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Abstract: Insulin signaling plays an important role in the development and progression of cancer
since it is involved in proliferation and migration processes. It has been shown that the A isoform
of the insulin receptor (IR-A) is often overexpressed, and its stimulation induces changes in the
expression of the insulin receptor substrates (IRS-1 and IRS-2), which are expressed differently in
the different types of cancer. We study the participation of the insulin substrates IRS-1 and IRS-2
in the insulin signaling pathway in response to insulin and their involvement in the proliferation
and migration of the cervical cancer cell line. Our results showed that under basal conditions, the
IR-A isoform was predominantly expressed. Stimulation of HeLa cells with 50 nM insulin led to the
phosphorylation of IR-A, showing a statistically significant increase at 30 min (p ≤ 0.05). Stimulation
of HeLa cells with insulin induces PI3K and AKT phosphorylation through the activation of IRS2,
but not IRS1. While PI3K reached the highest level at 30 min after treatment (p ≤ 0.05), AKT had the
highest levels from 15 min (p ≤ 0.05) and remained constant for 6 h. ERK1 and ERK2 expression was
also observed, but only ERK2 was phosphorylated in a time-dependent manner, reaching a maximum
peak 5 min after insulin stimulation. Although no effect on cell proliferation was observed, insulin
stimulation of HeLa cells markedly promoted cell migration.
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1. Introduction

Insulin plays an important role in the development and progression of cancer because it
is involved in the processes of cell growth and proliferation due to its stimulatory effects on
DNA synthesis in various tissues [1]. Insulin activates a tyrosine kinase receptor, the insulin
receptor (IR), which undergoes autophosphorylation and phosphorylates endogenous
substrates. Two different isoforms of the IR are generated by alternative splicing, IR-A and
IR-B, which differ by the absence (IR-A) or presence (IR-B) of a 12-amino acid insert encoded
by exon 11. IR-B is mainly expressed in the major insulin target tissues, whereas IR-A is
predominantly expressed in the embryo and fetal tissues, central nervous system (CNS),
hematopoietic cells, and several types of cancer cells [2]. When the IR is stimulated, the first
proteins activated are adapter proteins, known as insulin receptor substrates (IRS). IRS-1
and IRS-2 are widely expressed in humans and are, therefore, the most studied proteins in
the family [3]. There is a relationship between IRS-1 and 2 and various types of cancer, such
as breast [4–8], lung [9], prostate [10], hepatocarcinoma [11–13], neuroblastoma [14,15], head
and neck [16], colorectal [17,18], esophageal squamous cell carcinoma [19], non-small cell
lung cancer [20], and glioblastoma multiforme [21]. It has been observed that the expression
and function of the IRS may vary in the different types of cancer. For example, IRS-1 has
been associated with proliferation, growth, and anti-apoptosis, whereas IRS-2 has been
linked to metastasis, motility, and invasion [22–26]. IRS proteins participate in canonical
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pathways, the phosphorylation of which is induced by the insulin receptor. The IR activates
two main signaling pathways: the insulin receptor substrate/phosphatidyl inositol 3-kinase
pathway (IRS/PI3-K) and the Ras/mitogen-activated protein kinase (MAPK) pathway. Both
pathways regulate most of the effects of insulin, those associated with the regulation of
energy metabolism, gene expression, and mitogenic effects [27].

The relationship between the expression levels of IRS-1 and IRS-2 and the activation
of insulin signaling pathways has been poorly studied in cervical cancer cells. Although it
has already been shown that SiHa cells (HPV16 +) express both IR-A and IR-B, only the
activation of IR-A was related to the activation of Akt and ERK1/2. Akt and ERK1/2 par-
ticipate in the phosphatidylinositol 3-kinase (PI3K) and MAPK pathways, respectively [28].
However, the roles of adaptor proteins IRS1 and IRS2 have not been investigated in this
type of cancer.

The objective of this study was to investigate which isoform of the insulin receptor is
expressed in the HeLa cervical cancer cell line and to analyze the role of IRS-1 and IRS-2
in the signaling pathway of the insulin receptor and in regulating the proliferation and
migration of HeLa cells (HPV+).

