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Abstract: SARS-CoV-2, which causes COVID-19, has altered human activities all over the world
and has become a global hazard to public health. Despite considerable advancements in pandemic
containment techniques, in which vaccination played a key role, COVID-19 remains a global threat,
particularly for frail patients and unvaccinated individuals, who may be more susceptible to de-
veloping ARDS. Several studies reported that patients with COVID-19-related ARDS who were
treated with ECMO had a similar survival rate to those with COVID-19-unrelated ARDS. In order
to shed light on the potential mechanisms underlying the COVID-19 infection, we conducted this
proof-of-concept study using single-cell V(D)J and gene expression sequencing of B cells to examine
the dynamic changes in the transcriptomic BCR repertoire present in patients with COVID-19 at
various stages. We compared a recovered and a deceased COVID-19 patient supported by ECMO
with one COVID-19-recovered patient who did not receive ECMO treatment and one healthy subject
who had never been infected previously. Our analysis revealed a downregulation of FXYD, HLA-
DRB1, and RPS20 in memory B cells; MTATP8 and HLA-DQA1 in naïve cells; RPS4Y1 in activated B
cells; and IGHV3-73 in plasma cells in COVID-19 patients. We further described an increased ratio
of IgA + IgG to IgD + IgM, suggestive of an intensive memory antibody response, in the COVID
ECMO D patient. Finally, we assessed a V(D)J rearrangement of heavy chain IgHV3, IGHJ4, and
IGHD3/IGHD2 families in COVID-19 patients regardless of the severity of the disease.

Keywords: COVID-19; BCR repertoire; ECMO; V(D)J; transcriptome

1. Introduction

Since December 2019, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has posed a hazard to global public health. The coronavirus disease
2019 (COVID-19) shows a wide range of clinical manifestations, ranging from asymp-
tomatic presentation to critical illness with severe pneumonia, acute respiratory distress
syndrome (ARDS), or multiple organ failure [1]. The similarities between the worst SARS-
CoV-2 consequences and seasonal influenza problems, such as ARDS or multiple organ
failure, have suggested a role for extracorporeal membrane oxygenation (ECMO) implan-
tation in patients with the most severe pulmonary decompensation [2,3]. It has recently
been established that ECMO can be utilized as a rescue therapy due to the temporary
replacement of lung and/or cardiac function [4]. Several studies have reported that pa-
tients with COVID-19-related ARDS who were treated with ECMO showed a survival rate
comparable with those with COVID-19-unrelated ARDS [5–7]. Clearing the SARS-CoV-2
infection and hence influencing patients’ clinical outcomes is also mediated by humoral
and adaptive immune responses [8]. A crucial role is played by the B cell antigen receptor

Curr. Issues Mol. Biol. 2023, 45, 1471–1482. https://doi.org/10.3390/cimb45020095 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb45020095
https://doi.org/10.3390/cimb45020095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0001-6737-9770
https://orcid.org/0000-0002-2790-7257
https://orcid.org/0000-0002-0305-1781
https://orcid.org/0000-0002-7546-7209
https://orcid.org/0000-0003-1994-8005
https://orcid.org/0000-0002-3269-935X
https://doi.org/10.3390/cimb45020095
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb45020095?type=check_update&version=1


Curr. Issues Mol. Biol. 2023, 45 1472

(BCR) responsible for the recognition of pathogens. The processes of recombination and
assembly of the variable and constant regions of the V, D, and J segments are crucial in
generating an immense repertoire of antibodies responsible for the recognition of diverse
pathogens [9]. Briefly, the antigen-binding domain of immunoglobulins is composed of
two polypeptide chains. The exons that encode the antigen-binding domains are assembled
from V (variable), D (diversity), and J (joining) gene segments by a process defined as
“cut-and-paste” DNA rearrangements. This process, named V(D)J recombination, selects
a pair of segments, introduces double-strand breaks next to each segment, deletes the
intermediate DNA, and ligates the segments together. Rearrangements take place in a well-
ordered way, with D-to-J joining proceeding before a V segment is joined to the rearranged
D–J segments (Figure 1) [10]. Meeting a pathogen then unleashes rapid hypermutation
(SHM) and class-switch recombination (CSR), thereby increasing antigen binding [11].
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Figure 1. The antigen-binding domain of immunoglobulins is composed of two polypeptide chains,
namely heavy and light chains. The exons that encode the antigen-binding domains of the heavy
chain are assembled from V (variable), D (diversity), and J (joining) gene segments by a process
defined as “cut-and-paste” DNA rearrangements. This process, named V(D)J recombination, selects
a pair of segments, introduces double-strand breaks next to each segment, deletes the intermediate
DNA, and ligates the segments together. Rearrangements take place in a well-ordered way, with D-to-
J joining proceeding before a V segment is joined to the rearranged D–J segments. The rearrangement
of the light chain is identical except for the absence of D gene fragments.

