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Abstract: The influence of chitinase-3-like protein 1 (YKL-40 or CHI3L1) expression on the immuno-
logical properties of the tumor microenvironment, which may affect the effectiveness of immunother-
apy, is currently not sufficiently understood in colorectal cancer (CRC). The aim of this study was
to investigate the relationship between YKL-40 expression and the immunological properties of the
tumor microenvironment in CRC. We performed in silico analysis, including analysis of immune cell
infiltration scores and the immune landscape depending on YKL-40 expression, gene set enrichment
analysis (GSEA), and analysis of three Gene Expression Omnibus (GEO) datasets. In 48 CRC tissue
homogenates and the surgical margin, we analyzed the expression of YKL-40, MMP8, IL17A, and
PD-L1. Moreover, we analyzed the expression of YKL-40 in tissue homogenates retrieved from
patients with coexisting diabetes, obesity, and smoking. The expression of YKL-40 was significantly
higher in CRC tumor tissue compared to healthy tissue and correlated with MMP-8, IL17A, and PD-L1
expression. In silico analysis revealed an association of YKL-40 with disease recurrence, and GSEA
revealed a potential link between elevated YKL-40 expression and immunosuppressive properties of
the tumor microenvironment in CRC.

Keywords: YKL-40 (CHI3L1); PD-L1; colorectal cancer

1. Introduction

One of the most important factors determining prognosis in colorectal cancer (CRC)
is the presence of metastases. Since metastatic CRC exhibits a poor prognosis, even with
complete resection of the primary tumor, identification of new effective therapeutic targets
to disrupt pathways involved in different stages of CRC metastasis is urgently needed [1].
Intercellular interactions in an abnormal tumor environment consisting of cancer and non-
cancer cells, blood vessels, stroma, and the extracellular matrix might contribute to the high
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heterogeneity of CRC. For that reason, the significance of the tumor microenvironment
(TME) in modulating CRC progression and metastasis has been extensively investigated in
recent years. Cytokines, immune checkpoints, and proteins involved in extracellular matrix
remodeling such as metalloproteinases and chitinases are among numerous molecules that
shape the TME to support tumor growth and progression and immune evasion.

Chitinase-3-like protein 1 (CHI3L1), also known as YKL-40, is a glycoprotein and
a member of the 18-glycosyl hydrolase family with no chitinase activity [2,3]. YKL-40
is expressed in numerous types of cells, including macrophages, neutrophils, vascular
smooth cells, chondrocytes, epithelial cells, and synoviocytes [2,4,5]. High levels of this
glycoprotein have also been found in several tumors, such as colon, ovary, prostate, breast,
lung, and kidney cancers, as well as melanoma. YKL-40 is closely related to chronic
inflammation, cancer, and increased tissue remodeling [1,2]. Increased expression of YKL-
40 was observed a the group of patients with obesity and type 2 diabetes, probably due
to the involvement of YKL-40 in inflammatory processes [3,4]. It has been proven that
YKL-40 promotes tumor progression, mainly through the regulation of extracellular matrix
remodeling and inflammation. Many studies indicate that its serum level is associated with
adverse clinical outcomes of patients with CRC and other solid tumors and might serve as
a marker of poor prognosis [1,5].

IL-17 is a proinflammatory cytokine that has been shown to increase tumor growth,
invasion, metastasis, and angiogenesis [6,7]. It is produced by neutrophils, macrophages,
dendritic cells, and CD8+ T cells; however, the major source of IL-17 is the Th17 cells
present in the TME [6,8,9]. The interplay between IL-17 and IL-23, by reducing the number
of CD8+ T cells; increasing the activity of Treg cells; and modulating MMP-9, MMP-7,
MMP-2, VEGF, TGF-β, IL-6, and CCR6 expression; has a crucial role in the pathogenesis of
CRC [10–14]. A high intratumoral level of IL-17 is associated with unfavorable outcomes
in CRC [6].

