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Simple Summary: Understanding how native amphibians of the Qinghai-Tibet plateau respond to
pressures and their copying mechanisms could be essential for predicting their destiny in the face of
climate change. A liver transcriptome was constructed to find those coping mechanisms of Nanorana
pleskei. Frogs switched into hypometabolic states under high-temperature stress. However, the energy
supply was basically normal to sustain the highly energy-demanding metabolic functions during
heat waves. Genes were more transcriptionally suppressed for combating these long-term adverse
environments to survive. High temperatures are more harmful to frogs than heat waves.

Abstract: In the context of climate change, understanding how indigenous amphibians of the Qinghai-
Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate
and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-
throughput RNA sequencing, and its gene expression was compared with frogs acclimated under
either room temperature or high temperature and also heat wave exposed ones. A total of 126,465
unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were
found to be differently regulated as a result of abnormal temperature acclimatization. Notably,
genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups.
Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger
the body to maintain a hypometabolic state in an effort to survive challenging times. During heat
waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy
supply was largely normal to support the highly energy-consuming metabolic processes. Genes were
more transcriptionally suppressed when treated with high temperatures than heat waves, and the
body stayed in low-energy states for combating these long-term adverse environments to survive. It
might be strategic to preserve initiation to executive protein activity under heat wave stress. Under
both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in
frogs. Frogs were more affected by high temperatures than by heat waves.

Keywords: the Qinghai-Tibet plateau; physiological effects; global warming; hypometabolic states;
energy supply

1. Introduction

Amphibians are considered as an excellent study group to further improve our under-
standing of genomics, because they exhibit a wide range of reproductive strategies [1,2],
occupy the majority of ecoregions on earth, have a highly diverse range of morphology,
and are the most endangered group of vertebrates globally [3]. Climate change can be
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more harmful to amphibians than other groups of vertebrates and is one of the major
causes of the extinction of ectotherms [4]. A growing number of studies have proved
that the global climate is changing rapidly, with unexpected implications [5]. It has been
found that climate change has a wide range of effects on natural systems [6]. Influences on
abundance, distribution [7–10], and morphology [11,12] have been recorded at the species
level. Climate change may lead to a major shift in spatial patterns of Chinese amphibian
diversity [13]. Changes in biological features and genetic diversity are also possible [14].
Temperature rise is the most important sign of climate change; one of its consequences is
the occurrence of extreme phenomena such as heat waves [15,16].

Next-generation sequencing (NGS) has grown more affordable, allowing researchers
to study the transcriptome of any organism [17,18]. The use of NGS in amphibians allows
researchers to make crucial findings and discoveries at the molecular level of plasticity,
as well as the expansion of sequencing resources [19,20]. RNA-sequencing was used to
investigate the molecular basis of phenotypic plasticity in spotted seatrout Cynoscion nebu-
losus populations exposed to acute cold and heat stress [21]. Comparative transcriptome
analysis of three acclimatized groups of Quasipaa boulengeri tadpoles found key differen-
tially expressed genes which coincided with phenotype and hormone level and offered
a suitable rearing temperature [22]. Transcriptomic profiles and protein-protein interac-
tion analysis of heat-treated Buergeria otai tadpoles exhibit global suppression of DNA
transcription and mRNA translation that ensure them to survive high temperatures [23].
Similarly, through transcriptome analysis, it was found that genes involved in secretion
and defensive function are highly expressed in the skin of Rana chensinensis [24]. Sun
et al. found some important pathways responding to heat stress in the liver tissues of
rainbow trout Oncorhynchus mykiss [25]. Nanorana pleskei is one of the most significant apex
predators in wetland ecosystems, playing crucial functional roles in community structuring
and ecological equilibrium [26,27]. According to our fieldwork, there are three amphibian
species, Bufo gargarizans, Rana kukunoris, and N. pleskei in Awancang marsh. Nanorana pleskei
is classified as near threatened (NT) in ICUN red list. It is not listed in the national list
for major protective wild animals of China, however, the frog is a species of the collection
of “three animals” which means terrestrial wildlife with important ecological, scientific
and social values. Thus, it is also protected by the Wildlife Protection Law of the People’s
Republic of China. However, the distribution range of N. pleskei is the smallest among
the three speices (https://www.amphibiachina.org (accessed on 28 March 2023)), and this
species could be more likely affected by the climate change.