In this study, we used a single-cell approach to look at the dynamic changes in
the transcriptomic BCR repertoire in patients with COVID-19 at various stages, com-
paring a recovered and a deceased COVID-19 patient who had been supported with
ECMO with one COVID-19-recovered patient who had not received ECMO treatment
and one healthy subject who had never previously been infected nor tested positive for
SARS-CoV-2 antibodies.

2. Materials and Methods
2.1. Samples

Four subjects were enrolled in this study at IRCCS ISMETT: one COVID-19 patient on
ECMO (survived), one COVID-19 patient on ECMO (died), one COVID-19 patient without
ECMO (recovered), and one healthy control who tested negative for both a nasopharyngeal
swab (NPS) and anti-Spike and anti-N IgG/IgM. The study was approved by the IRCCS
ISMETT Institutional Research Review Board (IRRB 00/21) and the Ethics Committee of
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IRCCS ISMETT, with all enrolled individuals signing a written informed consent form.
Fresh blood samples were acquired from patients on day three of their hospitalization.

2.2. Preparation of Single-Cell Suspensions

Venous blood was collected in K3EDTA tubes (Greiner Bio-One GmbH, Kremsmun-
ster, Austria). Peripheral blood mononuclear cells (PBMCs) were isolated by density
gradient centrifugation on Lympholyte Cell Separation Media (Cedarlane Laboratories
Limited, Burlington, ON, Canada). Afterwards, CD19+ B cells were separated from PBMCs
by immuno-magnetic sorting using anti-CD19 magnetic microbeads (REAlease CD19
MicroBeads Kit, Miltenyi Biotec, Auburn, CA, USA). The CD19+ B cells obtained from
immuno-magnetic sorting displayed a purity yield greater than 98%, which was determined
by flow cytometry analysis.

2.3. Droplet-Based Single-Cell Sequencing

Using the single-cell 3′ Library and Gel Bead Kit V3.1 (10X Genomics, 1,000,121) and
the Chromium Single Cell G Chip Kit (10X Genomics, 1,000,120), the cell suspension was
loaded onto the Chromium Single Cell Controller (10X Genomics) to generate single-cell
gel beads in an emulsion according to the manufacturer’s protocol. In short, single cells
were suspended in phosphate-buffered saline containing 0.04% bovine serum albumin.
Approximately 1200 cells/µL were added to each channel, and the target number of cells
to be recovered was estimated to be approximately 6000. Captured cells were lysed, with
the released RNA barcoded through reverse transcription in individual GEMs. Reverse
transcription was performed on a Veriti 96 Well Thermal Cycler (ThermoFisher) at 53 ◦C for
45 min, followed by 85 ◦C for 5 min, and then held constant at 4 ◦C. The generated cDNA
was then amplified, with the quality assessed using the 4200 TapeStation System (Agilent).
According to the manufacturer’s instructions, scRNA-seq libraries were constructed using
the Single Cell 3′ Library and Gel Bead Kit V3.1. Finally, the libraries were sequenced using
an Illumina NextSeq500/550 High Output Reagent Cartridge v2 300 cycle sequencer, with
a sequencing depth of at least 100,000 reads per cell using the paired-end strategy.

2.4. Single-Cell RNA Sequencing

First, Cell Ranger v 6.0.0 (10X Genomics) was used to demultiplex the cellular bar-
codes and align the reads to the human transcriptome (human reference version GRCh38)
for each sample [12]. Second, each output, which was a raw unique molecular identi-
fier (UMI) count matrix, was transformed into a Loupe Browser object. We filtered out
genes that were expressed in less than five cells by using the Loupe Browser v 6.0.0 func-
tion. Several criteria were then applied to each dataset to remove cells of low quality:
cells with fewer than 200 genes or more than 6000 genes. Data processing and anal-
ysis were performed with Prism GraphPad V5.0d software (GraphPad Software, San
Diego, CA, USA).