2. Materials and Methods
2.1. Chemicals and Reagents

Recombinant human insulin was obtained from Sigma (St. Louis, MO, USA). MTS
reagent was from PROMEGA (Wisconsin, WI, USA). TRIzol reagent, DNase I, EDTA, oligo
dT, RNAsin, RT reaction buffer, DTT, dNTP’s, reverse transcriptase, Taq DNA polymerase,
and MgCl2 were purchased from Invitrogen (Waltham, MA, USA). Protease and phos-
phatase inhibitor cocktail were obtained from Sigma. The 2D Quant commercial kit was
from GE Healthcare Life Sciences (Chicago, IL, USA). SuperSignal™ West Femto Maximum
Sensitivity Substrate was from Thermo Scientific (Waltham, MA, USA).

2.2. Cell Isolation and Culture

The human cervical cancer HeLa cell line was purchased from ATCC (Rockville, MD,
USA), and human mammary epithelial MCF7 and human breast adenocarcinoma MDA-
MB-231 cell lines were donated by Dra. Elizabeth Langley (National Cancer Institute,
Mexico City, Mexico). Dulbecco’s modified Eagle’s medium (DMEM) and DMEM/F12
culture media were purchased from GIBCO. Heat-inactivated fetal bovine serum (FBS) and
penicillin-streptomycin were obtained from GIBCO BRL (Carlsbad, CA, USA).

HeLa cells were cultured and maintained in DMEM, and MCF7 and MDA-MB-231
cell lines were cultured and maintained in DMEM/F12 supplemented with 10% FBS and
antibiotics (penicillin/streptomycin 100 µg/mL) at 37 ◦C in a humidified atmosphere of
95% air and 5% CO2. Cell viability was determined by Trypan blue dye exclusion method.
The cell lines were seeded under sterile conditions at different densities. All cell lines
were serum starved for 12 h prior to each experiment; cells were treated with 50 nM
insulin (recombinant human insulin was purchased from Sigma, St. Louis, MO, USA) for
indicated times.

2.3. Cell Proliferation Assays by MTS

The MTS assay was used to assess cell proliferation and cell viability. HeLa cells
(5 × 103 cells/well) were seeded in 96-well flat-bottomed tissue culture plates in three
replicates, and incubated and supplemented with DMEM (low concentration of glucose
1 g/L) for 24 h. Next, the cells were washed once with 1X phosphate buffered saline
(PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4). The 96-well tissue
culture dishes were serum starved for 2 h. Cell proliferation was stimulated with 10, 50, or
100 nM insulin, and cell viability and proliferation were evaluated at 24, 48, and 72 h post-
treatment. After the stimulation with insulin at different concentrations for the specified
time, the medium was replaced with 2 mL of DMEM fresh medium supplemented with
0.25 mg/mL MTS reagent [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-



Curr. Issues Mol. Biol. 2023, 45 2298

sulfophenyl)-2H-tetrazolium, inner salt] per well, and cells were incubated for 4 h at 37 ◦C.
Then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide formazan crystals were
quantified at 595 nm using an absorbance microplate reader (iMark Microplate Reader,
Bio-Rad, Hercules, CA, USA). All experiments were performed in three independent
experiments in triplicate.

2.4. RT-PCR

The mRNA levels of IR, IRS1, IRS2, and GAPDH were detected using RT-PCR. Total
RNA was isolated from the cells using TRIzol reagent (Invitrogen, Waltham, MA, USA).
The total RNA (1.5 µg) was used for cDNA synthesis. Briefly, RNA was incubated with 1µL
DNase for 15 min at room temperature, and the reaction was stopped by adding 1 µL EDTA
(25 mM). The tubes were boiled at 65 ◦C for 10 min. Next, 1 µL of oligo dT (thymidine)
(0.5 µg/µL) was added to each sample, incubated at 70 ◦C for 10 min, and placed on ice.
For reverse transcription, a reaction mixture solution (0.5 µL of RNAsin (40 U/µL), 4.0 µL
of RT reaction buffer (5X), 2.0 µL of DTT (0.1 M), 1.0 µL of dNTP’s (10 mM), and 0.5 µL of
reverse transcriptase (200 U/µL) was added to each tube and incubated at 37 ◦C (1 h) and
70 ◦C (15 min). Finally, tubes were placed on ice or stored at −20 ◦C until use. PCR was
performed using the Taq PCR Master Mix kit (Invitrogen). PCR profiles for each primer pair
were initially standardized over a series of cycles to ensure that all experimental reactions
were performed within the linear range. The oligonucleotide primer sequences are listed in
Table 1. The PCR products were analyzed by electrophoresis on 1.5% agarose gels.

