE, USA) using a 767 nm excitation and generating a 786 nm emission (more information
at Licor.com/bio/reagents product number 929-72020). For each mouse, every polyp was
designated as a region of interest (ROI), and the Pearl Trilogy Small Animal Imaging System
was used to calculate the mean fluorescence intensity (mFI) for each ROI. To calculate a
background tissue mFI for each mouse, five ROIs over normal tissue were selected, and the
average was used as the background mFI. Each polyp had a polyp-to-background ratio
(PBR) calculated by dividing the mFI of the polyp by the average background tissue mFI
for that colon. The mean PBR and standard deviation for each MUC5AC-IR800 dose arm
were calculated from each polyp in that arm.

2.4. Histology

Polyps were placed in formalin solution for 72 h before being placed in paraffin for
sectioning. The H&E stained slides were read by a senior pathologist (MH) and reviewed
by the first author (MAT).

2.5. Statistical Analysis

Statistical analysis was performed with R software (Free Software Foundation, Boston,
MA, USA). Analysis of Variance (ANOVA) statistical analysis with the Tukey method was
used to assess the statistical difference between the 4 doses. The Student’s t-test was used
to evaluate the statistical difference between the 150 µg and control arms.

3. Results
3.1. Specific Labeling of Colonic Polyps with MUC5AC-IR800

CPC-APC mice received an intravenous injection of 150 µg MUC5AC-IR800 or equiva-
lent amounts of IRDye800 as a control 48 h prior to imaging. Following euthanasia, the
colons were removed and opened to allow intra-luminal imaging. The mice that received
150 µg MUC5AC-IR800 had specific labeling of the polyps, while the control had low levels
of non-specific fluorescence (Figure 1).

3.2. Increased Polyp to Background Ratios with Higher Dosage of MUC5AC-IR800

The mean polyp background ratio (PBR) for the mice treated with 25 µg of MUC5AC-
IR800 was 1.70 (±0.56). The mice treated with 50 µg of MUC5AC-IR800 had a mean PBR
of 2.64 (±0.97). The mice treated with 100 µg of MUC5AC-IR800 had a mean PBR of 3.32
(±1.33). Mice treated with 150 µg of MUC5AC-IR800 had a mean PBR of 3.38 (±0.87). Mice
in the control group had a mean PBR of 2.22 (±1.02) (Figure 2).

3.3. Fluorescence Intensity

Despite the increasing dosage of MUC5AC-IR800, the background fluorescence intensi-
ties remained relatively constant among the treatment groups (Figure 3). Polyp fluorescence
intensity, however, increased with increasing dose of MUC5AC-IR800. Polyps in the 150 µg
MUC5AC-IR800 group had a mean fluorescence intensity 2.6 times greater than the mean
fluorescence intensity of polyps in the 50 µg MUC5AC-IR800 group. For the control,
the polyp fluorescence intensity was three to five times lower than the 100 µg or 150 µg
MUC5AC-IR800 groups.
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Figure 1. CPC-APC mouse colon (rectum at the bottom of image) opened longitudinally and imaged 

48 h after administration of 150 μg MUC5AC-IR800 (panel (A) = bright light, panel (A’) = NIR im-

aging) with specific labeling of polyps in NIR image. Compared to CPC-APC mouse colon opened 

longitudinally and imaged 48 h after administration of comparable moles of NIR dye as a control 

(panel (B) = bright light, panel (B’) = NIR imaging). Scale bar: 1 cm. 
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Figure 2. Mean polyp to background ratios in CPC-APC colonic polyps 48 h after administration of 

various dosages (25 μg, 50 μg, 100 μg, and 150 μg) of MUC5AC-IR800 or IRDye800 as a control. 

Dots represent individual PBRs within the treatment group. * = p-value 0.008. 

