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Abstract: Dementia represents a clinical syndrome characterised by progressive decline in memory,
language, visuospatial and executive function, personality, and behaviour, causing loss of abilities to
perform instrumental or essential activities of daily living. The most common cause of dementia is
Alzheimer’s disease (AD), which accounts for up to 80% of all dementia cases. Despite that extensive
studies regarding the etiology and risk factors have been performed in recent decades, and how
the current knowledge about AD pathophysiology significantly improved with the recent advances
in science and technology, little is still known about its treatment options. In this controverted
context, a nutritional approach could be a promising way to formulate improved AD management
strategies and to further analyse possible treatment strategy options based on personalised diets, as
Nutritional Psychiatry is currently gaining relevance in neuropsychiatric disease treatment. Based
on the current knowledge of AD pathophysiology, as well as based on the repeatedly documented
anti-inflammatory and antioxidant potential of different functional foods, we aimed to find, describe,
and correlate several dietary compounds that could be useful in formulating a nutritional approach
in AD management. We performed a screening for relevant studies on the main scientific databases
using keywords such as “Alzheimer’s disease”, “dementia”, “treatment”, “medication”, “treatment
alternatives”, “vitamin E”, “nutrition”, “selenium”, “Ginkgo biloba”, “antioxidants”, “medicinal
plants”, and “traditional medicine” in combinations. Results: nutrients could be a key component in
the physiologic and anatomic development of the brain. Several nutrients have been studied in the
pursuit of the mechanism triggered by the pathology of AD: vitamin D, fatty acids, selenium, as well
as neuroprotective plant extracts (i.e., Ginkgo biloba, Panax ginseng, Curcuma longa), suggesting that the
nutritional patterns could modulate the cognitive status and provide neuroprotection. The multifacto-
rial origin of AD development and progression could suggest that nutrition could greatly contribute
to the complex pathological picture. The identification of adequate nutritional interventions and the
not yet fully understood nutrient activity in AD could be the next steps in finding several innovative
treatment options for neurodegenerative disorders.

Keywords: Alzheimer’s disease; dementia; nutritional psychiatry; neuroprotection; oxidative stress;
Mediterranean diet; selenium; Ginkgo biloba; Panax ginseng; Curcuma longa
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1. Introduction

Alzheimer’s disease is the most prevalent progressive neurodegenerative disease
affecting almost 30% of people 85 years and older [1]. While it is currently estimated that
43–75% of dementia cases are diagnosed as AD [2,3], and there are around 50 million AD
patients worldwide, a recent estimation forecasted that the prevalence would double every
5 years and will increase to reach 152 million by 2050 [4]. In this context, the burden of AD
patients on their families, medical system, economy, and society could become unbearable.

Despite that extensive and thorough studies regarding the etiology and risk factors
were performed in recent decades and the current knowledge about AD pathophysiology
greatly improved with the scientific and technological boom, the treatment options are
still based on symptomatologic relief and less on disease progression modulation [5–8].
In this way, the current AD therapies comprise mainly cholinesterase inhibitors and N-
methyl-D-aspartate receptor antagonists that could both provide enhanced quality of life
by improving AD-nondependent physiological processes rather than disease progression
inhibition [9]. However, their mechanisms of action and short- versus long-term effects
are extremely controverted [10–12]. Only the newest member of the FDA-approved AD
therapy squad, aducanumab, seems to provide better results in disease progression mod-
ulation by immune-targeting Aβ (beta-amyloid) deposits, but serious issues regarding
their effectiveness and safety are currently putting this innovative monoclonal antibody
therapy on halt [13,14]. Similarly, numerous clinical trials based on single-agent therapy
failed to modulate disease progression, suggesting that the complex and multifactorial
pathophysiology of AD could need combined therapy rather than monotherapy.

In this controverted context, a nutritional approach could be a promising way to
formulate improved AD management strategies and to further analyse possible treatment
options based on personalised diets, as Nutritional Psychiatry is currently gaining relevance
in neuropsychiatric disease treatment. For instance, previous reports indicated that higher
adherence to Mediterranean diets could be associated with decreased cognitive decline
and reduced incidence of AD in the elderly [15,16]. This could be due to both its plant-
based plan and due to the increased content of valuable nutrients, such as fibres, good
quality fats and lipid molecules (omega-3 polyunsaturated fatty acids, lecithin), vitamins
(folic acid, B6, B12, C, E, D3), minerals (chromium), and antioxidants (coenzyme Q10,
glutathione, polyphenols, caffeine), as recently emphasised [17–19]. Furthermore, recent
research pointed out that many plant-derived active compounds could be relevant in
AD management [20], not restricted to diet intervention, but also addressing traditional
medicine resources [21].

