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Abstract: Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and
cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low
tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality.
Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement
from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong
buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore,
we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the
underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo
had significantly higher meat color redness but lower amino acid content and higher shear force
compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated
metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and
nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation
analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid,
NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid
content, indicating their potential as candidate genes and biological indicators associated with meat
quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat
quality.
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1. Introduction

Meat produced from buffalo has gained increased popularity owing to its notably
reduced fat and cholesterol levels, with it being considered as “the healthiest meat among
red meats for human consumption” [1]. However, buffalo meat is often regarded as having
inferior quality due to its darker color and reduced tenderness, with it often failing to meet
the expectations of consumers [2]. Therefore, the large-scale development of the buffalo
meat industry is restricted, and its enormous economic potential has not been effectively
utilized. Currently, research on buffalo meat quality focuses on meat characteristics, while
investigation into the underlying regulatory mechanisms of buffalo meat quality remains
limited [2]. Identifying the influencing factors of key meat quality traits in buffalo is
beneficial for improving the overall quality of buffalo meat.

Transcriptomics and metabolomics are effective tools in the investigation of the regu-
latory mechanisms underlying functional genes and differential metabolites within buf-
falo and cattle meat [3]. For instance, several crucial lncRNAs such as MSTRG.48330.7,
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MSTRG.30030.4, and MSTRG.203788.46 were identified through RNA-seq analysis, which
may have an impact on the growth of buffalo muscles [4]. A study was conducted utilizing
the GC-MS metabolomics technique to investigate the differential changes in metabolites
of buffalo rumen under heat stress conditions [5]. At present, there is no application of
metabolomics in assessing buffalo meat quality. The single omics technique of RNA-seq
is not sufficient for a clear understanding of biological processes, and metabolomics can
further analyze the auxiliary metabolic changes caused by post-transcriptional regulation
to accurately reflect the physiological status of the organism [6,7]. Therefore, this study
aimed to jointly analyze transcriptomics and metabolomics data of Xinglong buffalo and
Hainan cattle to explore the underlying regulatory mechanisms in meat quality differences.

The Xinglong buffalo is an indigenous river-type buffalo breed in Hainan, with heat
and humidity resistance, disease resistance, and other characteristics, with it being a meet
buffalo breed. Hainan cattle, similar to the Xinglong buffalo, inhabit the Hainan region. As
the main indigenous beef cattle breed, Hainan cattle are favored by local consumers because
of their good meat quality and fresh taste [8,9]. This study used Hainan cattle as a control
and selected Xinglong buffalo and Hainan cattle grazing in the same area as experimental
subjects. We aimed to identify the key factors that caused the differences in meat quality
characteristics between Xinglong buffalo and Hainan cattle through transcriptomics and
metabolomics, in order to reveal the distinction between molecular regulatory mechanisms.
It will provide important insights into buffalo meat quality regulation and serve as a
reference for molecular breeding in buffalo meat production.

2. Materials and Methods
2.1. Experimental Animals and Sample Collection

Eight healthy Hainan cattle and eight healthy Xinglong buffalo, with an average age of
18 months, were randomly selected and evenly divided into two groups (H group, n = 8, all
males; X group, n = 8, all males). All of the animals had been castrated. Both groups were
grazed freely on the same local grass in Ding’an County without supplemental feeding
from the time they were weaned at 3 months old until they were slaughtered at 18 months
of age. Approximately 45 min after slaughter, the longissimus dorsi (only a steak) between
the twelfth and thirteenth ribs were chosen for on-site quality assessment. One-half of the
muscle samples were frozen in liquid nitrogen and then stored at −80 ◦C for total RNA
and metabolite extraction (H group: n = 4; X group: n = 4). Additionally, the rest of the
muscle samples were placed in an icebox and transported back to the laboratory for storage
in a −20 ◦C refrigerator for the determination of crude fat (Soxhlet extractor, Jinan, China),
crude protein content (BUCHI automatic Kjeldahl nitrogen analyzer K-375, Shanghai,
China), and amino acid composition (LC-MS), among other meat quality indicators (H
group: n = 4; X group: n = 4). All procedures were approved by the Academic Committee
of Hainan University, following Animal Welfare and Ethical guidelines (approval code:
HNUAUCC-2022-00010).

