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Abstract: Repurposing existing drugs appears to be a potential solution for addressing the challenges
in the treatment of non-small cell lung cancer (NSCLC). β-adrenoceptor antagonist drugs (β-blockers)
have tumor-inhibiting effects, making them promising candidates for potential NSCLC treatment.
This study investigates the anticancer potential of a subset of β-blockers in NSCLC cell lines; A549 and
H1299. Additionally, it investigates the underlying mechanism behind β-blockers’ anticancer effect
by influencing a potential novel target named aldehyde dehydrogenase (ALDH). The MTT assay
assessed β-blockers’ cytotoxicity on both cell lines, while Western blot and NADH fluorescence
assays evaluated their influence on ALDH protein expression and activity. Carvedilol (CAR) was the
most effective blocker in reducing cell survival of A549 and H1299 with IC50 of 18 µM and 13.7 µM,
respectively. Significantly, CAR led to a 50% reduction in ALDH expression and 80% decrease in
ALDH activity in A549 cells, especially when combined with β-agonists, in comparison to the control.
This effect might be attributed to β-agonist blockade or an alternative pathway. This novel finding
adds to our understanding of CAR’s multifaceted anticancer properties, implying that combining
CAR with β-agonists could be a useful strategy for lung cancer treatment.

Keywords: repurposing; lung cancer; β-blockers; carvedilol; β-agonists; aldehyde dehydroge-
nase; NADH

1. Introduction

Lung cancer is the main cause of cancer-related deaths among men and women world-
wide [1]. Lung cancer is categorized into small cell lung carcinoma (SCLC) and non-small
cell lung carcinoma (NSCLC), with NSCLC constituting 80% of cases. Among NSCLCs,
adenocarcinoma is the predominant subtype, representing 60% of cases [2]. It has recently
been found that lung cancer contains cancer stem cells (CSCs), a subset of cells residing
within the tumor mass. These cells are pivotal in driving tumor progression, heterogeneity,
and resistance to treatment. Their presence contributes to the challenges of effectively
treating and managing NSCLC, as they play a significant role in therapy resistance and
potential disease recurrence [3,4]. Treatments for NSCLC include a variety of approaches,
each with its own special mechanism of action. Growth factor receptor tyrosine kinase in-
hibitors (EGFR TKIs), which include the drugs gefitinib and erlotinib, have shown potential
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in improving disease-free survival (DFS) for NSCLC patients with EGFR mutations. The
introduction of osimertinib has been a breakthrough, greatly reducing the risk of cancer
recurrence [5]. Clinical trials are currently evaluating the effectiveness of alectinib, a lym-
phoma kinase (ALK) inhibitor, for patients with ALK NSCLC [6]. Furthermore, dendritic
cell- and chimeric antigen receptor (CAR) T cell-based immunotherapies are recently used
treatments for NSCLC that act by targeting tumor antigens [7]. Despite the progress in
treating NSCLC, the complexities of treatment resistance, tumor plasticity, and hetero-
geneity pose significant challenges. Therefore, apart from investigating new therapeutic
agents, repurposing existing drugs has been considered to address this aggressive disease
effectively [4]. Drug repurposing arises as a promising strategy due to its cost-efficiency
and the expedited process of research and development [8]. This speed-up is facilitated by
the accessibility of pharmacokinetic and pharmacodynamic data for the United States Food
and Drug Administration (FDA)-approved drugs targeted for repurposing [4].

β-adrenoceptor antagonist drugs (β-blockers), a drug class effective in treating cardio-
vascular diseases, hyperthyroidism, migraines, and glaucoma, are currently undergoing
expanded investigation for their potential anticancer properties within the context of drug
repurposing [4]. The anticancer potential of β-blockers arises from their modulation of the
sympathetic nervous system, which has been found to promote metastasis and cancer pro-
gression [9]. Solid tumors possess sympathetic nerves [10,11]. When triggered by persistent
stress or depression, these nerves release endogenous catecholamines such as epinephrine
(EPI) and norepinephrine (NE), which bind to α- and β-adrenoceptors within the tumor
microenvironment [12–15]. Adrenoceptor activation influences critical pathways underly-
ing cancer progression and metastasis [13]. Notably, β-adrenoceptor signaling is involved
in various cancer-related cellular mechanisms [16], prompting researchers to propose that
chronically used β-blockers could potentially impede cancer progression [17,18] and could
be useful as adjuncts in cancer therapy [19–23]. Nilsson et al. have extensively reviewed
preclinical and clinical data concerning β-adrenergic signaling in lung cancer [24]. This
review substantiates the proposition of repurposing β-blockers for treating NSCLC [22].