Thus, based on the current knowledge of AD pathophysiology, as well as based on the
repeatedly documented anti-inflammatory and antioxidant potential of different functional
foods and herbs, we aimed to find, describe, and correlate several dietary compounds that
could be useful in formulating a nutritional approach in AD management.

2. Alzheimer’s Disease and Food—What Is the Correlation between Pathophysiology
and Nutrition

Alzheimer’s disease is diagnosed according to DSM-V (Diagnostic and Statistical
Manual of Mental Disorders, fifth edition [22]) or NIA-AA (National Institute on Aging
and the Alzheimer’s Association [23]) mainly based on the displayed symptomatology
associated with the insidious onset or gradual progression in memory, learning, language,
visuospatial, and executive cognitive functions loss, and significant changes in behavioural
and personality response, and on imaging and molecular relevant biomarkers confirmation
(suggestive brain volume changes, Aβ deposits, and tau filaments presence, serological
testing, and the presence of deterministic mutations detected by genetic testing).

From a physiological perspective, AD is mainly characterised by the progressive
decline of cognitive functions alongside significant changes occurring in the ability to
perform day-to-day tasks and in the overall capacity to relate and respond to external
stimuli (socio-affective impairments and personality shifts). In contrast to the other two
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major neurodegenerative disorders, Parkinson’s disease (PD) and amyotrophic lateral
sclerosis (ALS), AD pathophysiology mainly refers to altered cognitive abilities and only
secondarily to impaired motor functions, suggesting that the disease mechanisms of action
are slowly progressing throughout the years (having the onsets many years before the
symptoms occur) debilitating brain parts in charge of neuronal plasticity (hippocampus),
memory and perception (entorhinal cortex), speech, social interaction (cerebral cortex), and
eventually automatic functions (brain stem) [24–27].

From a molecular point of view, extensive studies showed that AD molecular hall-
marks are Aβ deposits (caused by aberrant amyloid precursor protein processing) and tau
filaments (caused by tau protein hyperphosphorylation) that can be found to progressively
accumulate in the mentioned brain areas [28,29]. As a result, the reduction in cerebral
blood flow and the blood–brain barrier disruption led to neuronal pathways signalling and
communication impairment and eventually to neuron loss [30–32].

Comprehensive molecular studies recently demonstrated the complex pathophysiol-
ogy of AD, which include neuroinflammation and oxidative signalling, as being one of the
missing links between histopathological features and disease molecular pathways [33]. In
this way, reasonable evidence about the implications and role of inflammatory response in
AD suggested that the main trigger for neuroinflammation is brain microglial macrophages
chronic activation leading to pro-inflammatory cytokines sustained production (interleukin-
1β, interleukin-6, and tumour necrosis factor-α) [34,35]. In this pathological molecular
context, mitochondrial dysfunction and oxidative stress gain relevance and contribute to
the molecular context fuelling the vicious cycle of oxidative stress-induced neuroinflamma-
tion [36,37].

As a response to the molecular pathological processes, including and mainly referring
to neuroinflammation and oxidative stress, many recent studies reported several possible
anti-inflammatory and antioxidant approaches that could contribute to slowing down
or stopping AD progression [38,39]. In this context, despite how the impact of diet and
nutrition on age-associated cognitive decline has not yet been fully described, nor the
molecular pathways through which diet modulates cognition, it was reported that various
minerals, micronutrients, vitamins with antioxidant/anti-inflammatory properties could
be relevant in AD management. For instance, dietary essential fatty acids were previously
described to be incorporated in neuronal membranes and to possess antioxidant, anti-
excitotoxic, and anti-inflammatory potential [40–42]. In addition, their association with
cognitive functions suggested that the synergistic interactions of different nutrients could
be the key to their potential [43].

It was also shown that various nutrients that are predominant in several diets exhibit
immune system modulation potential, being able to influence neuroinflammatory processes,
as described in animal model studies [44,45]. Thus, polyphenols, unsaturated fats, and
antioxidant vitamins could regulate oxidative balance and the neuroinflammatory response,
while saturated fatty acids were described as brain tissue inflammation promoters [46,47].

In addition to these, it was shown that diets could significantly interfere with other
components of the digestive system, such as the microbiota. In the case of AD, it was shown
that a Mediterranean diet could modulate gut microbiota activity and diversity and further
suggested that some microbiotic species could exhibit neuroprotective properties [48].
Recent reports regarding AD pathophysiology gave positive responses about the correlation
between gut microbiota and impairments and brain function decline, suggesting that
microbiome dysfunction could be a stable component of neurodegenerative pathologic
mechanisms [49,50].