2.2. Meat Quality Determination

According to the method of Hoa et al. [10], the color of the meat was measured along
the cross-section of the samples using a portable colorimeter, and the average value was
taken three times at different positions. The pH values of the samples were measured
using a pH meter, which can be inserted into the meat immediately, at 45 min and 24 h
after slaughter. Similar to the color measurement, the average value was taken three
times at different positions. The drip loss was determined according to the description by
Wang et al. [11]. Firstly, the muscle was trimmed along the fiber direction into strips of
5 cm × 3 cm × 2 cm in length, width, and height and weighed (W1). Then, the meat strip
was hooked by a fine iron wire at one end hung vertically in a foam box and refrigerated at
4 ◦C for 24 h. We measured the weight (W2) and calculated the drip loss using the following
formula. Drip loss (%) = [(W1 − W2)/W1] × 100%. Each sample was repeated three times,
and the average result was taken. The shear force of the muscle samples was determined
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by referring to the method of Huang et al. [12]. The muscle samples were trimmed to
6 cm × 3 cm × 3 cm and then placed in a constant-temperature water bath. The samples
were heated until the thermometer measured the center temperature of the meat block as
70 ◦C and continued to cook at this temperature for an additional 20 min. After cooling to
room temperature, samples were taken along the direction of muscle fiber growth using a
circular punch sampler with a diameter of 1.27 cm, and the shear force was then measured
using a shear instrument. The measurement was repeated five times, and the average
value was taken. Crude protein content was determined by following the methods by Bai
et al. [13], and crude fat, crude ash, and moisture content were determined by referring
the methods of Bostami et al. [14]. The amino acid content of the muscle samples was
measured following the method of Wang et al. [15].

2.3. RNA-Seq and Transcriptome Data Analysis

Total RNA was extracted from the muscle samples following the instructions for TRlzol
Reagent (Life Technologies, Carlsbad, CA, USA). The quality of RNA was assessed using a
NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA), while the integrity of
the RNA was evaluated using an Agilent Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, USA) with a RNA Nano 6000 detection kit. Biomarker Technologies Co.,
Ltd. (Beijing, China) carried out the construction of gene libraries and RNA-seq using
qualified RNA samples. After the libraries passed quality control, we proceeded with
PE150 pattern sequencing by utilizing the Illumina NovaSeq6000 sequencing platform. To
obtain clean data, we employed perl scripting to remove reads that contained connectors
and low-quality reads (reads with a proportion of N > 10% or a proportion of bases
with Q ≤ 10 exceeding 50%) from the raw data. The clean data were compared with the
reference genome (Bos_taurus_UMD_3.1.1) using Hisat2 version 2.0.4. The overview of
the sequencing reads alignment to the reference genome was presented in Table S1. Gene
expression levels were quantified by fragments per kilobase per million reads (FPKM), and
differential gene expression analysis of the two groups of samples was conducted through
the utilization of DESeq2 version 1.30.1. Genes with a |log2 (fold change, FC)| > 1 and a
false discovery rate (FDR) < 0.01 were deemed DEGs. The function of DEGs was annotated
through databases such as Gene Ontology (GO) and the KEGG Ortholog database (KO).
The DEGs underwent GO enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis using clusterProfiler version 4.4.4.

2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The extracted total RNA from the samples was converted to cDNA through reverse
transcription, and the validation of the selected DEGs was conducted using qRT-PCR.
The GAPDH gene was used as the internal reference gene. The Primer-BLAST tool of the
NCBI was utilized to design specific primers for the DEGs, and the relevant gene names
and primer sequences were in Table S2. The qRT-PCR was carried out using the Biosharp
real-time fluorescence quantitative reagent kit on the QuantStudioTM 5 Real-Time PCR
Instrument (Thermo Fisher Scientific, Wilmington, DE, USA). The program used was as
follows: 5 min at 95 ◦C; 10 s at 95 ◦C; and 30 s at 60 ◦C for 40 cycles. The relative expression
levels of the genes were determined using the 2−∆∆Ct method [16], and statistical analysis
was conducted using SPSS version 20.0 with the one-way analysis of variance (ANOVA).
Significance was defined as p-value < 0.05.