The PD-1/PD-L1 pathway induces downregulation of T-cell activity and inhibits the
release of cytokines, thereby providing the immune tolerance to self-antigens [15,16]. The
upregulation of PD-L1, which is observed in multiple types of cancer, appears to be one
of the major mechanisms allowing tumor cells to evade immune surveillance and avoid
immune attack [17,18]. It has also been shown that PD-L1 can bind to appropriate RNAs
and protect target RNAs from degradation by RNA exosome components. The relationship
between PD-L1 and the stability of the mRNA of genes involved in the process of cancer
progression, such as NBS1 and BRCA1, seems to affect the effectiveness of radiation and
chemotherapy; therefore, targeting PD-L1 may increase sensitivity to chemotherapies and
radiotherapy [19]. Targeting the PD-1/PD-L1 axis is the aim of many immunotherapeutic
strategies used in the treatment of various tumors, which have developed rapidly in re-
cent years [20]. Immune checkpoint inhibitors (ICIs), especially anti-PD-1 therapy, have
dramatically reshaped the landscape of cancer therapy; however, the use of ICIs in CRC
is limited to microsatellite instability-high (MSI-H) tumors, which are found in approxi-
mately 15% of CRC cases. The search for new molecules involved in pathways related to
CRC progression and metastasis has been extensively evaluated, which may result in the
development of new targeted therapy options. Immunotherapy has been revealed as more
effective than conventional cytotoxic therapy in many cases, achieving long-term benefits
in a subset of patients with advanced disease [21]. However, due to the emerging thera-
peutic resistance to PD-1/PD-L1 axis inhibitors, there is a need for different strategies to
target the PD-1/PD-L1 axis or alternative strategies to overcome acquired resistance [22,23].
Recent reports on the relationship between the expression, stability, and activity of PD-L1
in cancer cells and factors regulating the cytoplasmic domain of PD-L1 (PD-L1-CD), such
as acidic phospholipids, electrostatic interaction with the plasma membrane [24] and the
effect of AMP-activated protein kinase (AMPK) and metformin on PD-L1 levels [25], to-
gether with the increasingly accurate understanding of the function of mitochondria and
the development of selective nanoparticles targeting the mitochondrial PD-L1 regulatory
mechanisms [26,27], may contribute to a breakthrough in the effectiveness of methods
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targeting the PD-1/PD-L1 axis and in photodynamic therapy, in which PD-L1 expression
induced by interferon gamma is currently one of the greatest limitations to the use of this
method in cancer treatment [27–29].

YKL-40 has been reported to be involved in immune processes in the tumor microen-
vironment. However, its exact role and connection with immune molecules still require
deeper investigation. The aim of this study is to investigate the associations between YKL-
40 and selected factors in the context of the modulation of immune and tissue remodeling
processes in colorectal cancer. We analyzed the expression of YKL-40, MMP-8, IL-17A,
and PD-L1 in three Gene Expression Omnibus (GEO) datasets. We performed gene set
enrichment analysis (GSEA) and CIBERSORT score analysis based on the expression of
YKL-40 in CRC tumors. Furthermore, we measured levels of YKL-40, MMP-8, IL-17A, and
PD-L1 in the tissue homogenates obtained from CRC tumors. These data were compared
with the clinicopathological features of the patients.

2. Materials and Methods
2.1. Analysis of Immune Cell Infiltration Scores and the Immune Landscape and Gene Set
Enrichment Analysis (GSEA) in Colorectal Cancer

To estimate the abundance of immune cell types under high and low YKL-40 expres-
sion and to evaluate the corresponding intratumoral immune cell composition, we used the
CAMOIP tool [30]. Analysis of immune cell infiltration scores and the immune landscape
was performed on ‘TCGA-COAD’.

GSEA was performed using Tumor Cancer Genome Atlas (TCGA) RNA-seq data for
CRC retrieved from the package FieldEffectCRC [31] in R studio. GSEA was conducted
among cohort A, consisting of 311 CRC samples. We normalized the matrix data using
the DESeq2 package [32]. Then, we divided the cohort into high versus low expression
of YKL-40. Further analysis was performed using the package “fgsea” in R studio. The
corresponding gene set for pathways and biological processes “H: hallmark gene sets h.7.5.”
was obtained from Human MSigDB Collections [33,34].

The genes with significant differences in expression among high vs. low YKL-40
(CHI3L1) expression were screened for GO enrichment analyses (|logFC| > 0.5 and
p.adj. < 0.05).