Additionally, compelling evidence shows that nutrients and other bioactive dietary
compounds could influence neuroinflammatory processes leading to neurodegeneration in
a synergistic manner for cumulative effect [51].
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3. Vitamin E Odyssey and AD

Due to its lipophilic properties, the antioxidant vitamin E (α-tocopherol) could interact
with cell membranes and interrupt the chain reactions resulting in neuronal injury by
scavenging free radicals, chain-breaking antioxidants in lipoproteins and cell membranes,
limiting lipid peroxidation, and maintaining membrane integrity [52]. The neuroprotective
effects of vitamin E have been widely described in animal model studies with respect to its
protective properties against cerebrovascular and neurodegenerative diseases.

Regarding its contribution to neuroprotection, several studies reviewed the potential
of vitamin E to counteract oxidative stress induced by Aβ [53–55]. Yatin et al. [56] demon-
strated that vitamin E was able to prevent Aβ1–42 induced protein oxidation, Aβ-induced
ROS production, and accumulation leading to significant neuroprotective properties in
rat embryonic hippocampal neuronal cell cultures. On the other hand, its neuroprotective
potential could not be limited to its antioxidant properties, but vitamin E could also reduce
the Aβ1–42-induced expression of glutamate transporter-1 (GLT-1), the main glutamate
transport in mouse adult brains [57]. This interaction was described in mouse astrocytes
as being mediated by oxidative stress leading to GLT-1 ubiquitination, a prolonged extra-
cellular lifetime of released glutamate, and mislocalisation on the cell membranes surface,
which were all prevented by vitamin E administration (water-soluble analogue, Trolox) [57]
(Table 1).

The action of vitamin E was also tested against Aβ toxicity in rats, which were infused
with Aβ1–42. Reference [57] showed that 3-day pre-treatment with oral vitamin E could
prevent Aβ-induced learning and memory deficits. However, Yamada et al. [58] reported
that the effects of vitamin E are independent of oxidative stress modulation in preventing
Aβ toxicity, in a rat model of memory loss. On the other hand, several studies raised
concerns about the possible toxicity of high doses of vitamin (≥400 IU/day) reported to
increase the risk of mortality [59], while doses below 400 IU/day could be a preventive
factor for all-cause mortality, as shown by meta-analysing 19 studies comprising more
than 130,000 participants. Additionally, serious concerns could arise from the already
demonstrated adverse effects of vitamin E unravelled by the stroke studies (i.e., increase in
haemorrhagic stroke risk) that could impose supplemental risks to AD patients [60].

Yet, other studies failed to demonstrate this toxic effect [61], but reported that AD
patients receiving up to 2000 IU vitamin E/day survived longer, as compared to those
treated with cholinesterase inhibitors or with no drugs. Similarly, the beneficial effect
of vitamin E supplementation against cognitive decline was also shown in women with
low dietary intake of vitamin E (lower than 6.1 mg/day), but not compared with women
receiving a high dietary intake of vitamin E [62] (Table 1).

Despite these positive results and possible concerns, vitamin E is not currently recom-
mended for AD treatment or prevention [63]. Thus, two major causes could contribute to
the previous negative results: (1) Wrong dose. The meta-analysis of Miller et al. suggested
that more than 400 IU vitamin E/day could increase mortality; however, Lloret et al. [64]
postulated vitamin E dose adjustment by correlation to plasmatic oxidised redox potential.
(2) Wrong timing. When AD and MCI cognitive symptoms occur, the molecular and physi-
ological processes are impaired; thus, many synapses are already lost, and many neurons
are affected by neurofibrillary tangles at a faster rate than they can be replaced. In this way,
the treatment with vitamin E could be ineffective in these stages [65], as some authors have
already suggested that pre-symptomatic AD could be an efficient target for treatment, as
many of the pathological processes could still be reversible [66–68].
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Table 1. The correlation between AD and vitamin E neuroprotective potential.

Study Study Type Study Details Intervention Results

Animal models

[52] Review - -

# Vitamin E induces chain-breaking antioxidant
effects in lipoproteins and cell membranes.

# Reduces lipid peroxidation.
# Maintains membrane integrity.

[56] RCS Rat hippocampal
cell culture

50 µM
α-tocopherol

# Vitamin E was able to prevent amyloid protein
oxidation, ROS production, and neurotoxicity.

# Aβ-induced free radicals scavenger.

[57] RCS Mouse astrocytes 100 µM Trolox

# Aβ1–42 generated oxidative stress reduced
surface expression of GLT-1
glutamate transporter.

# Extracellular glutamate was increased due to
GLT-1 ubiquitination and mislocalisation within
the cellular membranes.

# Trolox prevented the amyloid-induced effects.

[53] RCS Rats 333 IU/kg
α-tocopherol

# Vitamin E prevented learning and memory
deficits when administrated three days before Aβ

infusion (oral administration).
# Aβ-treated rats did not show increased oxidative

stress, and the antioxidant action of vitamin E
was not demonstrated.