Table 1. Oligonucleotides used for PCR.

Target Primer Sequence 5′-3′ Position Size (bp)

IR
5′-AACCAGAGTGAGTATGAGGAT-3′ nt 2201-2221 Isoform B: 636
5′-CCGTTCCAGAGCGAAGTGCTT-3′ nt 2780-2800 Isoform A: 600

IRS1
5′-TCCACTGTGACACCAGAATAAT-3 nt 4011-4032

7635′-CGCCAACATTGTTCATTCCAA-3′ nt 4753-4773

IRS2
5′-TAGGCATCAATGGGTGGTATTT-3′ nt 6358-6380

1165′-CTACGGATAGAGGGCGAGTTA-3′ nt 6453-6474

GAPDH
5′-ACCACAGTCCATGCCATCAC-3′ nt 602-621

4515′-TCCACCACCCTGTTGCTGTA-3′ nt 1031-1053

2.5. Immunoprecipitation and Western Blot

For protein analysis, cells were washed once with cold phosphate-buffered saline
(PBS), lysed with RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA,
0.5% sodium deoxycholate, 0.1% SDS, 1% Nonidet) plus a protease and phosphatase
inhibitor cocktail, and then boiled for 5 min at 95–100 ◦C. For protein quantification, we
used a 2D Quant commercial kit (GE Healthcare Life Sciences, Chicago, IL, USA). From
whole cell lysates, 40 µg of protein per lane was separated by SDS-PAGE and assayed by
immunoblotting using specific antibodies for proteins of the IR signaling pathway, whereas
1.5–2 mg of protein was used for immunoprecipitation (IP) of IRS-2. Detailed information
on the primary and secondary antibodies are given in Table 2. Proteins were detected
by chemiluminescence using the commercial kit SuperSignal™ West Femto Maximum
Sensitivity Substrate from Thermo Scientific (Waltham, MA, USA) using a C-Digit Blot
Scanner (LI-COR Biosciences). β-Actin was used as a control to normalize the values of
proteins of interest obtained by densitometry. Densitometric analysis was performed using
ImageJ 1.47 software (National Institutes of Health, Bethesda, MD, USA).



Curr. Issues Mol. Biol. 2023, 45 2299

Table 2. List of primary and secondary antibodies.

Primary Antibody Epitope/
Specificity Host Species Type Dilution Source

Insulin Receptor β
(C19) C-terminus/IgG Rabbit Polyclonal 1:500 Santa Cruz

SC-711

IRS1 (C-20) C-terminus/IgG Rabbit Polyclonal 1:500 Santa Cruz
SC-559

IRS2 (H-205) aa 926-1130/IgG Rabbit Polyclonal 1:500 Santa Cruz
SC-8299

PI 3-kinase (Z-8) p85α/IgG Rabbit Polyclonal 1:500 Santa Cruz
SC-423

ERK 1 (C-16) C-terminus/IgG Rabbit Polyclonal 1:500 Santa Cruz
SC-93

Akt1 (B1) aa 345-480/IgG1 Mouse Monoclonal 1:500 Santa Cruz
SC-5298

Phospho insulin
receptor Phospho Tyr/1361/IgG Rabbit Polyclonal 1:500 Abcam

ab60946

Phospho-IRS1 Phospho Tyr/632/
IgG Rabbit Monoclonal 1:500 Abcam

ab109543

Anti- phospho
Tyrosine

Tyrosine-phosphorylated
proteins/IgG2b Mouse Monoclonal 1:500 Millipore

05-947

Phospho-Akt1 Phospho Thr 308/IgG Rabbit Monoclonal 1:500 Millipore
05-802R

Phospho-Erk1/2 Phospho Thr 202/Tyr 204, Thr
185/Tyr 187/IgG Rabbit Monoclonal 1:500 Millipore

05-797R

Phospho-PI3K p85 p85 Phospho Tyr 467, Tyr
199/IgG Rabbit Polyclonal 1:500 GeneTex