2.2. Gene Expression Omnibus (GEO) Dataset Analysis

Datasets containing array-based normalized mRNA expression profile data were
obtained from the Gene Expression Omnibus (GEO) platform. Analysis of 136 samples
of CRC and non-cancerous colonic tissue obtained from GEO datasets: GDS4382 [35],
GDS4513 [36], and GDS4515 [37] was conducted to predict and later validate expression and
correlation between YKL-40, MMP8, IL-17A, and PD-L1. The GDS4515 dataset provided
expression data of the mentioned proteins in 34 MSI CRC tumors and 15 normal colonic
mucosa samples. GDS4513 included YKL-40 expression in tumor cells obtained from
sporadic stage UICC II CRC patients treated with standard oncological resection who either
relapsed or did not relapse during the 5-year follow-up.

2.3. Tissue Homogenates of CRC

The study involved 48 specimens of colorectal cancer tumor tissue and surgical margin
tissue collected from 20 female and 28 male patients who had undergone surgeries in
the 1st Specialistic Hospital in Bytom, Poland (Research Ethics Committee approval no.
KNW/0022/KB1/42/III/14/16/18, 14.07.2020). Inclusion criteria involved the confirma-
tion of colorectal adenocarcinoma and negative surgical margin without tumor infiltration
confirmed in a histological examination, patient age > 18 years old, and a signed written
consent. Patients with tumor types other than adenocarcinoma, the presence of margin
infiltration, a lack of signed consent to participate in the study, age < 18 years old, and with
a history of chemo- or radiotherapy were excluded from the study. The tumor stage was
classified using the TNM staging system and grading. Patient data on diabetes, smoking,
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obesity, and BMI were included. Patients with a BMI of 30.0 or higher were considered
obese. The smoking group included active smokers, and non-active smokers were included
to the non-smoking group. The characteristics of the study group are presented in Table 1.

Table 1. Characteristics of the study sample.

Female Male

20 28 48 (100%)

Age 63.06 ± 11.27 63.81 ± 8.61 63,47 ± 9.75

BMI 24.99 ± 5.06 26.75 ± 4.50 25.96 ± 4.78

Obesity

Yes 3 (15%) 5 (17.86%) 8 (16.67%)

No 17 (85%) 23 (82.14%) 40 (83.33%)

Diabetes

Yes 4 (20%) 10 (35.71%) 14 (29.17%)

No 16 (8%) 18 (64.29%) 34 (70.83%)

Nicotinism

Yes 8 (40%) 9 (32.14%) 17 (35.42%)

No 12 (60%) 19 (67.86%) 31 (64.58%)

T parameter

T1 0 (0%) 0 (0%) 0 (0%)

T2 7 (35%) 5 (17.86%) 12 (25%)

T3 10 (50%) 14 (50%) 24 (50%)

T4 3 (15%) 9 (32.14%) 12 (25%)

N parameter

N0 9 (45%) 12 (42.86%) 21 (43.75%)

N1 8 (40%) 9 (32.14%) 17 (35.42%)

N2 3 (15%) 7 (25%) 10 (20.83%)

M parameter

M0 18 (90%) 19 (67.86%) 37 (77.08%)

M1 2 (10%) 9 (32.14%) 11 (22.92%)

TNM stage

I 6 (30%) 4 (14.29%) 10 (20.83%)

II 3 (15%) 7 (25.00%) 10 (20.83%)

III 9 (45%) 8 (28.57%) 17 (35.42%)

IV 2 (10%) 9 (32.14%) 11 (22.92%)

Grading

G1 1 (5%) 0 (0%) 1 (2.08%)

G2 19 (95%) 28 (100%) 47 (97.92%)

G3 0(0%) 0 (0%) 0 (0%)

2.4. Preparation of Samples

Colorectal cancer tumor tissues and surgical margins from the respective patients
were weighed and homogenized in a phosphate buffer environment. Homogenization
was performed using a PRO 200 homogenizer (PRO Scientific Inc., Oxford, CT, USA)
at 10,000 rpm. Nine volumes of phosphate-buffered saline were added to each tumor
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tissue and the surgical margin. Subsequently, the obtained suspensions were sonicated
using an ultrasonic cell disrupter (UP100, Hilscher, Germany). The tissue homogenates
obtained in this way were centrifuged at 12,000 rpm for 15 min at 4 ◦C. Total protein
concentration was measured by colorimetry using a reagent kit with the pyrogallol-red
method (Sentinel Diagnostics, Milano, Italy). The results were read using a 600 nm light
wavelength at 37 degrees with a Technicon RA-XTTM biochemical analyzer (Technicon
Instruments Corporation, Mahopac, NY, USA).