Although there are several pieces of scientific evidence demonstrating the tumor-
inhibiting effects of β-blockers [15,25,26], their precise anti-tumor mechanisms remain
incompletely investigated [22]. Among β-blockers that might have potential in cancer
treatment is carvedilol (CAR). Beyond the inhibitory effect of CAR on the β-signaling
pathway, it possesses diverse attributes, such as antioxidative and antiproliferative proper-
ties [27–30], both of which are potential mechanisms for cancer inhibition [31–34]. Notably,
CAR has been shown to diminish lipid peroxidation in human hearts, as evidenced by
reduced levels of 4-hydroxy-2-nonenal (HNE) aldehyde and enhanced cardiac function,
substantiating its antioxidant effects. This reduction might stem from various plausible
direct and indirect detoxification mechanisms, potentially contributing to the protective
role of β-blockers against cancer in the human body [35]. Furthermore, propranolol (PROP)
has been discovered to reduce retinoic acid production, thereby impacting tumorigenesis
and progression [36]. In addition, PROP inhibits acetaldehyde oxidation in ethanol-treated
rats by inhibiting hepatic ALDH, with an efficacy of around 66% of disulfiram’s inhibi-
tion [37]. Disulfiram, recognized as Antabuse, is a well-known irreversible inhibitor of
aldehyde dehydrogenases (ALDH). It has been reported to influence the proliferation of
various tumor cells, suppress cancer cell invasiveness, and prompt apoptosis through
various in vitro cancer-related mechanisms [38]. N,N-diethylaminobenzaldehyde (DEAB)
is also widely used as a reversible and minimally cytotoxic reference compound for ALDH
inhibition [39].

The ALDH superfamily in humans comprises 19 isoenzymes within 11 families [40–42].
ALDHs, NAD+-dependent enzymes, irreversibly oxidize internal and external aldehydes
to their corresponding carboxylic acid [43], protecting organisms from oxidative stress [41].
They also play a pivotal role in metabolizing retinoic acid, essential for embryonic growth
and epithelial differentiation [41,44]. Notably, ALDH expression and activity levels have
been found to be heterogeneous among different types of solid tumors such as breast [45],
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colorectal [46], lung [47], head-and-neck squamous cell carcinoma [48,49], prostate [50],
pancreatic [51], bladder [52], and glioblastoma cancer [53]. Tumor heterogeneity was
proposed to be attributed to stem-like cells expressing elevated ALDH levels. The el-
evated ALDH expression in CSCs is verified to induce tumor progression, metastasis,
treatment resistance, and immune evasion [54–56], underscoring ALDHs as a remarkable
CSC biomarker, notably in lung cancer [41,57]. Inhibiting ALDH isoenzymes or related
pathways presents a promising therapeutic avenue for halting cancer progression, espe-
cially by targeting and eliminating CSC populations [41]. Flow cytometry of lung cancer
cell lines and patient tumors indicated elevated ALDH activity in most NSCLCs, linked
to ALDH1A1 expression [57]. Xenografts demonstrated 100-fold greater tumorigenicity
in ALDH1A1-positive NSCLC cells when compared to ALDH1A1-negative cells. While
ALDH1A1-positive tumors are considered malignant, the exact contribution of ALDH to
NSCLC growth and survival requires further investigation [58]. Thus, in this study, we
used NSCLC adenocarcinoma cell lines: A549 and H1299 cells expressing high and low
levels of ALDH1A1, respectively [59,60]. Concerning other ALDH isoforms, ample evi-
dence showed no expression of ALDH1A2 isozyme in H1299 cells [61], while other pieces
of evidence showed low expression of ALDH in H1299 cells [62]. In addition, A549 cells
have been found to express ALDH3A1 [63].