Human patients

[59] Meta-analysis 135,967 participants

≥400 IU/day
vs.

<400 IU/day
Vit. E

# High doses of vitamin E (≥400 IU/day) could
increase mortality risk, as revealed by 9 out of 11
included trials analysing risk for all-cause
mortality (risk difference > 0).

# Trials included patients with variable degrees of
morbidity, and the results may not generalise to
healthy population.

[60] RCT 613 participants 2000 IU/day
α-tocopherol

# Vitamin E reduced AD mortality compared to
those receiving placebo.

[60] RCT 847 participants 2000 IU/day
α-tocopherol

# 2000 IU/day vitamin E improved AD
survivability compared to those treated with
standard treatment or with no drugs.

[62] RCT 6377 women 600 IU q.a.d.
α-tocopherol

# Vitamin E showed no significant modulation of
cognitive functions compared with placebo.

# Vitamin E’s positive effect on cognitive functions
was more significant in groups where dietary
vitamin E intake was low.

[61] Review - -

# Adverse effects of vitamin E unravelled in the
stroke studies (i.e., increase in haemorrhagic
stroke risk) may impose risks on AD patients.

4. Why Will Omega-3 Fatty Acids Not Be Enough?

Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties
and represent a potential treatment for a variety of neurodegenerative and neurological
disorders [69,70]. While triglycerides are energy metabolism substrates in low glucose
states, PUFAs are membrane lipids providing structural and functional support. As high
membrane fluidity is essential in maintaining synaptic integrity, PUFAs inclusion in neu-
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ronal membranes decreases the main membrane rigidity promoter: the total cholesterol
fraction [71].

Three main PUFAs were intensely studied: eicosapentaenoic acid (EPA), docosapen-
taenoic acid (DPA), and docosahexaenoic acid (DHA). While EPA was frequently reported
as beneficial in mood disorder improvement, attention to DHA was mainly attracted
by its neuroprotective potential with respect to neurodegenerative conditions. DHA is
quantitatively the most important omega-3 PUFA in the brain, whereas the availability of
high-purity DPA preparations has been extremely limited until recently.

Omega-3 PUFAs exert pleiotropic effects on the cardiovascular and central nervous
systems that were extensively correlated with age-related cognitive decline protection. Low
omega-3 PUFA intake is one of many overlapping risk factors for both cardiovascular
disease and AD and was also reported in diabetes, hypercholesterolemia, hypertension, hy-
perhomocysteinemia, dietary saturated fats, cholesterol, antioxidants, alcohol consumption,
smoking, atrial fibrillation, and atherosclerotic disease [72]. While the cardiovascular pro-
tective effects of omega-3 PUFAs are backed by repeated positive clinical trial results, which
lead to recommendations for dietary supplementation [73], the clinical trials for dementia
prevention did not report suggestive results. Nevertheless, a 2005 literature evidence-based
meta-analysis [74] on omega-3 PUFAs and dementia concluded that sufficient evidence
to suggest the possible relevance of omega-3 PUFAs potential in the treatment and pre-
vention of AD is yet available, but clinical trials should be the ones that would provide
recommendations.

On the other hand, DHA could be a key structural and functional component of the
brain’s memory consolidation areas. Moreover, high dietary intake resulted in increased
hippocampal DHA levels, which have been shown to promote hippocampal-dependent
learning processes [75]. Increased dietary intake of omega-3 PUFAs has been directly
associated with increased grey matter volume in corticolimbic circuitry that represents the
affective input for memory formation and cortical arousal in the brain [76].

Several studies reported that increased PUFA dietary intake could decrease dementia
risk. The Canadian Study of Health and Aging (CSHA) rigorously examined plasma PUFA
profiles cross-sectionally in a small cohort of 84 subjects [77] (Table 2). Plasma total PUFAs,
DHA, and n-3/n-6 ratios were found to be decreased in AD, non-AD dementias, and
cognitive impairment, but not in demented individuals. Yet, omega-6 PUFA levels were
increased in AD and cognitively impaired patients, as compared to normal individuals and
non-AD dementia patients, suggesting that decreased plasmatic PUFA levels could be a
risk factor for pathologic cognitive decline. Barberger-Gateau and colleagues [78] reported
administering FFQs (food-frequency questionnaires) to 1674 subjects and then following
up for 2, 5, and 7 years. A total of 170 new cases of dementia were diagnosed during the
follow-up period, with higher percentages in the group with low dietary intake of fish
and seafood. Another case–control study replicated the CHSA methodology on 148 AD
subjects and 45 cognitively normal controls [79]. Total serum saturated fatty acids, EPA,
and DHA levels were significantly reduced in AD, as compared to normal individuals.
However, their study managed to report that only serum total saturated fatty acids and
DHA levels were associated with Mini-Mental State Examination (MMSE) and Clinical
Dementia Rating scale (CDR) scores in stepwise multiple regression analyses (Table 2).