2.5. Evaluation of YKL-40, MMP8, IL17A, and PD-L1 Levels

The concentrations of the examined proteins in the tissue homogenates were deter-
mined using appropriate enzyme-linked immunosorbent assay (ELISA) kits. CHI3L1 (YKL-
40) concentration was measured using a MICROVUE YKL-40 ELISA kit (Quidel, San Diego,
CA, USA). The limit of detection (LOD) for the used YKL-40 ELISA kit was 5.4 ng/mL.
A human matrix metalloproteinase-8 ELISA kit (Biovendor, Brno, Czech Republic) with
a minimum detectable concentration 0.025 ng/mL was used to measure MMP-8 con-
centration. The concentration of IL-17A was assessed using a human IL-17A ELISA kit
(Diaclone, France) with a sensitivity of 2.3 pg/mL. A human PD-L1 ELISA kit (Cloud Clone,
Wuhan, China) with an LOD of 0.057 ng/mL was used to measure the concentration of
PD-L1 in tissue homogenates. The absorbance of samples was measured at a wavelength of
450 nm using a universal microplate spectrophotometer (µQUANT, Biotek Inc., Charlotte,
VT, USA). The obtained results were recalculated relative to the corresponding total protein
level and presented as ng/mg of protein.

2.6. Statistical Analysis

Statistical analysis of the data included the log transformation of the obtained data,
examination of the distribution of data, differences in protein concentration in the tumor,
and tissue margin groups, as well as examination of the correlations. Log transformation
of the levels of the examined molecules provided a better fit to the Gaussian distribution.
Data are presented as mean ± SD for the variables with normal distribution and as median
with interquartile range for the variables with non-normal distribution. A paired Student’s
t-test and the Mann–Whitney U test were used to compare levels of examined proteins
in tumor tissues and tissue margins. We used Pearson’s coefficient to investigate the
correlation between the tested proteins. Kendalls Tau rank correlation coefficient was
used to determine the association between the levels of the examined proteins, T, and N
parameters. Statistical analysis was performed using STATISTICA 13 software (Statsoft)
and the ggplot2-R package dedicated to data visualization in RStudio software (Integrated
Development for R. RStudio, PBC, Boston, MA, USA).

3. Results
3.1. GEO Profile Analysis

To predict and validate the interactions of YKL-40 in the tumor microenvironment, we
analyzed mRNA expression of YKL-40, IL-17A, PD-L1, and MMP-8 in 136 samples of CRC
tissue and non-cancerous colonic tissue obtained from Gene Expression Omnibus (GEO)
datasets GDS4382, GDS4513, and GDS4515.

We observed positive correlations between the expression of YKL-40, IL-17A, PD-L1,
and MMP-8 (Figure 1) in GEO dataset GDS4382, containing 34 CRC tumors and adja-
cent non-cancerous tissues (Figure 1A–C,F), and in GEO dataset GDS4515, with 49 CRC
microsatellite instable tumors and normal colonic mucosa samples (Figure 1D,E).

Moreover, in GEO dataset GDS4513, which was analyzed for molecular comparison
between the relapse and non-relapse groups of CRC patients, we observed that YKL-40
expression was significantly higher in the CRC relapse group than in the CRC non-relapse
group (p < 0.01) (Figure 2). A complete 5-year follow-up was available for 53 patients [34].
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3.2. GSEA Results: Predicted Pathways and Biological Processes for High–Low YKL-40 Expression