Nanorana pleskei (Dicroglossidae) is an indigenous species of the Qinghai-Tibet plateau,
living among puddles and ponds in swampy environments ranging from 3300–4500 m
above sea level [28]. During the day, adult frogs lurk near streams or under grasses in
swampy places; at night, they crouch along water edge or amid grasses, feeding on tiny in-
sects and their larvae [27,29]. At present, other research has been conducted on the ecology
and physiology of this species. Their main spawning strategies include shallow waters, de-
centralized spawning patterns, and egg attachment to an appropriate distance to the water
surface. Therefore, drought caused by rising temperatures and fluctuating precipitation
may induce N. pleskei numbers to decline [30]. Remarkable numbers of convergent and
parallel amino acid substitutions of the MYBPC2 gene exist in Bufo gargarizans, R. kukunoris,
and N. pleskei [31]. Cold acclimation reduces antioxidant defense in N. pleskei [32]. However,
N. pleskei may have well adapted to the significant temperature fluctuation, according to a
study on the impact of high temperatures and heat waves on thermal biology, locomotor
performance, and antioxidant system [33]. The range of tolerated temperature, thermal
preference, and critical thermal maximum all dramatically increased after two weeks of
heat wave acclimation, whereas the critical thermal minimum significantly dropped [33].

https://www.amphibiachina.org
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Heat shock protein (HSP) production is a typical event in prokaryotic and eukaryotic
cells under stress conditions such as increased temperature and oxidative stress [34]. HSP
genes were discovered to be downregulated in Oklahoma salamander Eurycea tynerensis [35]
and Ota’s stream tree frog B. otai [23] under heat stress.

The study of transcriptomics in no-model animals gained momentum in the past
decade. However, no gene-level research was conducted on N. pleskei in regard to temper-
ature adaptation under the background of climate change. Hence, in this study, we try
to determine the regulation of gene expression in N. pleskei under high temperatures and
heat waves using comparative transcriptomics. What physiological impacts and copying
mechanisms are there in the presence of a hostile environment? Answering the above issues
at the transcription level may deepen our understanding of amphibian physiology and
provide insight into functional changes of N. pleskei when facing an increased temperature
or heat wave.

2. Materials and Methods
2.1. Animal Acclimation

Eighteen male frogs were collected from Awancang (33.795◦ N, 101.76◦ E, 3501 m asl),
Maqu County, Gansu Province, China, in July 2020. Frogs were transported to the laboratory
at Gannan Grassland Ecosystem National Observation and Research Station, which is near
(15 km) the sampling site. Snout-to-vent length (SVL, 3.09 ± 0.73 cm) and body mass (BM,
3.61 ± 0.30 g) of all the frogs were measured. Frogs were randomly assigned into three
acclimating groups (six frogs in each group), room temperature (R, 17 ◦C) group, high
temperature (H, 25 ◦C) group and heat wave (HW, maximum (27 ◦C) and minimum (14 ◦C)
group (Figure 1). Frogs of each group were kept in one plastic container (46 × 34 × 26 cm,
with a platform and water). The containers of both high temperature and heat wave groups
were put in two separate wooden cabins (62.5 × 47.8 × 40.1 cm) equipped with automatic
temperature control systems (AI-719P, Xiamen Yudian Automation Technology Co., Ltd.,
Shenzhen, China). The temperature inside the boxes was monitored by iButtons (DS1921,
MAXIM Integrated Products Ltd., San Jose, CA, USA). In order to simulate the temperature
variation experienced by frogs during the active period, the heat wave group was defined
on the basis of the monthly maximum (17.9 ± 1.1 ◦C) and minimum (7.0 ± 1.4 ◦C) average
temperatures in July in Maqu County from 2005 to 2019 (Figure 2). With the automatic
temperature control system, we set the temperature specific to the time in the heat wave
group. It starts to heat at 7:30 every day. The rate of heating was controlled automatically.
The set value for 11:00 to 15:00 was 27 ◦C.