2.5. Single-Cell V(D)J Sequencing and Data Processing

Single-cell V(D)J sequencing was performed following the protocol provided by the
10X Genomics Chromium Single Cell Immune Profiling Solution. The analysis pipelines
in Cell Ranger (10X Genomics, version 6.0.0) were used for single-cell sequencing data
processing and were loaded in the Loupe V(D)J Browser v 4.0.0. V(D)J sequence assembly
and paired clonotype calling were performed using cellranger vdj with reference = refdata-
cellranger-vdj-GRCh38-alts-ensembl-6.0 for each sample. Data analysis was performed
using the tidyverse package v1.3.0.

3. Results
3.1. Study Design and Profiling of B Cells

In order to evaluate the different signatures of B cell receptors in the B lymphocytes of
COVID-19 patients that needed extracorporeal membrane oxygenation (ECMO) in response
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to acute respiratory distress syndrome (ARDS), we performed scRNA-seq and single-cell
BCR sequencing on the CD19+ immune cells of a COVID-19 patient under ECMO who later
survived the treatment (COVID ECMO S), a COVID-19 patient under ECMO who later died
(COVID ECMO D), one COVID-19-recovered patient who did not receive ECMO support
(COVID R), and one healthy control who tested negative for both a nasopharyngeal swab
(NPS) and anti-Spike and anti-N IgG/IgM. In Table 1, we report the characteristics of the
patients included in this study. After filtering, 7884 B cells were obtained for the single-cell
transcriptome data and 7733 B cells were obtained for V(D)J analysis. The scRNA-seq
and single-cell paired BCR analysis were then combined, with the study limited to 5830 B
lymphocytes having full-length productive paired IGH-IGK/IGL.

Table 1. Characteristics of patients and control.

ID Patients Age Gender Comorbidities Severity Clinical
Profile Co-Infections Treatments Hospitalization

(Days)

COVID
ECMO S 74 M

Vasculopathy
and

Diabetes
C ARDS - Dexamethasone 30 total

(10 ECMO)

COVID
ECMO D 67 M HTN C

ARDS
and

Sepsis

MDR
Xanthomonas
(VAE), MDR

Acinetobacter
(UTI),

C.albicans
(BSI)

CPAP and
Dexam-

ethasone

40 total
(12 NIV + 7 ECMO)

COVID R 42 F - A - - -
HEALTHY

CTRL 45 M - - - - -

Abbreviations: HTN, hypertension; C, critical; A, asymptomatic; ARDS, acute respiratory distress syndrome;
MDR, multidrug-resistant; VAE, ventilator-associated events; UTI, urinary tract infection; BSI, bloodstream
infection; CPAP, continuous positive airways pressure; NIV, non-invasive ventilation; ECMO, extra corporeal
membrane oxygenation.

3.2. Features of B Cell Subsets

We started our analysis by assigning cell identities based on B cell surface marker
expression as indicated below. According to the average log fold change of the canonical
markers, we identified four clusters: (1) memory B cells; (2) naïve cells; (3) activated B cells,
and (4) plasma cells (Figure 2A). Memory B cell subsets were identified by the presence
of the typical memory marker CD27, while naïve B cells expressed the heavy chain IgD
immunoglobulin (IGHD) [13]. Activated B cells expressed high levels of CD79, a typical
marker of B cell activation [14], while plasma cells, together with CD79, expressed a high
level of X-box binding protein 1 (XBP1), a transcriptional regulator critical for supporting
the cellular reprograming activities during B-to-plasma-cell transition, which permits
antibody release during terminal differentiation [15]. All B cell subpopulations analyzed
expressed the membrane-spanning 4A1 (MS4A1 or CD20) marker, which unequivocally
identifies B cells. In order to assess differences in the B cell populations present in the
four samples, we investigated the relative frequencies of the four clusters in each sample
(Figure 2B). In general, naïve cells and activated B cells accounted for the largest portion
of B cells in each sample. Among COVID-19 patients, it is notable that, in the COVID
ECMO D patient, the naïve cell to activated B cell ratio was different from the other samples
with a shift towards the activated B cell population (Figure 2B,C). We also investigated the
transcriptional signatures of the COVID-19 patients’ B cell populations (Figure 2D).
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Figure 2. Features of B cell subsets. (A) Violin plots show the expression distribution of canonical cell
markers in B cell subsets. (B) Proportion of B cell clusters in each sample. (C) t-SNE projection of B
cells from all four samples. Each dot corresponds to a single cell, colored according to cell clusters.
(D) Heat map representation of differentially expressed genes of B cell populations in the COVID
ECMO S, COVID ECMO D, COVID R, and the healthy control. Genes with a maximum adjusted
p-value of 0.01 and an absolute value of log2 (fold change) >0.5 were considered to be differentially
expressed genes.
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3.3. Transcriptional Signatures of Different B Cell Subpopulations of COVID-19 Patients