The results of the GSEA analysis for YKL-40 expression were read for pathways from
hallmark gene sets of the MSigDB Collection (Figure 3). The hallmark gene sets with
positive NES scores (NES > 2) for YKL-40 (CHI3L1) expression include oxidative phos-
phorylation, fatty acid metabolism, peroxisomes, heme metabolism, and downregulation
of the KRAS signaling pathway, while the hallmark gene sets with negative NES scores
(NES < −1) for YKL-40 expression include Myc targets, IL-2 STAT5 signaling, mTORC1
signaling, complement, G2M checkpoint, interferon alpha response, E2F targets, inter-
feron gamma response, IL6-JAK-STAT6 signaling, TNF-alpha signaling via NFKB, allograft
rejection, angiogenesis, and KRASsignaling upregulation (Figure 3).
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3.3. Exploration of Immunogenicty and the Immune Infiltration Landscape of YKL-40 Based on
TCGA-COAD Data

The immune scores of intratumor heterogeneity, macrophage regulation, lymphocyte
infiltration signature score, IFN-gamma response, Th1 cells, and TGF-beta response were
significantly upregulated in the YKL-40 high-expression group (Figure 4A,B), unlike prolif-
eration and the Th2 cell score, which were decreased in this group. Moreover, CIBERSORT
analysis revealed elevated percentages in the tumor microenvironment of naïve B cells;
Tregs; macrophages M0, M1, and M2; and neutrophils in the YKL-40 high-expression group,
whereas in the YKL-40 low-expression group, elevated percentages of resting T-cell CD4
memory and monocytes were observed.

3.4. Results Obtained from the Tissue Homogenates

We found significantly higher levels of YKL-40, PD-L1, MMP8, and IL-17 in the tumor
in comparison to the margin tissue (Table 2, Figure 5).
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Figure 4. Immune infiltration and immunogenicity analysis for YKL-40 (CHI3L1) based on TCGA-
COAD data. (A) Infiltration of immune cells for CHI3L1 expression groups calculated by CIBERSORT
algorithm. (B) Immune-related scores for high and low CHI3L1 expression groups.



Curr. Issues Mol. Biol. 2023, 45 2789

Table 2. Levels of YKL-40, PD-L1, MMP-8, IL-17, and IL-23 proteins in tumor and margin presented
as log-transformed ng/mg of protein. Paired Student’s t-test.

Tumor Margin
p

Mean SD Mean SD

log YKL-40 1.20 0.27 0.71 0.22 <0.0001

log PD-L1 0.69 0.27 0.52 0.22 0.001

log MMP-8 1.58 0.46 0.96 0.37 <0.0001

log IL-17 −1.74 0.26 −1.95 0.29 <0.0001
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Figure 5. YKL-40, PD-L1, MMP-8, and IL-17 levels in the tumor and margin tissues. *** p < 0.001,
** p < 0.01, ns- not significant.

Furthermore, the tumor levels of YKL-40 correlated significantly with those of MMP-8,
IL-17, and PD-L1 levels. The margin levels of YKL-40 were significantly associated with
the margin levels of MMP-8, IL-17, and PD-L1 (Table 3, Figure 6). The results of other
correlations between the examined molecules are presented in Figure 7. Results obtained
from tissue homogenates are in line with in silico analysis of GEO datasets.

Table 3. Correlations between the YKL-40 levels and the examined molecules. R—Pearson’s correla-
tion coefficient.

Pair of Variables R p

Tumor log YKL-40 and tumor log PD-L1 0.32 0.044

Tumor log YKL-40 and tumor log MMP-8 0.71 <0.0001

Tumor log YKL-40 and tumor log IL-17 0.36 0.026

Tumor log YKL-40 and margin log YKL-40 0.32 0.032

Margin log YKL-40 and margin log PD-L1 0.37 0.022

Margin log YKL-40 and margin log IL-17 0.49 <0.0001

Margin log YKL-40 and margin log MMP-8 0.70 <0.0001

Margin log YKL-40 and tumor log IL-17 0.49 0.022

Margin log YKL-40 and tumor PD-L1 0.37 0.022

Tumor log PD-L1 and tumor IL-17 0.75 <0.001
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We did not observe any associations between the concentrations of the investigated
molecules and the occurrence of diabetes, obesity, and smoking among patients (Table 4).

Table 4. Correlations between the YKL-40 levels and the examined molecules. R—Pearson’s correla-
tion coefficient.