2.5. LC-MS/MS Metabolomics Analysis

Initially, a muscle sample weighing 50 mg and 1000 µL of an extract containing an
internal standard (L-2-chlorophenylalanine at a concentration of 20 mg/L) was introduced
and agitated for 30 s. After complete blending, steel beads were introduced and ground
at a frequency of 45 Hz for a duration of 10 min, followed by sonication in an ice-water
bath for another 10 min. The samples were placed at −20 ◦C for 1 h and then subjected
to centrifugation at 4 ◦C for 15 min at 12,000 rpm. Next, 500 µL of supernatant was taken
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out in a tube and dried, followed by the addition of 160 µL of extraction solution was
added to redissolve the sample. The samples were vortexed for 30 s, the centrifugation and
ultrasonic treatment process described above was repeated, and the supernatant was then
collected for LC-MS/MS analysis.

The liquid chromatography system and chromatographic column employed for the
study were identical to those utilized by Wang et al. [17]. The liquid chromatographic
mobile phase conditions were as follows: positive ion mode (POS) and negative ion mode
(NEG) mobile phase A was 0.1% formic acid aqueous solution, and mobile phase B was
a 0.1% formic acid acetonitrile solution; at 0–10 min, 98% A phase and 2% B phase; at
10–13 min, 2% A phase and 98% B phase; and at 13–15 min, 98% A phase and 2% B phase.
The flow rate was 400 µL/min, and the injection volume was 1 µL. The ESI ion source
operating parameters were as follows: capillary voltage of 2500 V (POS) or −2000 V (NEG);
cone hole voltage of 30 V; ion source temperature of 100 ◦C; desolvent gas temperature
of 500 ◦C; backblast gas flow rate of 50 L/h; desolvent gas flow rate: 800 L/h; and mass
to nucleus ratio (m/z) acquisition range of 50–1200. Finally, the acquisition of data was
carried out using the MSe mode controlled by MassLynx version 4.2. During each cycle,
simultaneous dual-channel data acquisition was carried out for both low and high collision
energies. The lower one was set at 2 V, while the higher one spanned from 10 to 40 V. The
scan frequency utilized for generating one mass spectral map was 0.2 s.

The raw data were subjected to processing through the utilization of Progenesis QI
version 3.0, such as peak extraction, alignment, and other related procedures. The pro-
cessed data were then compared and annotated with relevant databases (including KEGG,
HMDB, and LIPID MAPS databases). Metabolite accumulation specificity was studied
using principal component analysis (PCA) and orthogonal partial least-squares discrimi-
nant analysis (OPLS-DA). Metabolites with significant differences were screened using a
threshold of variable important in projection (VIP) ≥ 1, p-value < 0.05, and |log2 FC| > 1,
and the significantly changed differentially accumulated metabolites (DAMs) were then
analyzed for metabolic pathway and functional enrichment using the KEGG database.

2.6. Transcriptome and Metabolome Joint Analysis

To integrate the transcriptomic and metabolomic data, R was used to calculate Pearson
correlation coefficients between the DEGs and DAMs [18]. DEGs and DAMs with |r| >0.80
and a p-value < 0.05 were filtered out based on strong correlations, and the KEGG database
was used for joint biological annotation. Cytoscape version 3.9.1 was used to visualize
the network relationships between differentially expressed genes and metabolites in the
significantly enriched pathways [19]. Furthermore, the correlation between some DEGs
and DAMs and phenotypic traits was researched through Pearson correlation analysis.

2.7. Statistical Analysis

All data were represented as the mean ± standard deviation (SD). Statistical analysis
was conducted using SPSS version 20.0 with the one-way analysis of variance (ANOVA).
Significance was defined as a p-value < 0.05. GraphPad Prism version 8.0.2 was used to
visualize the qRT-PCR results. Cytoscape version 3.9.1 was used to visualize the network
relationships between DEGs and DAMs.