Water used for the frogs was obtained from a nearby stream. Insects such as mosquitoes,
flies, and locust larvae were collected from grassland to feed the frogs. The water was
changed every three days after the frogs were fed. Meantime, the leftover insects were
cleared. The photoperiod is 12 L: 12 D. Three male frogs per group were randomly se-
lected as representatives after two weeks of acclimation (16–30 July 2020) for analysis. The
sampling timepoint for the heat wave group was 7:20 to 7:30, and the temperature was
not evaluated in the box by an automatic temperature control system. Frogs from each
group were sacrificed by quick decapitation without anesthesia [36]. Then, the livers were
collected and immediately frozen in liquid nitrogen. The room temperature group was
used as the control group.

Liver samples were transported to Novogene (Beijing, China) with a dry ice box.
The library preparations were sequenced on an Illumina Hiseq platform, and 150 paired-
end reads were generated. Clean data were obtained from raw data by removing reads
containing adapter, reads containing ploy-N, and low-quality reads. All the subsequent
analyses were conducted using clean, high-quality data.
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Figure 1. Changes in mean temperature of 24 h in the room temperature (R), high temperature (H), 
and heat wave (HW) groups for two weeks. Real-time temperatures were recorded by three iButtons 
(DS1921, MAXIM Integrated Products Ltd., USA) which were fixed in the middle of each box. 
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Figure 2. Monthly maximum air temperature, mean monthly air temperature, and monthly minimum
air temperature in July in Maqu County from 2005 to 2019.

2.2. Assembly and Evaluation

Transcriptome assembly was performed using Trinity (Brian J Haas, version v2.11.0,
Cambridge, MA, USA) [37,38] with these parameters (min_kmer_cov 3 min_glue 4
max_chrysalis_cluster_size 31 min_contig_length 300 bfly_opts ‘-V 5 edge-thr = 0.1 stderr’)
and all other parameters were set to default. Next, the reference transcript was produced
by eliminating redundant contigs by CD-HIT [39]. Transrate [40] was used to obtain the
average transcript length and N50 values of the de novo transcriptome assemblies.
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2.3. Function Annotation

Due to the lack of genomic resources of N. pleskei, we combined protein data from
five species to create a reference dataset for gene annotation, which includes N. parkeri,
R. temporaria, Leptobrachium leishanense, Xenopus tropicalis, and X. laevis. The complete X.
laevis and X. tropicalis proteomes were downloaded from the Uniprot database [41]. The
protein data and annotation files of N. parkeri and L. leishanense were downloaded from
figshare (https://figshare.com/projects/Genomic_data_of_Nanorana_parkeri/116061 (ac-
cessed on 13 August 2021); https://figshare.com/articles/dataset/Genome_assembly_of_
Leptobrachium_leishanense/8019986 (accessed on 10 August 2020)), and protein data of R.
temporaria was downloaded from NCBI (National Center for Biotechnology Information).
Transcripts were annotated to the reference dataset by BLAST [42] similarity using blastx,
using the maximum value for identity and minimum value for E-value, and with the option
“-subject_besthit -max_target_seqs 1 -evalue 1e-5” enabled to keep just the best match for
the best alignment of each query sequence.

2.4. Analysis of Differentially Expressed Genes and Functional Enrichment

The expression level of the transcripts was quantified by mapping the Illumina reads
to the reference sequences by RSEM software (Bo Li, version 1.3.3, Madison, WI, USA)
with the bowtie2 parameter and other default parameters [43]. The differential gene
expression analysis was conducted using DESeq2 package (Michael I Love, version 1.30.0,
MA, USA) [44]. Differentially expressed genes (DEGs) with the |log2(fold change)|≥ 1 and
adjust p-value≤ 0.05 were considered significant. GO term and KEGG pathway enrichment
analysis was performed in the clusterProfiler package (Guangchuang Yu, version 4.4.2,
Guangzhou, China) in R [45,46].