Mean SD Mean SD p

log YKL-40_tumor

Diabetes no Diabetes

1.22 0.31 1.2 0.24 0.79
obesity no obesity

1.22 0.43 1.2 0.25 0.86

4. Discussion

YKL-40 was found to play a pivotal role in cancer through its involvement in tissue
remodeling and inflammation in the tumor microenvironment. At the molecular level,
YKL-40, through its functional heparin-binding domain, has the potential to interact with
heparan sulfate (HS) fragments, heparin, and other glycosaminoglycans such as hyaluro-
nan [38–40]. YKL-40 binding to collagen types I, II, and III was also reported [41].

Although specific receptors for YKL-40, such as CD44 [42], galectin-3 (Gal-3) [43],
and interleukin-13 receptor subunit alpha-2 (IL-13Rα2) [44], have been identified, the
heparin-binding motif seems to be crucial for YKL-40 activity. The main source of cell
HS is syndecan-1, a transmembrane molecule with cytoplasmic domains that can interact
with several regulators and act as a coreceptor with adjacent transmembrane receptors,
such as integrins [42]. Altered interaction of syndecan-1 and integrin αv β3 caused by
YKL-40 can affect cell adhesion provided by integrins, increasing the metastatic potential
of cancer cells. Consistent with available data, the interaction of syndecan-1 with integrins
induces phosphorylation of the adhesive kinase (FAK) and stimulation of MAPK8 [45].
These signaling pathways have been reported to support tumor growth and progression
by inducing angiogenesis, increasing cancer cell motility and invasion, and promoting
EMT [46,47]. Additionally, YKL-40 was found to stimulate the expression of C-chemokine
ligand 2 (CCL2) and chemokine CX motif ligand 2 (CXCL2) by activating ERK1/2 and
JNK signaling pathways [48]. CCL2 and CXCL2 have a chemotactic effect on macrophages
and neutrophils, enhancing the infiltration of immune cells in the TME. Thus, we may
suspect that YKL-40 secreted into extracellular space by tumor cells, macrophages, and
neutrophils has the potential to promote extracellular matrix remodeling through interac-
tions with TME elements and to support tumor growth by inducing activation of signaling
pathways involved in cell survival and the EMT. This is in line with the CIBERNET re-
sults of the increased proportion of relevant subpopulations of immune cells, such as
neutrophils, and macrophages in CRC tissues with high expression of YKL-40 (Figure 4).
Neutrophils infiltrating the tumor microenvironment contribute to the increased migration
of cancer cells by destroying the extracellular matrix components and can drive the EMT
process [49,50]. Tumor-associated macrophages (TAMs), by secreting many factors, such
as TGF-B, TNF-a, IL-1B, and IL-6, may be responsible for inducing the EMT process in
CRC [51–54]. However, GSEA results revealed that the genes involved in the EMT pathway
are mostly downregulated in colorectal explants with elevated YKL-40 expression (Figure 3).
In GEO analysis (Figure 2), we observed significantly elevated YKL-40 expression in the
group with disease recurrence and a significant correlation between YKL-40 and MMP-8
levels (Figures 1 and 6).

Both analysis of GEO datasets and results obtained from tissue homogenates demon-
strated higher expression of YKL-40 and MMP-8 in tumor tissue compared with normal
colon mucosa and a positive association between YKL-40 and MMP-8 expression in the
tumor. MMP-8 was reported to be associated with distant metastasis, inflammation, poor
survival, and CRC progression, but it is also considered to play a protective role in the
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development of some malignancies due to its antitumor activity [55–57]. However, whether
MMP-8 expression could be directly upregulated by YKL-40 requires deeper investigation.