Thus, significant deficits of EPA and DHA were found in neurodegenerative disorders,
but the studies’ limitations and heterogeneity prevent a clear conclusion. In this context,
further investigation into the roles that individual polyunsaturated fatty acids have on
brain health, protection, and repair will facilitate appropriate dietary recommendations
and targeted therapeutic interventions.
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Table 2. The correlation between AD and fatty acids neuroprotective potential.

Study Study Type Study Details Intervention Results

[69] Review - -

# Deficits in DHA and EPA have been variably associated
with neurodegenerative disorders.

# The non-cognitively impaired elderly population benefit
from DHA supplementation.

[72] Review - -

# CAD patients should consume 1 g/day DHA and EPA.
# Patients with hypertriglyceridemia benefit from the

consumption of 3–4 g/day EPA, DHA. Healthy subjects
benefit from 250 to 500 mg/day.

[73] Review - -

# Normal aging: no association between omega-3 FA intake
and cognitive loss.

# Dementia: fish consumption correlates with the reduction
in AD’s incidence; total omega-3 FA consumption
correlates with reduced AD incidence; DHA correlates
with reduced incidence for AD, while EPA does not.

# Omega-3 FA supplementation improves MMSE scores in
patients with dementia.

Animal models

[74] RCS
16 (8) Rats
(omega-3
depleted)

300 mg/kg/day DHA

# DHA group presented fewer reference memory errors
compared with control in radial maze task, with no
difference in working memory errors.

# DHA group presented less MDA/mg protein compared
with control in the cerebral cortex but not in the
hippocampus.

Human patients

[75] Correlational
study 55 participants Self-reported consumption

of omega-3 FA
# Increased grey matter volume in the sgACC, right

hippocampus, and amygdala in the high intake group.

[77] Correlational
study

84 participants
(19 AD; 10 OD; 36
CIND; 19 Control)

FA analysis in blood
plasma

# Total unsaturated fatty acids, individual unsaturated fatty
acids, and their fractions were lower across the spectrum
of cognitively declined patients. Omega-6 fatty acids were
higher in AD and CIND cases than in normal and
non-AD dementias.

[78] Longitudinal
study

8085 healthy
adults -

# The 7 years incidental dementia risk was lower in the
group with high dietary intake of fish and seafood.

[79] Correlational
study

148 participants
(29 M)

Control: 45 (9 M)

FA analysis in blood
plasma

# DHA and total serum PUFA correlate with AD severity
measured by MMSE and compared with healthy
age-matched controls.

5. Selenium and AD: Is There a Link?

Selenium is a trace element crucial to cerebral functions. Following brain tissue sele-
nium depletion, brain selenium is provided at the expense of other tissues. Severe selenium
deficiency could lead to irreversible brain damage [80]. Selenium enters the neuron through
the apolipoprotein E receptor 2 (LRP8), after being transported by selenoprotein P (Figure 1).
The same protein has been found in high amounts in mice brains, where it was shown to be
relevant for the maintenance of proper functions. SEPP knockout models develop severe
neurological dysfunction, especially when fed a low selenium diet [81,82].

Selenium and selenoproteins (Figure 2) have been shown to have protective actions
against cognitive decline, especially in patients with low dietary intake of selenium, as
demonstrated by Shahar et al. [83], who found that performance associated with coordina-
tion tasks was associated with plasmatic selenium levels (1012 Italian participants aged
65 years or older). Serum selenium levels in AD were lower compared with MCI patients
in a Spanish cohort [84]. Selenium supplementation (200 µg/day) was also found to reduce
protein glycation through glycaemic control and modulating inflammatory response in an
elderly Swedish cohort [85,86]. Similar results were obtained by Tamtaji et al. [87], with
the addition that probiotics could potentiate selenium antioxidant proprieties and clinical
effectiveness. Correlations between plasmatic selenium levels and cognitive decline have
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been found in populations with customary low dietary selenium intake, which may be
responsible for the inconsistencies across the studies.

1 
 

 
Figure 1. Brain selenium transport mechanism (simplified).
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Figure 2. Main selenoprotein classes and their involvement in AD pathomechanism.