Once the clusters present in the B cell populations of the COVID ECMO S, COVID
ECMO D, COVID R, and healthy control were established, we investigated the transcrip-
tional profiles of the clusters in depth to find clue genes and pathways potentially involved
in the worsening of clinical outcomes (Figure 3A).
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p-value of 0.01 and an absolute value of log2 (fold change) >0.5 were considered to be differentially
expressed genes. (B) The graphs show the sequencing results of highly deregulated mRNA in the
COVID ECMO S, COVID ECMO D, COVID R, and healthy control.

Among the deregulated genes in the naïve B cells, we found a downregulation of
the major histocompatibility complex, Class II, DQ Alpha 1 (HLA-DQA1), and the mito-
chondrial gene MT-ATP8 (Mitochondrially Encoded ATP Synthase Membrane Subunit 8)
in COVID-19-infected subjects compared to the uninfected subject (Figure 3B). Interest-
ingly, we discovered that MT-ATP8 expression levels were associated with disease severity;
in particular, the two COVID-19 patients receiving ECMO had near-zero MT-ATP8 ex-
pression compared to the no-ECMO patient and the healthy control. The most notable
downregulated gene in activated B cells was the ribosomal protein S4, Y-Linked 1 (RPS4Y1),
which has been linked to HLA-DQA1 and has been implicated in resistance to treatment
with corticosteroids and cyclosporin A (Figure 3B). The memory B cell cluster showed
downregulation of three genes: FXYD, Domain-Containing Ion Transport Regulator 5;
HLA-DRB1, a beta chain of antigen-presenting major histocompatibility complex class II
(MHCII) molecule; and RPS20, ribosomal protein S20 (Figure 3B). The profiling of plasma
cell clusters revealed a considerable downregulation of an immunoglobulin heavy chain
variable region, IGHV3-73, which has been described as permitting antigen-binding activity
and immunoglobulin receptor-binding activity (Figure 3B).

3.4. IgH Class Switching of B Cells and CDR3 Length and Specific Rearrangements
of V(D)J Genes

To delineate the dynamic changes in IgH class switching, which is crucial for a compre-
hensive analysis of the BCR repertoire, we evaluated the distribution of Immunoglobulins,
including IgA, IgD, IgG, and IgM in the COVID ECMO S, COVID ECMO D, COVID R,
and healthy control (Figure 4A). In the healthy control, 61.3% of B cells expressed the IgM
isotype, followed by IgG (22.4%), IgA (16.2%), and IgD (0.1%). Of COVID ECMO D patient
B cells, 55.8% expressed the IgM isotype, followed by IgG (28.6%), IgA (18.2%), and IgD
(2.3%). Of COVID ECMO S patient B cells, 70.2% expressed the IgM isotype, followed
by IgG (18.5%), IgA (11.3%), and IgD (0.1%), while 65.2% of COVID R patient B cells
expressed the IgM isotype, followed by IgG (13.9%), IgA (18%), and IgD (2.8%) (Figure 4B).
Interestingly, compared to the other subjects involved in the study, the ratio of (IgA +
IgG) to (IgD + IgM) increased in the COVID ECMO D patient, suggesting an intensive
antibody response.

The distribution of clonally increased B cells in the COVID ECMO S, COVID ECMO
D, COVID R, and healthy control was studied. The percentage of clonally expanded cells in
COVID ECMO D patient B cells was 1.97%, which was somewhat higher than in the other
three subjects, specifically: 0.56% in COVID ECMO S, 1.0206% in COVID R, and 1.14% in
the healthy control (Figure 4C).