YKL-40 was observed to be associated with the PI3K/AKT/mTOR pathway, in which
aberrant activation plays an important role in the development of early stages of colon
cancer. A close interplay between PI3K/AKT and Wnt/β-catenin signaling pathways has
been described in CRC; inhibition of one of the pathways causes hyperactivation of the
other pathway. Both pathways are associated with the regulation of multiple cellular events
in CRC, including the induction of the expression of proinflammatory cytokines, such as
IL-17A and TGF-B1. TGF-B1 expression has been suggested to be associated with YKL-40
expression, mediating many pathways involved in tumor progression and, importantly,
acts together with IL-23 during the differentiation of Th17 cells, which are the main source
of IL-17. In the GEO datasets and the tissue homogenates, we found a positive correlation
between the tumor concentrations of YKL-40 and IL-17a (Figures 1 and 6). According to
previous studies, the interaction of YKL-40 with Gal-3 [45] and interactions of IL-13RA2-
YKL-40 complexes with THEM219 [46] could augment IL-17A expression by activation
of MAPK/Erk and Wnt/β-catenin signaling pathways. Serum levels of YKL-40 were
reported to correlate with those of IL-17 in patients with psoriasis, but no data are available
regarding CRC patients [58].

The interplay between YKL-40, IL-17A, and PD-L1 appears to be worthy of inves-
tigation in terms of CRC immunotherapy. Liu et al. showed a significant regulatory
effect of IL-17A on PD-L1; IL-17A causes increased expression of PD-L1 through the
p65/NRF1/miR-15b-5p pathway and promotes resistance to anti-PD-1 therapy [59]. Our
in silico analysis demonstrated interaction between PD-L1 and IL-17, especially in GEO
dataset containing CRC MSI-high tumors; similarly, data obtained from our tissue ho-
mogenates of CRC confirmed a positive correlation between tumor concentrations of PD-L1
and IL-17. These findings seem to confirm crosstalk between PD-L1 and IL-17 pathways
and support the literature data. In CRC, the expression of YKL-40 was reported to be
significantly correlated with that of PD-L1 in immune cells; in tumor cells, the expression
of YKL-40 did not correlate with the expression of PD-L1 [1]. In melanoma, YKL-40 was
demonstrated to upregulate PD-L1 expression indirectly and directly by increasing the
production of PD-L1 in monocytes stimulated by IFN-gamma. Moreover, Ma et al. revealed
that bispecific antibodies that simultaneously target YKL-40 and PD-1 have impressive
synergistic antitumor effects, inducing CD8+, perforin+, and granzyme+ cytotoxic T cells
and generating tumor cytotoxicity [60]. A synergistic effect of YKL-40 knockdown com-
bined with anti-PD-L1 therapy has also been demonstrated in the murine model of diffuse
large B-cell lymphoma (DLBCL). It was shown that treatment of mice with anti-PD-L1
therapy combined with YKL-40 knockout achieved significant inhibition of tumor growth
compared to the separate use of anti-PD-L1 antibodies and YKL-40 knockout. Moreover,
knockdown of YKL-40 enhances the proapoptotic effect of the anti-PD-L1 antibody in the
mouse model of DLBCL [61].

GSEA results (Figure 3) suggest that high CHI3L1 expression is associated with biolog-
ical processes involved in cytokine production (IL-2 and IL-6), mTORC1 and complement
signaling, interferon-γ response, and inflammatory response, leading to an immunosup-
pressive effect in the tumor microenvironment. In the analysis performed by CAMOIP
(Figure 4), CHI3L1 (YKL-40) was shown to have significant associations with various im-
mune cells, proliferation rate, TGF-Beta response, lymphocyte infiltration signature score,
and Th1/Th2 cell balance in the microenvironment of CRC. These findings suggest that
YKL-40 may play a role in regulating the immune response and promoting tumor growth in
colorectal cancer. The different types of immune cells, including M0, M1, M2 macrophages,
and Tregs, play a crucial role in regulating the immune response in colorectal cancer [62–64].
M1 macrophages have a proinflammatory role and can help the immune system to attack
cancer cells, while Tregs are known to suppress the immune response. On the other hand,
M2 macrophages have a more suppressive role and can create an immune-suppressive
microenvironment that allows cancer cells to escape detection by the immune system. The
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relationship between reduced YKL-40 expression and increased T-cell CD4 memory resting
infiltration suggests that low CHI3L1 levels in colorectal cancer may be associated with a
more favorable immune microenvironment for immunotherapy, as increased T-cell CD4
memory resting infiltration can enhance the immune system’s ability to attack cancer cells.
On the other hand, the association between increased YKL-40 expression and increased
lymphocyte infiltration signature score suggests that high YKL-40 levels in colorectal can-
cer may contribute to the infiltration of lymphocytes into the tumor microenvironment.
However, the influence of CHI3L1 expression on the immunological properties of the CRC
tumor microenvironment requires further investigation.