The current body of research concerning the anticancer effects of β-blockers on NSCLC
is limited. Thus, in this study, the cytotoxicity of a subset of adrenoceptor blockers ex-
hibiting varying selectivity toward adrenoceptors was examined against NSCLC adeno-
carcinoma cell lines A549 and H1299, cells expressing high and low levels of ALDH1A1,
respectively [59,60]. These cell lines were then subjected to CAR or PROP as a single
agent and combined with β-agonists to investigate their hypothesized ALDH-mediated
anticancer action in NSCLC.

2. Results
2.1. Measuring the Basal Level of ALDH in A549 and H1299 Cell Lines

The basal activity level of ALDH in A549 and H1299 cell lines was measured using
NADH fluorescence spectrophotometric assay. As shown in Figure 1A, A549 cells express
highly active ALDH compared to H1299 cells, which show a very low activity level of
ALDH. In order to confirm these findings, the basal protein level of a specific isoform
of ALDH, which is ALDH1A1, was measured using Western blot analysis. A549 cells
manifest a higher protein expression level of ALDH1A1 compared to H1299 cells, as shown
in Figure 1B.
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Figure 1. (A) ALDH basal activity for the lysates prepared from A549 (black column) and H1299 (grey
column) cell lines was measured via fluorescence spectrophotometric assay; n = 3; * p-value < 0.05.
(B) ALDH1A1 basal protein expression in A549 and H1299 cell lysate was measured using Western
blot along with GAPDH as loading control.
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2.2. Measuring Cytotoxicity of Drugs in A549 and H1299 Cell Lines

MTT colorimetric assay was carried out to measure the cytotoxicity of DEAB, β-
adrenergic agonists (ISO and EPI), and commonly used β-blockers (including a subset
of non-cardioselective, cardioselective β-blockers and mixed α/β-blocker) in A549 and
H1299 cell lines over different ranges of concentration following 96 h exposure time. The
IC50 value of each compound was extracted from its dose–response curve and listed in
Table 1. Dose–response curves for the β-blockers are presented in Figure 2. Curves of the
rest of the compounds are also represented (Supplementary Figure S1).

Table 1. Toxicity of DEAB, β-agonists (ISO and EPI) and β-blockers on NSCLC cell lines (A549 and
H1299). Cells were treated for 96 h; n = 3.

Name of Compounds
Toxicity (IC50 (µM) ± SE) in NSCLC Cell Lines at 96 h

A549 H1299

DEAB >100 >100
Isoproterenol 88.3 ± 6 38 ± 4
Epinephrine 78.7 ± 2.3 23.5 ± 3.3

Atenolol >1000 >1000
Esmolol 513.3 ± 51.7 400 ± 30.6
Nadolol >1000 >1000

Metoprolol 706.7 ± 31.8 570 ± 60.3
Bisoprolol 730.0 ± 79.4 560 ± 112.4

Propranolol 146.3 ± 29.3 76 ± 13.3
Carvedilol 18 ± 2.1 13.7 ± 0.3
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The compounds’ cytotoxicity was found to increase in a dose-dependent manner.
CAR, followed by PROP, demonstrated the highest cytotoxicity against A549 and H1299
cells, with IC50 values of 18 µM and 13.7 µM for CAR and 146.3 µM and 76 µM for PROP,
respectively, compared to the other tested β-blockers, as seen in Table 1. In contrast, esmolol,
metoprolol, and bisoprolol showed mild cytotoxicity in both cell lines, with IC50 values
ranging from 500 µM to 1000 µM, while atenolol and nadolol showed the least cytotoxicity
even at a high concentration of 1000 µM. EPI and ISO demonstrated comparable IC50 values
for each cell line, being 78.7 µM and 88.3 µM in A549 cells and 23.5 µM and 38 µM in H1299
cells, respectively. Notably, combining CAR (10 µM) with ISO (20, 40, and 60 µM) resulted
in more reduction in the cell survival of A549 and H1299 compared to the control or single
treatment, as shown in Supplementary Figure S2. DEAB exhibited no cytotoxicity within
the studied concentration range. Therefore, a high non-toxic concentration of 80 µM DEAB
was used alone and combined with other compounds for comparison assays.