The CDR3 length of the BCR heavy chain in the COVID ECMO S, COVID ECMO D,
and COVID R patients, and in the healthy control, ranged from 6 to 51 amino acids (aa),
with an average of 14 aa for each sample (Figure 4D), and no significant difference between
the samples.

In order to investigate the V(D)J rearrangements of the BCR heavy chain in our four
samples, we detected the differences in usage frequency of the V, D, and J gene segments. A
total of 53 IGHV gene segments, 27 IGHD gene segments, and 6 IGHJ gene segments were
identified from all of the B cells. We generated a distribution histogram of IGHV, IGHD,
and IGHJ gene usage frequency for the total number of B cells in our samples. We assessed
that IGHJ4 was most frequently used in all samples, followed by IGHJ6, IGHJ5, and IGHJ3,
but with no significant differences related to the disease status. IGHJ1 and IGHJ2 showed
the lowest utilization (Figure S1).

The analysis of selective usage of IGHD and IGHV genes is summarized in Figures
S2 and S3. In our samples, we detected an over-representation of the IGHD3 and IGHD2
families. Among the IGHD3 genes, the most expressed is IGHD3-22, which was highly
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expressed in both COVID-19 patients receiving ECMO (22.94% COVID ECMO D; 17.51%
COVID ECMO S), compared to COVID R (15.45%) and the healthy control (13.60%), while
the least expressed is IGHD3-3, in both COVID patients that underwent ECMO (8.72%
COVID ECMO D; 10.31% COVID ECMO S), compared to COVID R (17.89%) and the
healthy control (11.48%) (Figure S2).

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 8 
 

 

 

Figure 4. (A) t-SNE plot of B cells colored by immunoglobulin heavy chain expression. (B) The pro-

portion of different immunoglobulin isotypes in each sample. (C) The pie plot shows the proportion 

of clonally expanded B cells in the COVID ECMO S, COVID ECMO D, and COVID R patients and 

in the healthy control. (D) The distribution of immunoglobulin heavy chain (IGH) CDR3 length. (E) 

The bubble chart shows the usage frequency of V–J gene combination in each sample. 

In order to investigate the V(D)J rearrangements of the BCR heavy chain in our four 

samples, we detected the differences in usage frequency of the V, D, and J gene segments. 

A total of 53 IGHV gene segments, 27 IGHD gene segments, and 6 IGHJ gene segments 

were identified from all of the B cells. We generated a distribution histogram of IGHV, 

IGHD, and IGHJ gene usage frequency for the total number of B cells in our samples. We 

assessed that IGHJ4 was most frequently used in all samples, followed by IGHJ6, IGHJ5, 

and IGHJ3, but with no significant differences related to the disease status. IGHJ1 and 

IGHJ2 showed the lowest utilization (Figure S1). 

The analysis of selective usage of IGHD and IGHV genes is summarized in Figures 

S2 and S3. In our samples, we detected an over-representation of the IGHD3 and IGHD2 

families. Among the IGHD3 genes, the most expressed is IGHD3-22, which was highly 

expressed in both COVID-19 patients receiving ECMO (22.94% COVID ECMO D; 17.51% 

COVID ECMO S), compared to COVID R (15.45%) and the healthy control (13.60%), while 

the least expressed is IGHD3-3, in both COVID patients that underwent ECMO (8.72% 

COVID ECMO D; 10.31% COVID ECMO S), compared to COVID R (17.89%) and the 

healthy control (11.48%) (Figure S2). 

Regarding the IGHV genes, we detected that the most represented is the IGHV3 fam-

ily, especially IGHV3-23, which was expressed less in both COVID patients that under-

went ECMO (8.85% COVID ECMO D; 10.14% COVID ECMO S), compared to COVID R 

(13.70%) and the healthy control (13.14%), and IGHV3-33, with no significant differences 

related to the disease status (Figure S3). 

A total of 318 unique V–J combinations were identified in all of the whole B cells 

(Figure 4E). The top paired V–J frequency in the COVID patients receiving ECMO was 

IGHV3-33/IGHJ4 (4.68% COVID ECMO D; 5.33% COVID ECMO S), compared to COVID 

R (4.02%) and the healthy control (4.22%). 

4. Discussion 

In the present study, we aimed to perform a comprehensive analysis of the BCR rep-

ertoire, which is the genetic source of neutralizing antibodies (nAbs) [16], in COVID-19 

patients that underwent ECMO using a single-cell approach. Since the quantification of 

gene expression is necessary to uncover disease etiology and progression [17], our goal 

Figure 4. (A) t-SNE plot of B cells colored by immunoglobulin heavy chain expression. (B) The pro-
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(E) The bubble chart shows the usage frequency of V–J gene combination in each sample.