3. Results
3.1. Analysis of Meat Characteristics and Amino Acid Composition

The Xinglong buffalo group showed significantly higher a* values (14.14 ± 1.05 vs.
12.77 ± 1.12, p < 0.05) and shear force (76.77 ± 7.47 N vs. 58.14 ± 16.14 N, p < 0.05) compared
to the Hainan cattle group, while the other meat quality traits showed no notable disparities
between the two groups. The X group also exhibited significantly lower levels of total
amino acids (TAAs), essential amino acids (EAAs), non-essential amino acids (NEAAs),
and flavor amino acids (FAAs) compared to the H group (p < 0.05) (Table 1). According to
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the amino acid composition analysis, it was observed that the X group had significantly
lower levels of six EAAs, four FAAs, and one NEAA (Table 2).

Table 1. Analysis of meat quality characteristics and amino acids.

Item H X p-Value

Meat quality characteristics pH 45 min 6.22 ± 0.13 6.21 ± 0.18 0.918
24 h 5.29 ± 0.31 5.14 ± 0.08 0.229

Peat color L 30.59 ± 1.21 30.11 ± 1.60 0.536
a 12.77 ± 1.12 a 14.14 ± 1.05 b 0.034
b 5.55 ± 1.13 5.23 ± 0.95 0.569

Shear force (N) 58.14 ± 16.14 a 76.77 ± 7.47 b 0.015
Drip loss (%) 3.77 ± 1.06 4.77 ± 1.20 0.121
Moisture (%) 70.59 ± 2.68 73.69 ± 0.91 0.108

Ash (%) 4.33 ± 0.03 4.52 ± 0.09 0.206
Crude fat (%) 3.31 ± 1.44 2.90 ± 0.66 0.667

Crude protein (%) 25.89 ± 2.32 23.00 ± 0.68 0.083
Amino acids TAA (g/100 g) 16.09 ± 0.74 a 13.63 ± 1.39 b 0.035

EAA (g/100 g) 6.50 ± 0.29 a 5.44 ± 0.62 b 0.036
NEAA (g/100 g) 9.59 ± 0.46 a 8.19 ± 0.77 b 0.036
FAA (g/100 g) 6.76 ± 0.32 a 5.71 ± 0.52 b 0.026

H: Hainan cattle; X: Xinglong buffalo. TAAs: total amino acids; EAAs: essential amino acids (Lys + Met + Thr +
Val + Tyr + Phe + His + Arg); NEAAs: non-essential amino acids (TAAs − EAAs); FAAs: flavor amino acids (Glu
+ Asp + Ala + Arg + Gly). Different lowercase letters in the same row indicate significant differences (p < 0.05).

Table 2. Analysis of amino acid compositions.

Amino Acids (mg/100 g) H X p-Value

Histidine 703.28 ± 26.78 618.66 ± 85.59 0.153
4-Hydroxy-L-Proline 62.96 ± 13.48 53.77 ± 4.68 0.307

Arginine 1035.82 ± 46.33 a 863.49 ± 91.08 b 0.027
Asparagine 0.18 ± 0.09 0.12 ± 0.03 0.327
Glutamine 0.97 ± 0.45 0.53 ± 0.06 0.145

Serine 652.55 ± 41.72 560.99 ± 56.45 0.065
Glycine 935.51 ± 50.60 a 813.65 ± 54.36 b 0.029

Aspartic acid 1612.44 ± 78.86 a 1346.59 ± 129.67 b 0.023
Glutamic acid 1913.71 ± 94.63 a 1600.13 ± 146.62 b 0.021

Threonine 845.14 ± 39.25 a 722.31 ± 71.07 b 0.040
Alanine 1258.15 ± 73.11 1084.39 ± 104.57 0.056

Gamma-Aminobutyric acid 1.44 ± 0.35 1.07 ± 0.15 0.148
Proline 892.72 ± 55.23 a 763.97 ± 71.79 b 0.049