GTX132597

β-actin (4E8H3) IgG1 Mouse Monoclonal 1:500 [29]

Secondary
antibody

Epitope
Specificity Host species Type Dilution Source

Rabbit anti-goat
IgG HRP-coupled Rabbit Polyclonal 1:5000 Santa Cruz

SC-2768

Mouse IgG
HRP-coupled Mouse Polyclonal 1:5000 GeneTex

GTX213111-01

2.6. Cell Migration Assays

HeLa (5 × 105/well) cells were seeded into cell-adherent 6-well plates and incubated
for 24 h to form a monolayer confluence. Monolayers were washed twice with 1X PBS
and incubated for 24 h in serum-free DMEM to establish the quiescence of cells, and then
plates were incubated for 2 h with mitomycin C (12.5 µg) to eliminate the proliferative
effect. For wound-healing assay, monolayers were vertically scratched using a p200 pipette
tip after cells reached a confluency of 90–95%, and later washed to eliminate detached cells.
A control photographic image was taken using a Nikon Eclipse TS 100 (40×) with a camera
attachment. Subsequently, fresh culture serum-free medium containing different insulin
concentrations (10 nM, 50 nM, and 100 nM) was added to each well, and the plates were
incubated for 24 h. A second photographic image was taken for each condition. The rate of
cell migration was measured as the percentage of wound area occupied by cells compared
with the initial wound area using TScratch Software [30].
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2.7. Statistical Analysis

The differences between treatment groups were analyzed using ANOVA, and statistical
significance was determined using Tukey’s HSD test. In all cases, statistical significance was
set at p < 0.05. SPSS software (IBM, Armonk, NY, USA) was used for the statistical analysis.

3. Results
3.1. Insulin Receptor (IR) Isoforms Are Differentially Expressed in HeLa Cells

Figure 1 shows that the HeLa cells predominantly express IR-A (600 bp), with only a
slight expression of IR-B (636 bp), whereas in the MCF-7 cell lines, similar amounts of both
isoforms were expressed. Amplification of IRS-1 (763 bp) and IRS-2 (116 bp) fragments was
observed at nearly equal levels in the two cell lines.
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Figure 1. Insulin receptor (IR) isoforms are differentially expressed in HeLa cells. The mRNA levels
of IR isoforms and IRS1/2 genes were analyzed in HeLa and MCF7 cell lines. Total RNA was purified,
and mRNA levels were analyzed by RT-PCR with specific primers. (A) The 600 and 636 bp fragments
correspond to isoforms A and B of the insulin receptor, respectively. Amplified fragments of 763 and
116 bp correspond to IRS-1 and IRS-2, respectively. The amplified fragment of 451bp corresponds to
GAPDH (control). (B) Densitometric analysis of IRA, IRB, IRS1, IRS2, and GAPDH mRNA levels.
The graph represents the mean± SEM of three independent experiments (n = 3). ** p < 0.01 compared
to IRA.

3.2. Effect of Insulin Treatment on Cell Proliferation

Cell proliferation is one of the main deregulated processes in cancer. We studied HeLa
cell proliferation in response to insulin treatment. We used an MTS assay, a colorimetric
method used to quantify viable cells based on the reduction of MTS to formazan by
NAD-dependent dehydrogenase enzymes in metabolically active cells. Formazan was
quantified by measuring the absorbance at a wavelength of 490 nm. As shown in Figure 2,
we observed the proliferation of HeLa cells in response to different doses of insulin (10,
50, and 100 nM) and at different stimulation times (24, 48, and 72 h). The control group
consisted of the unstimulated cells. There was a slight tendency for proliferation to increase
with the 50 and 100 nM doses after 24 h of stimulation; however, the differences were
not statistically significant.
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3.3. Insulin Activates IR and IRS-2 but Not IRS-1 in HeLa Cells