3. Results
3.1. De Novo Assembly and Annotation

A total of 192,692,377 raw reads, which range from 18,154,470 to 23,538,026, were
generated for nine N. pleskei samples. The RIN values were all greater than 7.1, with the
exception of one sample, which yielded near the amount of data as the other samples. After
filtering, 186,540,630 reads which range from 17,433,117 to 22,782,142 were retained. The
percentage of base with greater than Q30 (phred quality score; Q score) in each sample
retained were all above 89.06 (Table S1). Finally, a total of 126,465 unigenes (total length
of 149,653,736 bp) were generated with a mean length of 1183 bp and an N50 length of
1951 bp.

By combining protein data from five different species, we were able to create a reference
dataset that represented the main lineages of amphibian species, which updated the genome
assembly using the latest sequencing methods. After the cut-off for identity and E-value,
126,465 transcripts of N. pleskei were annotated to 66,924 genes. A total of 33,668 annotated
transcripts had an E-value below 1 × 10−50.

3.2. Differential Gene Expression and Pathway Enrichment

Read mapping ratios of nine sequence data ranged from 87.13% to 91.16%. Compared
with the control group, 453 DEGs (290 down, 163 up) and 241 DEGs (122 down, 119 up)
were identified in the H group and HW group, respectively (Figure 3).

However, the number of DEGs with annotation information was reduced to 240
(Figure 4), which are included in enzymes, membrane trafficking, ubiquitin system, mes-
senger RNA biogenesis, transcription factors, mitochondrial biogenesis, lipid biosynthesis
proteins, and amino acid-related enzymes.

https://figshare.com/projects/Genomic_data_of_Nanorana_parkeri/116061
https://figshare.com/articles/dataset/Genome_assembly_of_Leptobrachium_leishanense/8019986
https://figshare.com/articles/dataset/Genome_assembly_of_Leptobrachium_leishanense/8019986
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In response to high-temperature stress, the expression of cytochrome c oxidase sub-
unit 6c (COX6C), NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor
1 (NDUFAF1) and EF-hand domain-containing protein 1(LETM1), elongation factor Ts (tsf ),
large subunit ribosomal protein L37 (MRPL37), E1A/CREB-binding protein (EP300) and
mitochondrial carrier MTCH, huntingtin (HD) in mitochondrial biogenesis were down-
regulated. Meanwhile, the DNA repair protein RAD50 (RAD50) gene and Glutathione
S-transferase (GST) were downloaded in the H group (Figure 5, Table S4). In addition, fatty
acid synthase (FASN) and elongation of very long chain fatty acids protein 6 (ELOVL6)
were downregulated. Meanwhile, sterol carrier protein 2 (SCP2), which is responsible for
the function of fatty acid beta-oxidation, was down-regulated.
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Under heat wave, the expression of the pyruvate dehydrogenase (PDH) gene was
lowered. Similarly, aminoacylase (ACY1), 6-phosphofructokinase 1 (PFK), and pyruvate
kinase isozymes R/L (PKLR) in the biosynthesis of amino acids pathway were upregulated.
DNA excision repair protein ERCC-2 (ERCC2), DNA-directed RNA polymerase III subunit
RPC5 (RPC5), and transcription initiation factor TFIID subunit 15 (TAF15) in transcription
machinery were downregulated. Translation initiation factor 3 subunit J (EIF3J), translation
initiation factor 4B (EIF4B), and translation initiation factor 4A (EIF4A), which belong
to translation factors, were upregulated. DNA excision repair protein ERCC-2 (ERCC2),
DNA-directed RNA polymerase III subunit RPC5 (RPC5), and transcription initiation
factor TFIID subunit 15 (TAF15) in transcription machinery were downregulated. HSP75,
HSPD1, 20S proteasome subunit beta 3 (PSMB3), 26S proteasome regulatory subunit N11
(PSMD14), 20S proteasome subunit beta 7 (PSMB4), and 26S proteasome regulatory subunit
N12 (PSMD8) in proteasome were also downregulated in these acclimated groups.