D-2-Aminobutyric acid 0.24 ± 0.15 0.25 ± 0.09 0.932
Lysine 1409.18 ± 103.03 a 1114.90 ± 178.08 b 0.048
Cystine 21.16 ± 2.89 16.33 ± 2.30 0.064

Methionine 391.74 ± 24.23 a 325.51 ± 30.01 b 0.025
Tyrosine 667.48 ± 32.20 a 545.68 ± 57.27 b 0.018

Valine 711.07 ± 23.14 614.74 ± 66.46 0.055
Isoleucine 732.46 ± 17.87 639.48 ± 69.92 0.067
Leucine 1503.17 ± 61.82 1309.57 ± 139.75 0.071

Phenylalanine 737.14 ± 30.88 a 631.02 ± 68.46 b 0.050
Tryptophan 6.40 ± 5.11 0.90 ± 0.09 0.112

H: Hainan cattle; X: Xinglong buffalo. Different lowercase letters in the same row indicate significant differences
(p < 0.05).

3.2. Analysis of DEGs and Transcriptome Data

All samples had a Q30 above 94.83% and 6.11 Gb of clean data. The mapping effi-
ciency was 69.54–74.29% for group X and 94.96–95.90% for group H (Table S1). A total of
1800 DEGs (809 upregulated and 991 downregulated) were identified between the groups
(Figure 1A, Table S3). The distribution of DEGs is shown in Figure 1B. The heat map of
sample correlation showed good repeatability within each group (Figure 1C), while the
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clustered expression heat map of DEGs indicated a similar expression trend within each
group (Figure 1D). The qRT-PCR validated that eight randomly chosen DEGs showed
consistent expression changes with the RNA-seq data (Figure 2).
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p < 0.05, *** indicates p < 0.001).

The identified DEGs were classified and functionally annotated using GO analysis,
revealing predominant enrichment in biological process (BP), followed by cellular compo-



Curr. Issues Mol. Biol. 2023, 45 9729

nent (CC), and comparatively lower enrichment in molecular function (MF). The DEGs in
the functional categories of the BP were mainly enriched in the cellular process, in the CC,
this was mainly the cells, and in the MF, this was binding (Figure 3A). The KEGG pathway
enrichment analysis revealed that DEGs exhibited enrichment in a total of 323 pathways, of
which 34 were significantly enriched and primarily associated with amino acid metabolism
and protein processing (Figure 3B). The DEGs in glycine, serine, and threonine metabolism
as well as nicotinic acid and nicotinamide metabolism were significantly enriched. These
pathways were closely related to meat color and tenderness, suggesting that they may be
implicated in meat quality differences.
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3.3. Analysis of DAMs and Metabolomic Data

A total of 2206 metabolites were detected in two sets of muscle samples, and
95 upregulated and 20 downregulated metabolites were identified as DAMs after screening.
The heatmap of sample correlation displayed good reproducibility within each group
(Figure 4A). PCA indicated that all samples were within the 95% confidence interval, and
there was a certain degree of separation between groups (Figure 4B). The OPLS-DA model
illustrated that there were differences between the two groups, with R2Y = 0.991 and
Q2Y = 0.727, indicating that the model was valid and reliable (Figure 4C,D).
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The total annotated metabolites and the DAMs were identified between the H and
X groups were listed in Tables S4 and S5. The distribution of DAMs was depicted in
Figure 5A. The clustering heatmap of DAMs indicated that the muscle samples within the
group exhibited similar expression tendencies (Figure 5B). DAMs were annotated to 60
KEGG pathways, among which amino acid metabolism, vitamin and cofactor metabolism,
and secondary metabolite synthesis were the main entries (Figure 5C). KEGG enrichment
analysis revealed that five pathways were significantly enriched, including thyroid hor-
mone synthesis, glycine, serine, and threonine metabolism, nicotinate and nicotinamide
metabolism, ferroptosis, and diabetic cardiomyopathy (Figure 5D). The interaction between
the five significantly enriched pathways and the six DAMs enriched in those pathways was
illustrated in Figure 5E. In particular, some DAMs participated in multiple pathways, such
as L-aspartic acid, NADP+, and glutathione (which were all higher in the X group).
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3.4. Joint Analysis of Transcriptome and Metabolome Data