2.3. Assessing ALDH Activity Level following Exposure to Different Treatment Conditions

NADH fluorescence spectrophotometric assay was used to assess the effects of CAR
and β-adrenergic agonists (ISO and EPI) on ALDH activity levels in A549 cells under
various treatment conditions. These conditions included CAR alone at 10 µM, ISO alone
at 20, 40, and 60 µM, EPI alone at 12.5, 25, and 50 µM and a combination of CAR (10 µM)
with either ISO at 20, 40, and 60 µM or EPI at 12.5, 25 and 50 µM concentrations. β-
adrenergic agonists were introduced because β-blockers have shown the strongest impact
when catecholamine levels are elevated [64]. The A549 cells were treated for 120 h, during
which the protein expression occurred, and changes in its levels could be detected. H1299
cell data were excluded since these cells exhibited undetectable ALDH activity both in the
untreated state and under the above treatment conditions.

It is clear in Figure 3A that monotherapies of either CAR or ISO cause no changes in
the ALDH activity levels at the concentrations above. However, gradient reductions in
ALDH activity levels were observed when CAR at 10 µM was combined with a range of
concentrations of ISO, being the most significant (p-value < 0.0001) with approximately
80% reduction when combined with the highest concentration of ISO (60 µM) as compared
to untreated control and to monotherapy-treated samples. Similar observations have been
made with EPI, except that it was less efficient than ISO in reducing the ALDH activity,
with only a 50% reduction in ALDH activity when combining 50 µM of EPI with 10 µM of
CAR, as shown in Figure 3B. Interestingly, the efficiency of the combined treatment of CAR
(10 µM) plus ISO (60 µM) in the inhibition ALDH activity was higher than that achieved by
DEAB, with an approximately 20% difference.

To further prove that the ALDH is the putative target of CAR and ISO actions, the
same cell lysates prepared from the combination-treated samples were exposed to DEAB at
80 µM. This concentration was selected based on an optimization experiment for the DEAB
concentration to be non-toxic and efficiently inhibit ALDH activity with approximately
60% reduction compared with the untreated control, as shown in Figure 3. It was found
that DEAB was highly efficient at inhibiting ALDH activity in the samples pretreated
with the low concentration of combination therapies of CAR 10 µM plus ISO 20 µM or
plus ISO 40 µM, with 53% and 55% reduction in ALDH activity when compared to the
combination-treated samples without adding DEAB, respectively. Comparable results were
achieved when A549 cells were pre-treated with a low concentration of EPI alongside CAR
subjected to DEAB. This demonstrates that DEAB efficiency in inhibiting ALDH was only
in the samples expressing ALDH and that CAR can affect ALDH activity exclusively in the
presence of adequate concentrations of catecholamines (i.e., 60 µM of ISO and 50 µM of
EPI), as seen in Figure 3B. Non-detectable ALDH activity was found in H1299 cell samples
treated under the above treatment conditions.

Notably, PROP was investigated both individually and in combination with ISO.
However, neither PROP alone nor in combination with ISO could diminish ALDH activity
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in samples treated for 120 h, even at high concentrations. This underscores that the
substantial changes in ALDH activity were primarily attributed to CAR’s actions.
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cells treated with ISO at various single concentrations, including 20, 40, and 60 µM, which refer to
numbers 3, 4, and 5, respectively, and in combination with 10 µM of CAR as referred to by numbers
6, 7, and 8, respectively. Bar graph of DEAB generated from adding DEAB at 80 µM concentration
to untreated cell lysate. Combination pretreated samples exposed to DEAB at 80 µM concentration
represented as 6, 7, and 8 plus DEAB. (B) Star over the numbers on the x-axis indicates that EPI
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2.4. Assessing ALDH Protein Expression Level following Exposure to Various Treatment Conditions

To comprehend the mechanism behind the modified ALDH activity levels, the ALDH1A1
isoform was quantified using Western blot technique under the same treatment conditions.
The selection of ALDH1A1 was based on the literature demonstrating that ALDH1A1 is
highly expressed in A549 cells [38,59,63]. The cell lysates prepared for the activity assay
were also used to investigate changes in ALDH1A1 protein levels. The resulting blots were
incubated with ALDH1A1 antibody and analyzed, as seen in Figure 4. Despite H1299 cells
demonstrating minimal or absent ALDH1A1 protein expression [65], they underwent the
same treatment conditions as A549 cells.