Moreover, under both accumulated groups, lanosterol synthase (LSS), squalene
monooxygenase (SQLE), 17beta-estradiol 17-dehydrogenase/3beta-hydroxysteroid
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3-dehydrogenase (HSD17B7), cholestenol Del-ta-isomerase (EBP), Delta24-sterol reductase
(DHCR24), sterol 14alpha-demethylase (CYP51), methylsterol monooxygenase (MESO1),
and Delta14-sterol reductase (TM7SF2) in steroid biosynthesis (ko00100) were significantly
downregulated. Corticosteroid 11-beta-dehydrogenase isozyme 1 (HSD11B1), 17beta-
estradiol 17-dehydrogenase/3beta-hydroxysteroid 3-dehydrogenase (HSD17B7), and aldo-
keto reductase family 1 member C3 (AKR1C3) in steroid hormone biosynthesis (ko00140)
were also notably downregulated.

No significantly enriched KEGG pathways were retained according to the corrected
p-value, with the exception of steroid biosynthesis (ko00100), which was shown to be over-
represented by down-regulated DEGs of H and HW groups (Table S2). Despite the modest
number of meaningful findings, some clues may be found from the GO results (Table S3).
The most overrepresented pathways are the glutamine metabolic process, mRNA transport,
RNA binding, lipid biosynthetic process, carbohydrate metabolic process, mitochondrial
biogenesis, and regulation of translation.

4. Discussion

Temperature is one of the most pervasive factors influencing the physiology of ec-
totherms. Ectothermic animals undergo molecular, cellular, and physiological adjustments
that ensure functional integrity during abnormal temperature exposure [47,48]. Thermal
plasticity (both active and passive) can result from changes across levels of the biolog-
ical hierarchy, from the molecular level. The molecular processes involved in hepatic
responses to extreme temperature, particularly heat waves, are complicated and poorly
understood molecular processes in N. pleskei. In this study, we acclimated N. pleskei with
constant high temperature and heat waves and measured their expression profiles via
transcriptome sequencing.

4.1. Treatment-Specific Genes and KEGG Pathways

Impairment of mitochondrial function may result in lower energy availability [49,50].
GST is an enzyme that utilizes glutathione (GSH) to play an important role in defense
mechanisms [51]. GST can be overexpressed to provide resistance under intracellularly
induced oxidative stress [52]. However, in the present study, a sensitive downregulated
response of GST was observed in the livers of frogs exposed to high temperatures for two
weeks, which might indicate that this enzyme would not work in defense mechanisms.
Coincidently, GST showed no change in R. chensinensis exposed to trichlorfon [53]. Genes
associated with fatty acid synthase were dysfunctional. We speculated that fatty acid did
not act as an energy storage material and had no excess energy to synthesize in high-
temperature stress. The acylcarnitine transporter (CACT), which is responsible for the
function of the carnitine-acyl carnitine antiporter, was down-regulated. Meanwhile, no
DEG was found in fatty acid degradation, which supplies large quantities of acetyl-CoA
that could be in agreement with impaired mitochondrial function. The marked deposition
of triacylglycerol (TAG, TG) as a fuel source in the liver triglycerides of N. parkeri in the
summer implies that lipids are used to prepare for overwintering [54]. Conversely, inactive
lipid metabolism at high temperatures may benefit the frogs in unfavorable conditions
to avoid cell damage caused by lipid peroxidation in the body [55,56]. In the H group,
insulin-like growth factor 1 (IGF1), which plays a critical role in producing fast metabolic
alterations and is mostly produced by the liver [57], was lowered. The prolonged heat
stress may impair the metabolic response of the body and trigger the body to keep a low
metabolic state in the hope of surviving challenging times.