The integrated analysis identified glycine, serine, and threonine metabolism and
nicotinate and nicotinamide metabolism pathways enriched in both transcriptome and
metabolome profiles (Table S6). A total of 16 DEGs and 4 DAMs were enriched in these two
pathways, and the interaction network among these genes and metabolites was shown in
Figure 6A (two DEGs were not annotated, so only the network interactions of the remaining
14 DEGs with DAMs were shown). We conducted a correlation analysis between these
DEGs and DAMs (Table S7) with differential phenotypic traits. Furthermore, the DAMs in
the other three significant enrichment pathways of the metabolome were also examined
during correlation analysis with the differential phenotypic traits. The correlation analysis
showed that some DAMs and DEGs were significantly correlated with meat quality traits
(Figure 6B).
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There was a significantly positive correlation (p < 0.05) between muscle tenderness and
the metabolites D-Erythrose 4-phosphate, maleic acid, L-aspartic acid, NADP+, glutathione
(which are all higher in the X group), as well as the genes GNMT, NT5DC2, and SAO. On
the other hand, the genes NT5DC3, GAMT, GCSH, PNP, and AOC2 exhibited a noteworthy
negative correlation (p < 0.05) with tenderness. Moreover, L-aspartic acid demonstrated
a significantly positive correlation (p < 0.05) with meat color redness (a* values), while
PNP displayed a significantly negative correlation (p < 0.05) with it. Additionally, NADP+,
GNMT, SAO, CD38, and DTWD1 were all significantly negatively correlated (p < 0.05) with
EAAs, FAAs, NEAAs, and TAAs. Conversely, GAMT exhibited a noteworthy positive
correlation (p < 0.05) with EAAs, FAAs, NEAAs, and TAAs.

4. Discussion

Buffalo have the advantages of strong resistance to disease, adaption to different
climatic conditions and management systems, and the ability to digest low-quality forage
while still exhibiting a relatively faster growth rate [20]. Buffalo meat is becoming increas-
ingly popular due to its lower fat and cholesterol content, and it is also an important source
of protein for people [21]. With the advancement of technology and the popularization
of agricultural mechanization, the utilitarian value of buffalo has been gradually lost [22].
Therefore, there is an urgent need for research into enhancing meat quality. Meat quality
is a complex characteristic determined by many physicochemical features, such as pH,
tenderness, meat color, amino acid composition, and flavor [23]. This study aimed to
compare the meat quality of Xinglong buffalo and Hainan cattle under similar conditions.
We observed higher a* values but lower amino acid content and higher shear force in the
buffalo, suggesting lower meat quality. These results are in line with previous studies
showing the poorer meat quality of buffalo [4,24]. Differences in meat color, tenderness,
and amino acid composition may account for this phenomenon and could be potential
targets for buffalo meat quality improvement.

The main meat characteristic that drives consumer purchasing is meat color [25]. In
this study, Xinglong buffalo meat exhibited a significantly higher a* value, indicating
higher redness. The transcriptomic and metabolomic data revealed that both omics KEGG
pathways were significantly enriched in niacin and nicotinamide metabolism. Zhan et al.
found that the downregulation of two key genes in this pathway could reduce NAD+
intermediates, thereby regulating meat color in pigs [26]. Nicotinamide can help combat free
radicals and reduce their damage to cells, acting as an antioxidant enzyme and contributing
to the maintenance of meat color [27]. The upregulation of NMNAT3 and DTWD1 in our
study may increase NADP+ content, potentially influencing niacinamide content, thus
regulating meat color. Additionally, the downregulation of the PNP gene may contribute to
changes in niacin content, which could also be a factor leading to variations in meat color.
Correlation analysis showed that PNP was significantly negatively correlated with a* value
while L-aspartic acid was positively correlated, suggesting they may regulate buffalo meat
color by influencing niacin and niacinamide metabolism. Furthermore, muscles with a
low pH have more light scattering, which can explain the observed high lightness in this
study. Meanwhile, the concentration of myoglobin and the content of deoxymyoglobin
are also important factors that affect the color of meat [28,29]. In summary, genes and
metabolites in the niacin and niacinamide metabolism pathway likely play important
regulatory roles in meat color differences between Xinglong buffalo and Hainan cattle.
Additional experimental validation for the underlying mechanisms is warranted.