4.1. Correlation with Clinical Data

In the results obtained from tissue homogenates, we did not find any significant corre-
lations between the concentrations of the studied molecules and clinical parameters such as
TNM scale, stage, and grading. These results are not in line with previous studies and are
probably associated with limitations of the present research, including the small number
of patients. However, in the GEO analysis, we observed significantly higher expression
of YKL-40 in the CRC relapse group in GEO dataset GDS4513 (Figure 2). According to
literature data, both high tumor expression and elevated serum levels of YKL-40 are associ-
ated with poor outcomes in CRC patients, i.e., shorter overall survival and progression-free
survival [65], which were not analyzed in our research. On the contrary, the association
between YKL-40 expression and clinicopathological features such as tumor size, lymph
node involvement, and histological grading has not yet been confirmed [1].

Peltonen et al. reported a correlation between MMP-8 tumor expression and its serum
levels in CRC patients [66]. Increased serum levels of MMP-8 were reported to correlate
with shorter survival, and inversely, lower MMP-8 levels were associated with a better
prognosis. Elevated serum levels of MMP-8 were also described to be associated with
distant metastasis, advanced primary tumor stage and grade [57,67], and high serum levels
of CRP and several cytokines including IL-1ra, IL-7, and IL-8 [68].

In CRC, the expression of IL-17A was found to be significantly increased in patients
with advanced disease [69]. However, IL-17 is also considered to play a protective role in
CRC due to the positive correlation between its expression and early Dukes’ stage. This
observation seems to be confirmed by a higher survival rate among patients with positive
IL-17 expression compared to negative cases [70].

Similarly, the results obtained from tissue homogenates revealed no significant differ-
ence in the levels of studied molecules in individuals with obesity, diabetes, and smoking.
Our results suggest no effect of comorbidities included in the analysis on YKL-40 expression
in the colorectal cancer TME.

Further progress in research on the direct interactions of CHI3L1 expression with the
expression and activity of PD-L1 due to the detailed study of PD-L1 in the tumor pathology
and the use of the knowledge about PD-L1 not only in immunotherapy but also in dynamic
phototherapy may contribute to overcoming resistance to immunotherapies, chemotherapy,
and radiotherapy [71,72]. Due to ongoing studies using molecules targeting CHI3L1
expression such as small molecules targeting YKL-40 and chitosan, our high-dimensional
analysis demonstrating associations between CHI3L1 expression and processes related to
immunosuppression and the tumor microenvironment in colorectal cancer may contribute
to a more thorough understanding and shape further research on the role of CHI3L1 in the
pathology of colorectal cancer [73,74].

4.2. Study Limitation

Our study included a limited number of patients, which may be responsible for the
lack of association between the levels of the investigated proteins and clinicopatholog-
ical features of patients. Moreover, we are aware that the correlations reported in this
study cannot confirm a direct association between the expression of the studied molecules.
However, analysis of the correlations between the studied molecules and the use of GEO
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datasets and GSEA, as well as evaluation of their concentrations in tissue homogenates,
sheds light on the association of YKL-40 expression with immune properties of the tumor
microenvironment in CRC.

5. Conclusions

YKL-40 may play a pleiotropic role in mechanisms supporting tumor progression,
which suggests that YKL-40 can be considered a promising therapeutic candidate. Diabetes,
smoking, and obesity are not related to YKL-40 expression in colorectal cancer tissues. The
associations of increased YKL-40 expression with appropriate cells in the tumor microen-
vironment and with the dysregulation of appropriate signaling pathways and biological
processes demonstrated our GSEA support the significant role of YKL-40 in the process of
formation of the immunosuppressive tumor microenvironment in CRC. The involvement
of YKL-40 in the pathogenesis of CRC, as well as its potential as a molecule used as a
component of targeted therapy in CRC, requires further research, with a particularly focus
on the association of YKL-40 with CRC progression, depending on tumor pathogenetics,
such as MSI status and the other molecular subtypes of CRC.
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