Figure 1. CPC-APC mouse colon (rectum at the bottom of image) opened longitudinally and imaged
48 h after administration of 150 µg MUC5AC-IR800 (panel (A) = bright light, panel (A’) = NIR
imaging) with specific labeling of polyps in NIR image. Compared to CPC-APC mouse colon opened
longitudinally and imaged 48 h after administration of comparable moles of NIR dye as a control
(panel (B) = bright light, panel (B’) = NIR imaging). Scale bar: 1 cm.
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Figure 2. Mean polyp to background ratios in CPC-APC colonic polyps 48 h after administration of
various dosages (25 µg, 50 µg, 100 µg, and 150 µg) of MUC5AC-IR800 or IRDye800 as a control. Dots
represent individual PBRs within the treatment group. * = p-value 0.008.
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Figure 3. Box plots of polyp and background tissue fluorescence intensity for CPC-APC mice 48 h after
administration of various doses (25 µg, 50 µg, 100 µg, and 150 µg) of MUC5AC-IR800 or IRDye800 as
control. Mean values are denoted by x within box plots with the mean line is shown.

3.4. Statistical Analysis

An analysis of variance (ANOVA) was performed for the 25 µg, 50 µg, 100 µg, and
150 µg cohorts. An F-value of 13.26 (p-value < 0.001) was calculated, indicating a significant
difference in the mean PBR of the arms. Tukey honestly significant difference (HSD) showed
a significant difference between all doses except 50 µg: 100 µg and 100 µg: 150 µg (Table 1).
A Student’s t-test was used to compare the mice treated with 150 µg of MUC5AC-IR800
and the control arm, which received equivalent moles of dye. The student’s t-test showed a
significant difference between the two groups (p-value 0.008) (Figure 2).

Table 1. ANOVA with Tukey HSD (honestly significant difference) comparing the difference of mean
PBR among the four treatment doses.

Dose Comparison Difference in Mean PBR p-Value

25 µg–50 µg 0.934 (0.096–1.772) 0.021 *
25 µg–100 µg 1.622 (0.784–2.460) <0.001 **
25 µg–150 µg 1.682 (0.988–2.377) <0.001 **
50 µg–100 µg 0.688 (−0.182–1.558) 0.189
50 µg–150 µg 0.748 (0.016–1.481) 0.043 *

100 µg–150 µg 0.060 (−0.672–0.793) 0.999
* = p-value < 0.05. ** = p-value < 0.01

3.5. Polyps Contain Dysplasia and Adenocarcinoma

Hematoxylin and eosin (H&E) staining of polyps demonstrated areas of high-grade
dysplasia as well as intramucosal adenocarcinoma (Figure 4), demonstrating that the CPC-
APC model produces analogous tumorigenesis of colorectal cancer in the observed polyps.
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Figure 4. H&E staining demonstrating high-grade dysplasia (blue arrow) and intramucosal adeno-
carcinoma (red arrow) within the murine polyp without invasion of the basement membrane. Yellow
arrow indicates normal murine colonic tissue.

4. Discussion

The present proof-of-concept study demonstrates the ability of MUC5AC-IR800 to
selectively label colorectal polyps in CPC-APC mice compared to NIR dye alone. This is an
important preclinical step in integrating this technology to increase polyp identification
during intraluminal evaluation (i.e., screening colonoscopies). Screening colonoscopies and
polypectomies are associated with decreased rates of colorectal cancer (CRC) and deaths
from CRC [44,45]. However, this technique is plagued with a high miss rate for adenomas
(10–22% [11,46]) and CRC (1.8–5.9% [47,48]). In a population-based case-controlled review
of interval cancers after a negative colonoscopy, interval cancer cases were more likely to
be in the proximal colon, more likely to have had an incomplete colonoscopy (failure to
reach the cecum), and more likely to have had a colonoscopy performed for a positive
fecal occult blood test rather than primary screening when compared to control cases [49].
Given these findings and the rate of interval cancers that occurred < 3 years after a negative
colonoscopy, the authors conclude these interval cancers most likely represented missed
neoplasms. A similar study looking only at new cancer diagnoses within 3 years of a
negative colonoscopy found an interval cancer rate of 3.44% [47]. The current approach to
screening colonoscopies, relying heavily on physician attentiveness and visual cues for the
successful identification of suspicious lesions, needs to be augmented [46].

Conversely, if diminutive (<5 mm) polyps are identified during colonoscopy, many of
them have benign pathology and pose little to no malignant potential. Because of this, many
clinicians have proposed a pluck-and-discard strategy to avoid wasting medical resources
for pathologic analysis [50,51]. However, this method has not yet become common practice
due to the fear of missing small malignant polyps. Fluorescence identification of polyps
provides another source of malignant polyp discrimination based on differences in protein
expression as a polyp undergoes malignant transformation.