Tenderness, generally measured by the magnitude of shear force, is considered another
main factor that influences the purchase inclination of consumers. The tenderness of meat
is influenced by numerous factors (such as species, animal age, and breed), and changes in
muscle metabolism are the main factors [30,31]. In this study, Xinglong buffalo meat exhib-
ited significantly higher shear force, indicating poorer tenderness. The transcriptomic and
metabolomic data revealed that both omics KEGG pathways were significantly enriched in
glycine, serine, and threonine metabolism, which may be related to tenderness. Glycine is
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the main structural unit of connective tissue and can bind with collagen protein to enhance
the tenderness of meat [32]. Threonine is an important component of myofibrillar protein
and collagen protein, which contributes to the increase in tenderness and flavor [33]. The
amino acid content in group X was significantly lower, which may be the reason for the poor
tenderness of buffalo meat. The correlation analysis found that D-Erythrose 4-phosphate,
L-aspartic acid, glutathione, and several genes (e.g., NT5DC3, GAMT, and GCSH) were
significantly correlated with tenderness. Zhang et al. found that D-Erythrose 4-phosphate
can regulate meat quality through the glycolysis pathway [34]. Research by Chen et al.
suggested that L-aspartic acid may affect meat quality by influencing the metabolism of
the intestinal microbiota [35]. Additionally, it has been reported that the gene GAMT may
improve meat quality by catalyzing creatine synthesis [36,37]. In conclusion, differences in
amino acid and energy metabolism likely underlie the higher shear force of Xinglong buf-
falo meat. Further exploration of key genes and metabolites is needed to identify potential
targets for improving tenderness.

The composition and content of amino acids are important meat characteristics [38,39].
As described above, the lower glycine and threonine content may be the reason for the
poor tenderness of buffalo meat. In this study, the content of four FAAs (arginine, glycine,
aspartic acid, and glutamic acid) in Xinglong buffalo was significantly lower than those in
Hainan cattle, while the overall protein content was similar. These amino acids contribute
to the freshness and sweetness of meat, as well as its overall acceptability, which explains
why Hainan cattle are more favored by locals [40,41]. The correlation analysis found that
NADP+, GNMT, and SAO were significantly correlated with FAAs. Furthermore, these
genes and metabolites were significantly enriched in amino acid metabolism pathways,
possibly affecting the amino acid content. Proline is a component of collagen, which helps
maintain moisture in muscles, enhances flavor, and improves tenderness [42]. Lysine and
methionine are both components of myofibrillar proteins. In addition, lysine helps retain
water, while methionine regulates fat metabolism [43,44]. Tyrosine can produce compounds
like tyrosine ketone and tyrosine alcohol through oxidation, which can impact the color
and flavor of meat [45]. These amino acid contents were all lower in the X group, indicating
the poor meat quality of buffalo, mainly in terms of tenderness and flavor. In summary, the
difference in amino acid metabolism may be the reason for the low amino acid content of
Xinglong buffalo meat. The molecular mechanism of regulating the biosynthesis of amino
acids needs to be further explored.

5. Conclusions

Overall, we compared the differences in meat quality between Hainan cattle and Xing-
long buffalo and revealed their differences in transcription and metabolic levels through
the combined analysis of transcriptome and metabolome profiles. This study contributes to
the genetic improvement of breeds and the enhancement of buffalo meat quality. However,
further research is needed to determine the specific regulatory mechanisms of meat quality
characteristics in Hainan cattle and Xinglong buffalo.
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