One of the mechanisms underlying the potential protective effects of selenium in AD
may include inhibition of glycation and advanced glycation end products (AGE) formation
with subsequent down-regulation of the AGE/AGE receptor pathway. The effects were
shown to involve protein glycation inhibition in a dose-dependent manner. Furthermore,
selenium influenced the interaction between amino acid residues with ROS scavenging and
reduced α-carbonyl formation [88]. It is also notable that selenium may not only influence
AGE formation but may also modulate AGE signalling and toxicity. Particularly, the role of
selenium-induced inhibition of AGE formation in the prevention of p38 MAPK activation
and subsequent COX-2 and P-selectin expression was demonstrated in human umbilical
vein endothelial cells [89].

Selenium’s physiological effects were shown to be mediated and dependent on se-
lenoproteins. Selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM,
SELENOS, and SELENOW) are the main ones expressed in the brain, especially in areas
involved in AD; as such, they are promising targets for AD research [90]. Particularly, se-
lenoprotein P (Sepp1) was found to be responsible for selenium transportation within mice
brains and to be increasingly expressed by direct correlation to physical exercise. Using a
Sepp1 knockout mouse model, Leiter et al. [91] demonstrated that selenium is responsible
for hippocampal neurogenesis and in vitro neural cell proliferation, in a Sepp1-dependent
manner. A recent trial found that selenium supplementation did not promote cognitive
performance improvement in AD, while its CSF level was inversely correlated with MMSE
scores after 24 weeks of treatment [92], these suggesting that selenium neuroprotective
potential could be dependent on the specific transport protein expression (Table 3).
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Table 3. The correlation between AD and selenium neuroprotective potential.

Study Study Type Study Details Intervention Results

[89] Experimental
study

Se nanoparticles on a bovine albumin and
glucose medium

# Selenium nanoparticles showed a dose-dependent inhibitory
effect on glucose bonding and fructosamine formation.

[90] Correlational
study Vascular endothelial cell cultures

# Selenium reduces the expression of COX-2, P38 MAPK, and
P-selectin in high-glucose, high-insulin, and advanced glycation
end products’ rich cell cultures.

Animal models

[91] RCS

Mice Normal cage vs. spin
wheel cage

# Exercise increases Selenoprotein P (Sepp1).

Mouse neural cell
culture

Selenium-controlled
growth medium

# Neural precursor cell formation from the hippocampal dentate
gyrus and sub-ventricular area positively correlates with
increasing Se concentration.

# Newly developed cells’ diameter increases with Se
concentration.

# Sodium selenite promotes BetaIII-tubulin+ neuron
differentiation.

Mice Sodium selenite
infusion

# NaSe infusion promotes hippocampal precursor proliferation,
neurogenesis, and recruitment of neural stem cells.

# Se decreases cellular reactive oxygen species in vivo and
ex vivo.

Mice Sepp1 knockout

# Sepp1 knockout model inhibits neural precursor cell
proliferation and diameter.

# Activity exerted by Sepp1 knockout mice was similar to wild
type, although expressed less Sepp1.

Mice Endhotelin-1-induced
hippocampal lesion

# Selenium reverted the induced learning and memory deficits on
Y-maze, novel object recognition, and fear conditioning tests.

Human patients

[92] RCT 40 probable AD
patients

1 mg Na2SeO4/day vs.
10 mg Na2SeO4/day

vs. placebo

# Selenium supplementation reported no significant cognitive
performance improvement compared with placebo after
24 weeks.

# MMSE scores correlated with CSF Se levels, suggesting that the
beneficial effects of selenium supplementation might be
dependent on CSF retention.

[87] RCT 79 patients with
AD

200 µg /day Se vs.
200 µg /day Se +

probiotics vs. placebo

# Clinically insignificant and statistically significant improvement
in MMSE scores in Se and probiotics branch compared
with placebo.

# Reduced CRP and increased glutathione in both active branches
compared with placebo.

# Increased total antioxidant capacity in Se + probiotics group
compared with placebo.

# No statistically significant changes in malondialdehyde levels.

6. Traditional Medicine—How Would It Help?

To date, the Mediterranean diet has been shown to reduce the incidence of mild
cognitive impairment (MCI) and, possibly, the conversion of MCI to dementia [93,94].
Additionally, it was shown that this contribution could be produced due to the increased
content of vitamins, minerals, and antioxidants (such as polyphenols) that were positively
associated with cognitive impairment prevention due to their antioxidant effects.

Sustained efforts are made to evaluate and compare the most-known diets’ effects
on AD predisposition, prevention, and management [95]. However, Yusufov et al. [96]
recently drew attention to the possible limitations of evaluating the effects of different diets
on AD, as a much longer period of pathological processes remains clinically nonvisible (a
dormant phase). In this context, it could be useful to consider a better understanding of the
nutritional adjuvants as individual molecules rather than diets.