We evaluated the ability of insulin to activate the insulin receptor and the IRS-1/2
substrates. As shown in Figure 3A, the expression of the non-phosphorylated β subunit
of the insulin receptor did not change during the different incubation periods. The phos-
phorylated form showed a significant time-dependent increase under stimulation with
50 nM insulin (p ≤ 0.05), reaching a maximum peak at 30 min. By analyzing the signaling
pathways downstream of the IR, we found that insulin (50 nM) was able to stimulate IRS-2
tyrosine phosphorylation in the HeLa cells at different times (Figure 3B). After 15 min of
stimulation, phosphorylated IRS-2 increased with respect to the control, reaching a peak at
30 min (p ≤ 0.05). Interestingly, we did not observe IRS-1 phosphorylation in response to
insulin treatment; however, the total protein levels did not change in the HeLa cells. There
was phosphorylation of IRS-1 in the MCF7 cells (positive control) but no phosphorylation
of IRS-1 in the MDA-MB-231 cells (negative control) (Figure 3C). These data suggest that, in
this cell context, only the IRS2 pathway is activated, and IRS1 is not activated in response
to insulin treatment.

3.4. PI3K/Akt1 Pathway Is Up-Regulated by Insulin in HeLa Cells

Next, we analyzed the signaling pathways downstream of IRSs. Two signaling path-
ways may be activated in response to insulin, the PI3K and MAPK cascades. The activation
of the PI3K pathway was measured by PI3K and Akt1 phosphorylation, and the MAPK
pathway was measured by Erk1/2 phosphorylation. Figure 4 shows the phosphorylation
of PI3K and Akt1 after stimulation of the HeLa cells with 50 nM insulin. After insulin
stimulation, the total protein content did not increase over time. The phosphorylated form
of PI3K increased over time and was higher 30 min after insulin stimulation (p ≤ 0.05)
(Figure 4A). In Figure 4B, we show that insulin treatment increased the expression of
the total AKT protein over time, with AKT reaching its highest expression 30 min after
stimulation. However, phosphorylated p-Akt1 predominated at 15 min (p ≤ 0.05) and
remained constant until 6 h after insulin stimulation.
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Figure 3. Insulin induces the phosphorylation of IR and IRS2 but not IRS1 in HeLa cells. Protein
extracts from HeLa cells stimulated with 50 nM insulin were used to evaluate IR, IRS1, phospho-IRS1,
IRS2, and phospho IRS2 by WB. (A) Densitometric analysis of phospho-IR and actin protein levels.
The first bar is the control group without treatment. One-way ANOVA was performed, followed
by the Tukey post hoc test to compare the treated groups against the control group (100%). * p <
0.05. All experiments have been performed in three independent experiments in triplicate, and
experimental data were expressed as mean ± standard deviation (SD). (B) Cells were lysed with
RIPA. IRS2 protein was immunoprecipitated, and immunoblot analyses were performed to identify
the indicated proteins from IP or cell lysates. (C) HeLa cells were stimulated in the absence (control)
or presence of 50 nM insulin for the indicated time. MCF7 and MDA-MB-231 cells were used as
positive and negative controls, respectively. IRS1 and phospho-IRS1 protein levels were detected by
immunoblot analysis.
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3.5. MAPK Signaling Pathway Is Not Activated by Insulin Treatment in HeLa Cells

IRS activates the MAPK signaling cascade MAPK. To explore whether the mitogenic
pathway is also activated in the HeLa cells in response to insulin we measured Erk1/2
phosphorylation. The data showed that the total ERK1/2 proteins and their phosphoryla-
tion did not increase over time (Figure 4C). These data suggest that insulin was not able to
activate the MAPK signaling pathway in our cellular model.

3.6. Insulin Induces Migration of HeLa Cells

We investigated the effect of insulin on cell migration using a wound-healing assay at
different insulin doses. Figure 5 shows that 50 and 100 nM insulin significantly increased
HeLa cell migration compared with the group of cells that did not receive insulin treatment
at 48 h. This effect was different in the case of the HaCaT cells (non-transformed cells),
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where the percentage of the open area was lower in all insulin doses compared with the
control group without treatment.
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4. Discussion

Several studies have suggested that the insulin signaling pathway plays an important
role in the development and progression of cancer, as it is involved in cell growth and
proliferation processes due to its capacity to stimulate DNA synthesis in various tissues [1].
Several epidemiological studies and experimental models of insulin resistance and hyper-
insulinemia have shown a correlation between insulin levels and cancer development. In
cancer patients affected by insulin resistance, the increase in circulating levels of insulin is
combined with the frequent overexpression of the insulin receptor in cancer cells, resulting
in the abnormal stimulation of non-metabolic effects of the IR, such as cell survival, prolif-
eration, and migration [31]. Alterations in insulin signal transduction increase the risk of
cancer development.