The blot in Figure 4A reveals that individually treating A549 cells with CAR at 10 µM
concentration or ISO at 20, 40, and 60 µM concentration did not influence the ALDH1A1
protein level. However, combined treatment of CAR and ISO led to a gradual reduction in
ALDH1A1 protein expression, with the most significant reduction of around 50% observed
at CAR 10 µM plus ISO 60 µM concentration (p < 0.001) and (p < 0.05) compared to
control and ISO 60 µM treatment, respectively. These findings align with the activity assay,
explaining the altered ALDH activity with CAR and ISO combination therapy. Similar
reductions in ALDH1A1 protein expression were observed in A549 samples treated with
combined CAR and EPI therapy, as seen in (Figure 5A). Notably, this reduction followed a
concentration gradient, where higher EPI concentrations (12.5, 25, and 50 µM) increased
significance in the reduction of ALDH protein compared to untreated control. In parallel,
H1299 cells treated under identical conditions showed no detectable ALDH1A1 protein in
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both control and treated samples, confirming the lack of activity in the NADH fluorescence
assay results, as seen in Figures 4C and 5C. It is worth mentioning that treating A549 cells
with 80 µM DEAB for 120 h had no impact on ALDH1A1 protein expression or activity.
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Curr. Issues Mol. Biol. 2023, 45 8003 
 

 

 
Figure 5. (A) ALDH1A1 protein expression in 120 hour-treated A549 cell as measured by Western 
blot technique. A549 cells were exposed to the same treatment conditions mentioned earlier, except 
for using EPI instead of ISO. 2, 3*, 4*, 5*, 6*, 7*, and 8* indicate the cells treated with CAR at 10 µM 
concentration, EPI at 12.5, 25 and 50 µM concentrations and CAR 10 µM plus EPI 12.5, 25, and 50 
µM concentrations, respectively. (B) Densitometric analysis for the blots is represented as a means 
of normalized ALDH1A1 value relative to GAPDH (±SE). (C) Blot for H1299 cells exposed to the 
same treatment conditions used for A549 cells. One-way ANOVA was used to analyze the data (* p-
value < 0.05, ** p-value < 0.01 and *** p-value < 0.001). 

2.5. Assessing ALDH Gene Expression Level upon Exposure to Various Treatment Conditions 
To more deeply understand the molecular mechanism underlying the changes in 

ALDH activity upon prolonged exposure to β-adrenergic agonists and antagonists, it was 
necessary to measure the gene expression of ALDH1A1and β1- and β2-adrenoceptors us-
ing real-time PCR.  

Notably, neither individual nor combined therapies significantly affected ALDH1A1 
gene expression. However, significant upregulation was observed in β-adrenoceptors, 
particularly β2-adrenoceptor with a remarkable 11-fold increase under combined CAR 10 
µM and ISO 60 µM therapy compared to control, as seen in Figure 6C. Interestingly, α-
adrenoceptor gene expression was not detected in A549 and H1299 cells. 

Figure 5. (A) ALDH1A1 protein expression in 120 h-treated A549 cell as measured by Western blot
technique. A549 cells were exposed to the same treatment conditions mentioned earlier, except for
using EPI instead of ISO. 2, 3*, 4*, 5*, 6*, 7*, and 8* indicate the cells treated with CAR at 10 µM
concentration, EPI at 12.5, 25 and 50 µM concentrations and CAR 10 µM plus EPI 12.5, 25, and
50 µM concentrations, respectively. (B) Densitometric analysis for the blots is represented as a means
of normalized ALDH1A1 value relative to GAPDH (±SE). (C) Blot for H1299 cells exposed to the
same treatment conditions used for A549 cells. One-way ANOVA was used to analyze the data
(* p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001).
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2.5. Assessing ALDH Gene Expression Level upon Exposure to Various Treatment Conditions

To more deeply understand the molecular mechanism underlying the changes in
ALDH activity upon prolonged exposure to β-adrenergic agonists and antagonists, it was
necessary to measure the gene expression of ALDH1A1and β1- and β2-adrenoceptors
using real-time PCR.