Regarding the IGHV genes, we detected that the most represented is the IGHV3 family,
especially IGHV3-23, which was expressed less in both COVID patients that underwent
ECMO (8.85% COVID ECMO D; 10.14% COVID ECMO S), compared to COVID R (13.70%)
and the healthy control (13.14%), and IGHV3-33, with no significant differences related to
the disease status (Figure S3).

A total of 318 unique V–J combinations were identified in all of the whole B cells
(Figure 4E). The top paired V–J frequency in the COVID patients receiving ECMO was
IGHV3-33/IGHJ4 (4.68% COVID ECMO D; 5.33% COVID ECMO S), compared to COVID
R (4.02%) and the healthy control (4.22%).

4. Discussion

In the present study, we aimed to perform a comprehensive analysis of the BCR
repertoire, which is the genetic source of neutralizing antibodies (nAbs) [16], in COVID-19
patients that underwent ECMO using a single-cell approach. Since the quantification of
gene expression is necessary to uncover disease etiology and progression [17], our goal
was to shed light on the complex mechanisms that drive the immune response to the
virus stimulus. The cohort included a COVID-19 patient who died after receiving ECMO
(COVID ECMO D), a COVID-19 patient who survived the treatment (COVID ECMO S), a
COVID-19-recovered patient without ECMO support (COVID R), and one healthy control
who tested negative for both a nasopharyngeal swab (NPS) and anti-Spike and anti-N
IgG/IgM. The first step was to identify four clusters—memory B cells, naïve cells, activated
B cells, and plasma cells—on CD19+ immune B cells based on the average log fold change
of the canonical markers, and we assessed the relative frequencies of the four clusters in
each sample. We found that naïve cells and activated B cells accounted for the largest
portion of B cells in each sample but, in the COVID ECMO D patient, the naïve cell to
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activated B cell ratio was different from the other samples, with a shift towards activated B
cell populations.

The transcriptomic analysis highlights different signatures of the B cell subpopulations
among the subjects studied. In particular, the naïve cells of COVID-19-infected subjects
showed downregulation of MT-ATP8 and HLA-DQA1. The first is a mitochondrial gene
that encodes for an ATP synthase responsible for changing cellular energy capacity, increas-
ing mitochondrial oxidative stress and/or modulating apoptosis [18]. Interestingly, we
observed that its levels of expression were related to the severity of the disease. Indeed,
the two COVID-19 patients receiving ECMO showed lower MT-ATP8 expression, close to
zero, compared to the no-ECMO patient and the healthy control. The second is known to
bind peptides derived from antigens that access the endocytic route of antigen-presenting
cells (APC) and present them on the cell surface for recognition by the CD4 T-cells. In acti-
vated B cells, the ribosomal protein S4, Y-Linked 1 (RPS4Y1), described as being involved,
together with HLA-DQA1, in a resistance to the treatment with corticosteroids combined
with cyclosporin A, commonly used in autoimmune diseases, auto-inflammatory diseases,
and transplant rejection [14], was significantly downregulated. The memory B cell clus-
ter showed downregulation of three genes: (1) FXYD, Domain-Containing Ion Transport
Regulator 5, a glycoprotein that functions in the upregulation of chemokine production
and is involved in the reduction of cell adhesion via its ability to downregulate E-cadherin;
(2) HLA-DRB1, a beta chain of the antigen-presenting major histocompatibility complex
class II (MHCII) molecule, known to guide antigen-specific T-helper effector functions,
both in antibody-mediated immune responses and macrophage activation, to ultimately
eliminate infectious agents and transformed cells [19–25]; and (3) RPS20, ribosomal protein
S20, for which downregulation contributes to a stress phenotype by suppressing genomic
and cellular stability [26]. Plasma cell cluster profiling showed significant downregula-
tion of an immunoglobulin heavy chain variable region, IGHV3-73, described as enabling
antigen-binding activity and immunoglobulin receptor-binding activity and predicted to
be involved in several processes, including activation of the immune response and the
defense response to other organisms, as well as phagocytosis.