Additionally, different groups have suggested that IRS1 and IRS2 are involved in cell
growth, proliferation, migration, and metastasis [3]. Many studies have focused on the
increased expression level or activity of IRSs in different human cancers, including breast,
lung, and colorectal cancer, and have correlated these with poor prognosis, potentially
defining IRSs as oncogenic proteins [32].

Notably, there is very little information in the literature related to the role of the
insulin signaling pathway in the carcinogenesis of cervical cancer. It has been reported
that progesterone upregulates IRS-2 expression, altering the levels of IRS-1 and IRS-2 in
HeLa cells expressing progesterone receptors [33]; however, very little is known about the
role of the insulin signaling pathway in cell proliferation and migration in cervical cancer.
Additionally, it has been shown previously that SiHa cells (HPV16 +) express both IR-A
and IR-B [28]. This suggests that the insulin signaling cascade is involved in the growth
and proliferation of cervical cancer cells.

In this study, we investigated the activation of the insulin signaling pathway associated
with insulin treatment in the HeLa cell line. Initially, we characterized the HeLa cell line
based on the expression of the IR and two substrates, IRS-I and IRS-2. As shown in Figure 1,
the HeLa cells predominantly expressed IR-A (600 bp) under basal culture conditions. In
contrast, the MCF7 cells (positive control) expressed both IR-A (600 bp) and IR-B (630 bp).
Similarly, Serrano et al. [28] showed that C33-A cells only express IR-A, whereas the SiHa
cervical cell line expresses both isoforms. IR-A is predominantly expressed in fetal tissues;
this isoform is less expressed in differentiated tissues from adults, such as the liver, muscle,
and adipose tissue, classic targets of the metabolic effects of insulin, where IR-B expression
predominates. However, IR-A continues to be expressed in some adult tissues, which
are not the typical targets of insulin. For example, IR-A is often overexpressed in breast
cancer [34], thyroid cancer, colon cells [35], and hepatocellular carcinoma [36]. The IR-A
was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor
growth in triple-negative breast cancer [37]. Although the precise biological roles of the
two IR isoforms are unknown, it has been suggested that cancer cells preferentially express
isoform A because they dedifferentiate and recover a ‘fetal-like’ phenotype [3,36].

We focused on studying the effect of different concentrations of human recombinant
insulin (10, 50, and 100 nM) using an MTS assay to assess cell proliferation at 24, 48, and
72 h. Our results hinted at a minimal increase in the proliferation of HeLa cells treated with
different insulin doses, but statistical analysis of the data showed no significant difference
with respect to the control, suggesting that insulin does not affect the proliferation of HeLa
cells. These results are similar to those reported by Serrano et al. [28] in the SiHa and C33-A
cervical cancer cell lines, as they did not observe any effect on proliferation upon stimulation
with IGF-I, IGF-II, or insulin in these cell lines. However, in thyroid cancer, insulin at supra-
physiological concentrations promotes thyroid cell proliferation [38]. In addition, a previous
study showed that astrocyte cell numbers increased in a dose-dependent manner upon
insulin treatment [39]. This could indicate that the proliferative effect of insulin is tissue-
specific and dependent on the insulin concentration. In addition, IRS1 is related to cell
proliferation in cancer, and we did not observe the phosphorylation of IRS1 in this study.
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Next, we found that insulin stimulated IR autophosphorylation, consistent with the
presence of receptors in HeLa cells. Downstream of the insulin receptors, we observed the
expression of IRS-1 and IRS-2. Surprisingly, only the phosphorylation of IRS-2 increased;
in contrast, we did not observe the activation of IRS1. These findings suggest that in this
cell line, IRS-2 is predominantly active. IRS-2 is generally related to processes such as
metastasis, migration, and cell invasion in different types of cancer, while IRS-1 is related
to proliferation. IRS2 is expressed at high levels in breast carcinoma cells of the basal-
like/triple-negative breast cancer (TNBC) subtypes, and it regulates tumor cell migration,
invasion, and glycolytic metabolism. The different functions of IRS1 and IRS2 in breast
cancer are further evidenced by the fact that mouse mammary tumors lacking IRS2 have
a significantly diminished ability to metastasize to the lungs, whereas tumors lacking
IRS1 but expressing elevated IRS2 have enhanced metastatic potential [4,24,40,41]. In
contrast, a recent study provided evidence that IRS1, rather than IRS2, is a dominant
regulator of pancreatic alpha-cell function [42]. In breast cancer, IRS1 overexpression also
promotes the growth and proliferation of BT 20 cells and induces the formation of larger
tumors in vivo [43]. In lung cancer, tumors with low IRS-1 and high IRS-2 expression
were associated with poor outcomes in adenocarcinoma and squamous cell carcinoma,
indicating a potential role for IRS-2 in the aggressive behavior of non-small cell lung
cancer [25]. These findings indicate that IRS1 and IRS2 play different roles depending on
the cellular context; IRS2 is primarily responsible for cell motility and metastasis, whereas
IRS1 is mainly important for cell proliferation [3].