Thus, in addition to the nutritional intake of plants, there are traditional medicines
that offer a variety of herbs that could be exploited as potent antioxidant sources. Plenty
of studies address the potential of traditional medicines and herbs in cognitive decline



Curr. Issues Mol. Biol. 2023, 45 1528

and AD management; however, it was shown that polyphenols have the greatest potential
compared to other molecule classes [97–99]. The potential of various plant extracts to
modulate memory loss was previously described by our group [100], yet new resources are
continuously found while the mechanisms of action of the most known are untangled.

Ginkgo biloba (GB) could be currently considered the oldest living tree species in the
world and one of the best sources of cognitive performance improvers [101]. In traditional
Chinese medicine, GB leaves were mainly used for the treatment of respiratory and cardio-
vascular disorders, while the seeds were frequently found efficient in pulmonary symptoms,
alcohol abuse, and bladder infection treatments [102]. Currently, GB leaf-based extracts
have numerous health benefits, including cognitive performance improvement [103].

In particular, it has been shown that GB extract could exhibit neuroprotective effects in
both AD and vascular dementia (VD) based on the antioxidant, anti-inflammatory, and anti-
apoptotic potential. Additionally, several studies showed that some GB extract components
could be potent mitochondrial function modulators [104,105]. Other antioxidant effects
of GB extracts are due to their capacity to modulate cerebral blood flow, neurotransmitter
systems, cellular redox states, and nitric oxide synthesis [106,107]. In this context, a recent
in vitro study using rat cerebellar granule cells showed that GB extract could successfully
attenuate H2O2/FeSO4-induced oxidative damage resulting in efficient protection against
oxidative stress-mediated apoptosis [108].

Most of the GB extracts’ antioxidant activity is the result of its flavonoid components’
biological effects: it contains kaempferol and quercetin, which modulate reactive oxygen
species (ROS) metabolism in both in vitro and in vivo models [109], making GB extracts
one of the most effective alternative solutions in cognitive decline and AD management.
Shi et al. [110] thus described that the GB extract flavonoid fraction is responsible for the
antioxidant effect through direct ROS scavenging, chelation of pro-oxidative heavy metal
ions, and increased expression of antioxidant proteins, such as superoxide dismutase (SOD)
and glutathione reductase (GSH). Additionally, the cytochrome P-450 enzyme system
reducing the ROS formation and peroxide anion release could be another target of the GB
extract flavonoid fraction [111].

Moreover, GB extracts were screened for the modulatory activity of the mitochondrial
respiratory chain components (complexes I, IV, and V) in a study of senescent cells obtained
from two age groups of mice with induced nitration stress [112]. However, the beneficial
effects could only be seen in the cells obtained from older animals, which proved that the
extract is effective against senescent cells.

The main mechanisms of memory and cognitive function improvement due to GB
extract treatment could include increased blood flow in the brain, protective effect against
peroxidation of brain lipids, easier utilization of oxygen and glucose by brain cells, reduc-
tion in amyloid plaque deposition [113], and lowering Aβ oligomers and APP levels [114].
Thus, GB derivatives have a proven beneficial effect against cognitive disorders, including
mild and moderate AD. Unfortunately, the randomised trial reports regarding GB derivates’
clinical effects in AD are rather scarce. Despite its recognised potential in neurodegenera-
tive disease treatment, GB derivates’ mechanisms of action and possible clinical application
are still a widely controversial subject [115].

A significant compound belonging to the phenols class that exhibits great antioxidant
potential and that was extensively studied in the AD context is curcumin, which is generally
found in Curcuma longa extracts at 2 to 5% of dried mass [116]. Both Curcuma longa (CL)
extracts and purified curcumin were studied for neuroprotective, antioxidant, and anti-
inflammatory potential, despite that these aspects were long before suggested. In this way,
CL extracts were found to protect the brain cells against oxidative stress and inflammatory
processes driven by Aβ accumulation and, in contrast to GB, curcumin was shown to be
implicated in Aβ plaque clearance while activating macrophages, microglia, and reactive
astrocytes [117–120].
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Another important active compound group that was extensively studied for neuro-
protective potential is the ginsenosides found in Panax ginseng roots (PG). Guo et al. [20]
recently meta-analysed some traditional Chinese medicine resources and found that gin-
senosides are extensively used to prevent or slow cognitive decline. The main action of
ginsenosides is to reduce Aβ neurotoxicity by preventing its production and accumu-
lation in the brain in some animal models of AD, or to improve memory functions by
inhibiting acetylcholinesterase activity (as recently discussed by [121,122]). Moreover, these
aspects were then seen in AD patient trials, with promising results for finding a new and
ground-breaking resource in AD management (Table 4).