MUC5AC was chosen as the molecular target in this study, given its upregulation in
CRC and malignant polyps [36]. MUC5AC is normally absent in colorectal mucosa but has
de novo expression in CRC progression [52,53]. Increased MUC5AC expression has also
been associated with microsatellite instability (MSI) and proximal colon polyp location,
both characteristics associated with missed CRCs on colonoscopy [54–56]. Furthermore,
one of the key features of MUC5AC that distinguishes it from other CRC markers is
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its expression in SSA, which has a much higher malignant potential than their nearly
visually identical HP [57]. The successful differentiation of SSA from HP during a visual
inspection at the time of polypectomy is key to developing an efficient clinical protocol
for polyp management, as the majority of polyps removed are benign and do not require
full pathological analysis. The antibody to human MUC5AC used in the present study
has cross-reactivity with murine MUC5AC [58]. This is important as we could expect
translatability of these results clinically.

While there is no accepted PBR value that is considered “positive” in the literature, the
PBRs in the present study ranged from 1.70 to 3.38, which provides enough contrast between
polyps and surrounding tissue to aid in detection. Recent clinical trials with fluorescence
guided surgery (FGS) showed that an intraoperative tumor-to-background ratio of 1.6 [59],
1.83 [60], and 1.9 [61] was sufficient to detect the tumor of interest. Keller et al. reported a
clinical trial of 27 patients where an anti-CEA fluorescent antibody was applied topically to
large colonic polypoid lesions enabled improved distinction of polypoid tissue from benign
mucosa [62]. One obvious benefit to the present approach is that MUC5AC-IR800 is injected
systemically, obviating the need for initial white light detection and then local application,
as suggested by Keller et al. [62]. This is an important distinction that allows probes such as
MUC5AC-IR800 to become an aid for screening as it does not rely on endoscopists’ ability
to identify suspicious areas that would prompt its application.

One limitation of the proposed approach is the possible decreased signal penetration
in the presence of bleeding, mucosal capping, or other visually obstructive particles during
evaluation. Further research is needed to evaluate the effect of bleeding, ulceration, or
general inflammation (e.g., colitis) on MUC5AC-IR800′s ability to differentiate polyps from
abnormal, yet benign colonic tissue. An additional limitation of the present study includes
the measurement of fluorescence signal occurred ex vivo. Although this is an active area of
development, a commercially available flexible endoscope that allows for NIR in the 800 nm
wavelength range is not yet available, though prototypic systems have been developed
for NIR colonoscopy [63]. Burggraff et al. performed a pilot study in humans with an
anti-c-MET antibody conjugated to Cy5 (emissions within the near-infrared spectra). With
the use of fluorescence, they were able to identify an additional 9 polyps that were not
detected with white light alone. However, their probe detected benign hyperplastic polyps
in addition to adenomas.

The present study demonstrates the ability of MUC5AC-IR800 to specifically target
and label colonic polyps containing high-grade dysplasia and intramucosal adenocarci-
noma in CPC-APC mice. Future studies are needed to determine the polyp-to-background
ratio for benign polyps in these mice. We plan to perform similar experiments at earlier
time points prior to the development of carcinoma. Once MUC5AC-IR800 can be confirmed
to have high specificity and sensitivity for premalignant and malignant polyps (or possibly
MUC5AC-IR800 in combination with another antibody targeting a specific subset of pre-
malignant or malignant tissues), the present technique can be used for improved detection
of polyps during colonoscopy. No toxicity was observed in the mice following MUC5AC-
IR800 administration at any dose. While further studies are needed to identify the optimal
timing, dosing, and tolerability of the antibody in humans, this proof-of-concept study is
an important preclinical step. Additional molecular targets could also be identified and
evaluated using the same principles of the present study. To have maximal clinical utility,
the targets would need to be specific to the malignant transformation of polyps to increase
the specificity of distinguishing cancerous and precancerous polyps from their benign
counterparts. Improving polyp detection and removal rate in screening colonoscopies may
decrease the miss rate of malignant polyps and lead to lower incidence and, thus, death
from CRC.
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