IRS1- and IRS2-induced signaling is highly modulated during many cancer processes,
such as cell motility, metastasis, and cell proliferation. Therefore, we focused on studying
the molecular mechanisms involved in controlling the migration of HeLa cells after insulin
treatment. In our model, we observed increased PI3K and Akt phosphorylation; however,
we did not observe significant phosphorylation of ERK1/2. These data suggest that the
PI3K pathway is activated mainly in response to insulin. Other studies have shown that
in transgenic mice that do not express IRS-1, there is an increased function of IRS-2 and
very high PI3K/Akt/mTor activity [44]. In addition, Hippo signaling interacts with AKT
signaling by regulating IRS2 expression to prevent liver cancer progression [12]. However,
in SiHa cells, a cell line transformed with HPV genotype 16, both the PI3K and MAPK
pathways are activated in response to insulin and IGF-1 [28].

Carcinogenesis is complex. Normal cells undergo multiple genetic mutations before
transformation to the complete neoplastic phenotype of growth, invasion, and metastasis.
We investigated the effect of insulin on cell migration. Tumor cells are known to have
accelerated metabolic rates and high glucose demand in a nutrient-poor environment [45,46].
The combination of these factors may result in a metabolic dependence on a continuous
energy and nutrient supply for cells within the tumor mass [47]. We used a relatively
low concentration of glucose (1000 mg/mL; 5.55 mM) in our experiments; according to
Ishida et al. [48], a low glucose concentration increased the total migration length of HeLa
cells and that HeLa cells under a glucose concentration gradient exhibit random motion
rather than chemotaxis. However, the differences in migration of the HeLa cells they used
are observed at a concentration of 0.7 mM; therefore, although we cannot rule out an effect
on migration by the concentration of glucose used in our experiments, we consider that this
does not essentially change the interpretation of the observations. As expected, our results
showed a statistically significant increase in HeLa cell migration upon stimulation with
insulin. This correlates with several reports on neuroblastoma and breast cancer, where
the overexpression of IRS-2 promoted cell motility, invasion, and metastasis [40,44]. In
addition, insulin promotes the migration of neural cells [49], thyroid cells [38], vascular
smooth muscle cells [50], and advanced prostate cancer (PCa) [51]. Actually, the actions of
insulin in PCa cells may be suppressed by inhibiting the downstream signaling molecules
PI3K and ERK1/2 [51]. Interestingly, a recent study revealed that the ability of IRS2 to
promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-
1R)/IR activation and the recruitment and activation of PI3K, which are functions shared
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with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not
conserved in IRS1, is required for IRS2-mediated invasion [52].

5. Conclusions

There is a lack of definitive information on the role of insulin in cancer, and the
situation is made more complex by the existence of two insulin receptor isoforms, IR-A and
IR-B. We seek to address this void by examining insulin signal transduction in the cervical
cancer cell line HeLa, which has not previously been examined.

The present study demonstrates that HPV-positive HeLa cells mainly express the IR-A
isoform of the insulin receptor. Additionally, the insulin signaling pathway has been shown
to be functionally active in these cells through the activation of the PI3K cascade via IRS2,
thereby increasing cell migration. Further studies are necessary to clarify the roles of IR-A
and IRS2 in metastatic processes and cancer cell progression.
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