We also evaluated the clonality of B cells in our cohort and found no significant
differences, apart from a slight difference in clonally expanded cells in COVID ECMO D
patient B cells (1.97%), versus the B cells of the other three subjects studied: 0.56% in COVID
ECMO S, 1.0% in COVID R, and 1.14% in the healthy control. We also evaluated the B
cell immunoglobulin distribution (IgA, IgD, IgG, and IgM) and found that the ratio of IgA
+ IgG to IgD + IgM was greater in the COVID ECMO D patient, suggesting an intensive
memory antibody response. Lastly, we assessed the V(D)J rearrangements of the BCR heavy
chain of our four samples and determined that the IGHV3, IGHJ4, and IGHD3/IGHD2
families were the most frequently used in all samples that we analyzed. These results are
consistent with previously published data, in which the authors also reported the highest
frequency of the IGHV3/IGHJ4 pair in symptomatic patients [27]. In addition, among
the IGHD3 genes, the most expressed was IGHD3-22, which was highly expressed in
both COVID-19 patients that underwent ECMO (22.94% COVID ECMO D; 17.51% COVID
ECMO S), compared to COVID R (15.45%) and the healthy control (13.60%). In a recent
study [28], the authors identified more than 100 anti-SARS-CoV-2 antibodies containing a
conserved YYDRxG motif exclusively encoded by the IGHD3-22 gene. The presence of this
motif is strictly related to a high neutralizing activity against different SARS-CoV-2 variants,
as well as other SARS-related coronaviruses [28]. Conversely, IGHD3-3 is expressed less in
both COVID-19 patients that underwent ECMO (8.72% COVID ECMO D; 10.31% COVID
ECMO S), compared to COVID R (17.89%) and the healthy control (11.48%). Finally, a
total of 318 unique V–J combinations were identified from all the B cells. The top paired
V–J frequency in the COVID-19 patients, COVID ECMO D and COVID ECMO S, were
4.68% and 5.33%, respectively, compared to COVID R (4.02%) and the healthy control
(4.22%). Our study, through the integration of transcriptomic data and single-cell paired
BCR profiles, revealed BCR repertoire changes in COVID-19 patients with severe illness,
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which is consistent with other studies focusing on subjects infected and/or vaccinated
against SARS-CoV-2 subjects [29].

5. Conclusions

The present study aimed to perform a comparative analysis of the BCR repertoire
of COVID-19 patients with different clinical profiles and outcomes: a COVID-19 patient
receiving ECMO who later died, a COVID-19 patient receiving ECMO who later survived
treatment, a COVID-19 patient who recovered without ECMO support, and one healthy
control. After the identification of four clusters on CD19+ immune B cells—memory B
cells, naïve cells, activated B cells, and plasma cells—we evaluated the BCR repertoires
from different points of view. (1) Firstly, we assessed the transcriptome highlighting
different signatures of the B cell subpopulations in COVID-19-infected subjects showing a
downregulation of FXYD, HLA-DRB1, and RPS20 in memory B cells; a downregulation of
MT-ATP8 and HLA-DQA1 in naïve cells; a downregulation of RPS4Y1 in activated B cells;
and a downregulation of IGHV3-73 in the plasma cells. (2) We then evaluated the clonality
of B cells with no strong differences found. (3) We appraised the B cell immunoglobulin
distribution, finding an increased ratio of IgA + IgG to IgD + IgM in the COVID ECMO
D patient, suggesting an intensive memory antibody response. (4) Lastly, we assessed
the V(D)J rearrangements of the BCR heavy chain in our four samples and found that the
IGHV3, IGHJ4, and IGHD3/IGHD2 families were the most frequently used.

The study’s main weakness is the small sample size, which prevents the results from
being meaningful for stating any of the processes involved in the immune response to SARS-
CoV-2. However, given the uniqueness of the disease’s characteristics and the molecular
approach used, single-cell sequencing, which is based on a large number of events/cells
and analyzes each cell as an independent sample, we hope that our computational analysis
will provide novel insights for large population cohort studies. Our findings uncover that
the V(D)J rearrangements of the BCR heavy chain of ECMO COVID-19 patients analyzed
are consistent with other studies focusing on subjects infected with and/or vaccinated
against SARS-CoV-2. As a result, we plan to conduct future clinical studies on large
cohorts of COVID-19 patients in order to better analyze and compare the BCR repertoire in
patient subgroups.
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