Table 4. The correlation between AD and some traditional medicines herbs’ neuroprotective potential.

Study Study Type Study Details Intervention Results

Animal models

[108] Experimental
study

Rat cerebellar
granule cell

culture

100 µg /mL GB
extract

# GB extract reduced TBARS formation by FeSO4 +
H2O2 and improved cell survivability.

[109] Experimental
study

Rat cerebellar
granule cell

culture

100 µg /mL GB
extract

# GB extract reduced TBARS and LDH formation by
FeSO4 + H2O2 and improved cell survivability. Cells
treated with GB reduced the effects of FeSO4 + H2O2
Bcl-2 mRNA expression.

[112] Experimental
study

Rat and mice
isolated

mitochondria

10, 100, and
500 µg /mL GB

extract

# GB extract protected the mitochondria against nitric
oxide, sodium nitroprussiate, and peroxide action, and
yielded more ATP, as compared to control.

[113] Experimental
study APP/PS1 mice 50 mg/kg GB

extract ad libitum

# GB extract inhibited the formation of Aβ plaques and
pro-inflammatory interleukins mRNA expression
(IL-1β, IL-6, TNF-α), and increased mRNA expression
for anti-inflammatory IL (IL-4, IL-13, TGF-β).

[114] Experimental
study TgAPP/PS1 mice 100 mg/kg GB

extract ad libitum

# GB extract promotes cell proliferation in the
hippocampus dentate gyrus of transgenic mice and
inhibits Aβ oligomer formation.

[122] Experimental
study

APP/PS1
double-TG mice

100 and 500
mg/kg/day, p.o.

for 12 days, white
PG powder

# White ginseng reduced Aβ formation and improved
memory functions.

[123] Experimental
study

ICR mice + 2
mg/kg, i.p.

scopolamine

200 mg/kg, p.o.,
red, white, and

black PG extracts

# Ginseng extracts improve memory functions and
cholinergic system functions by inhibiting
acetylcholinesterase activity.

[124] Experimental
study

Sprague Dawley
rats tauopathy

model

Pre-treatment: 10
mg/kg for 7 days

red PG extract

# Red ginseng extract reduced tau protein
hyperphosphorylation by specific
phosphatase activities.

[119] Experimental
study In vitro rat cells 4–20 mM curcumin

# Curcumin decreased astrocytes proliferation, and
improved oligodendrocytes proliferation.

Human patients

[90] Meta-analysis 1207 AD, VD 120–240 mg GB
extract

# GB extract yields improvement in cognitive, functional,
and clinical ratings compared with placebo. The size of
the effect was higher in studies using 240 mg of
GB extract.
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Table 4. Cont.

Study Study Type Study Details Intervention Results

[120] Meta-analysis

32
studies—human
cells, animal cells,

and animal
models

0.1–200 µL
extract/7.5–400 mg

powder CL,
5 days–6 months

# Antioxidant, anti-inflammatory,
neuroprotective effects.

# Improved behaviour (learning and memory).

[106] Experimental
study

Microglial cell
culture

GB extract
10–90 µg/mL

# The addition of GB extract over Aβ1–42 treated
microglial cell culture improved cell viability.
Moreover, GB reduced measured TNF-α and IL-1β and
mRNA expression.

[107] Experimental
study

Human
keratinocyte cell

culture

1 mg/mL GB
extract

# GB preparation contains high amounts of quercetin
and improved cell survivability in DPPH, ABTS, and
AAPH-supplemented growth mediums.

[125] Experimental
study AD patients PG powder

(4.5 g/d), 12 weeks

# PG powder improved memory and learning in AD
patients, but treatment cessation caused cognitive
decline similar to initial state.

[126] Experimental
study AD patients

Red Korean PG
powder, 9 g/day,

12 weeks

# Red Korean PG significantly improved memory
functions and reduced typical AD impairments
(measured by ADAS and CDR).

[119] Experimental
study

Human
macrophages

from AD patients

36.8 mg/mL
curcuminoids

# Curcuminoids promoted Aβ uptake by macrophages.

7. Conclusions

Nutrients could be a key component in the physiologic and anatomic development of
the brain. Several nutrients have been studied in the pursuit of the mechanism triggered
by the pathology of AD: vitamin D, fatty acids, selenium, as well as neuroprotective
plant extracts (i.e., Ginkgo biloba, Panax ginseng, and Curcuma longa), suggesting that the
nutritional patterns could modulate the cognitive status and provide neuroprotection. The
multifactorial origin of AD development and progression could suggest that nutrition
could greatly contribute to the complex pathological picture. The identification of adequate
nutritional interventions and mechanistic gaps in research could be the next steps in finding
several innovative treatment options for neurodegenerative disorders.
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