Under heat waves, PDH regulates the entry of Acetyl-CoA units into the TCA cycle
and gluconeogenesis [58]. Similarly, three key genes in the biosynthesis of amino acids
pathway were upregulated. As a result, heat wave stress may lead pyruvate flow to
amino acids as material. The transcribing machinery was not operational. However,
cold-inducible RNA-binding protein (CIRBP) was increased in the HW group, helping
cells stabilize mRNAs and facilitate translation [59]. Aminoacyl-tRNAs are translation
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substrates and are critical in determining how the genetic code is translated into amino
acids [60]. Aminoacyl-tRNA synthetases in aminoacyl-tRNA biosynthesis may not be
affected except isoleucyl-tRNA synthetase (IARS), and three transcription initiation factors
had higher expression. Similarly, eukaryotic initiation factor-2 (eIF2) was activated in
response to cellular stresses in Schizosaccharomyces pombe [61]. We therefore hypothesize
that, unlike the high-temperature group, mitochondrial function was not impaired in the
HW group, and energy supply was largely normal to support the highly energy-consuming
metabolic processes.

4.2. Shared Genes and KEGG Pathways

The HSP is the most well-known protein family produced in response to heat stress [34,
62,63]. In our study, genes including HSP75 and HSPD1 were shown to be downregulated
in these acclimated groups, but DnaJ heat shock protein family (Hsp40) homolog subfamily
C member 12 (DNAJC12) were up in the H group. Meanwhile, heat shock 70 kDa protein
(HSPA1s), heat shock protein 110 kDa (HSP110), and molecular chaperone HtpG (HSP90A)
were not significantly changed. These are unexpected results. HSP genes were likewise
downregulated in E. tynerensis (Oklahoma salamander) [35] and B. otai tadpoles [23], but
upregulated in Quasipaa spinosa [64] under heat stress. Heat shock proteins are induced by a
variety of stressors, despite their name referring to their reaction to heat stress. They appear
to have protective properties and may aid in protecting cells against future problems.
However, no clear explanation can be found for why they were downregulated in response
to heat stress. The reduction in HSP expression in the liver shows that the protection
provided by HSP induction after extreme temperature stress may be compromised. In
addition, the duration of the stimulation affects the change in HSP expression [65]. For
example, E. tynerensis mentioned above was treated for 30 days, whereas B. otai tadpoles
were treated for 4 h, and Q. spinosa for time gradients of 0, 3, 6, 12, 24, and 48 h.

Ubiquitin modifies substrate proteins for destruction, which demands metabolic en-
ergy [66]. Low-expressed proteasome subunit genes may exist, including distemperedness of
the ubiquitin system and lower proteasome in frogs. Endocrine disruptor-exposed X. tropicalis
also had a decrease in liver proteasome activity [67] when faced with adverse circumstances.

Steroids are natural endogenous products that play the primary chemical messengers
(hormones) role in regulating the metabolic, stress response, and reproductive functions [68].
Many genes were inefficient in steroid biosynthesis and steroid hormone biosynthesis. Tri-
closan (TCS) and triclocarban (TCC) disrupt steroid hormone action in frog and mammalian
culture systems [69]. Steroid hormones foster communication during the frog breeding sea-
son [70]. Temperature and steroid hormones were explored on larval growth, development,
and metamorphosis in Bufo boreas, suggesting that the effects of steroids depended on both
age and temperature [71]. Even though steroids are vital, the suppressed steroid system
implied that the drop in steroid or hormone-related genes was likely a reaction to the stress
of high temperatures and heat waves in the liver of N. pleskei, which caused it to maintain
an inactive organism state in order to survive.

5. Conclusions

Genes were more transcriptionally suppressed when exposed to high temperatures
than heat waves, and the body stayed in low-energy states for combating long-term adverse
environments to survive. It might be strategic to preserve initiation to executive protein
activity under heat wave stress. Under both stress conditions, compromised protection
of HSP and sluggish steroid activity occurred in frogs. Nanorana pleskei are affected more
seriously by high temperatures than by heat waves; thus, a threat to frogs grows due to
trends in global warming. The information gathered in this study may be used as a basic
guide for assessing the possible adverse ecological impacts on frogs, which is beneficial for
the long-term preservation or future predictions of amphibian species.
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