Notably, neither individual nor combined therapies significantly affected ALDH1A1
gene expression. However, significant upregulation was observed in β-adrenoceptors,
particularly β2-adrenoceptor with a remarkable 11-fold increase under combined CAR
10 µM and ISO 60 µM therapy compared to control, as seen in Figure 6C. Interestingly,
α-adrenoceptor gene expression was not detected in A549 and H1299 cells.
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3. Discussion

With the rise in drug repurposing, the potential anticancer action of β-blockers is
being extensively investigated [4]. Nevertheless, uncertainties about β-blockers’ efficacy in
inhibiting cancer progression and their mechanisms persist [18]. Therefore, the anticancer
action of a subset of β-blockers was examined in A549 and H1299 NSCLC adenocarcinoma
cell lines, expressing both β1- and β2-adrenoceptors [66,67]. Our study revealed CAR as
the most effective drug in reducing cell survival, followed by PROP, compared with the
tested β-blockers, in both cell lines. Despite CAR being a mixed α/β-blocker, based on
our results, its action may be mediated through β-adrenoceptor inhibition, particularly
β2-adrenoceptor, as real-time PCR analysis demonstrated the absence of α-adrenoceptor
in A549 and H1299 cells. This was also supported by our findings that PROP, the non-
selective β-blocker, was effective at lower concentrations, whereas selective β1-blockers
showed efficacy only at higher concentrations at which they become less selective, targeting
β2-adrenoceptor as well [68]. According to previous data in the literature, the study
by Molenaar et al. demonstrated that CAR has higher efficacy in blocking human β2-
adrenoceptors than β1-adrenoceptors [69]. To the best of our knowledge, this is the first
study demonstrating the potential anticancer action of CAR and PROP in A549 and H1299,
established human NSCLC cell lines. CAR has demonstrated inhibition of cancer cell
proliferation, apoptosis induction, and reduced invasiveness in breast cancer [70]. Similarly,
PROP has shown the potential to reduce proliferation, induce apoptosis, and improve
patient outcomes in breast cancer cases [71]. Nonselective β-blockers, including CAR
and PROP, have been suggested for efficiently inhibiting tumor progression over selective
β1-blockers [72].

Our research highlights the clinical significance of using β-blockers to treat chronic
disease in cancer patients, enabling them to simultaneously manage their chronic condition
and inhibit tumor growth. The favorable pharmacokinetic and pharmacodynamic profile,
accessibility, and affordability of β-blockers also potentiate the significance of our findings.
Ongoing research is necessary to improve treatment outcomes and combat resistance
problems in NSCLC. Exploring novel cancer survival pathways and drugs, such as those
targeting the ALDH pathway, holds promise in overcoming resistance to current lung
cancer treatments. This research has the potential to revolutionize NSCLC management by
offering more effective strategies to combat the disease.

This study showed how β-blockers along with β-agonists may contribute to the anti-
cancer effects in NSCLC. Several experiments have been conducted to elucidate further
CAR’s underlying anticancer mechanism, a topic lacking a clear explanation in the exist-
ing literature [22]. Beyond β-adrenoceptor blockade, CAR has various roles, including
antioxidant and antiproliferative activities, contributing to its anticancer effects [34]. We
hypothesized that CAR’s anticancer action might involve targeting ALDH, a detoxifying
enzyme that mitigates oxidative stress, leading to therapeutic resistance in many solid
tumors [41,73,74]. Genetic knockdown or pharmacological inhibition of ALDH1A1 in lung
cancer enhances oxidative stress and sensitivity to chemotherapy [41]. We tested this hy-
pothesis by exposing NSCLC cells to prolonged CAR and β-agonist treatment. Our findings
showed CAR effectively reduced ALDH protein expression and activity when combined
with β-agonists (combined-treated samples). To further confirm CAR’s targeting of ALDH,
we applied DEAB to combined-treatment samples. DEAB effectively targeted ALDH
only in samples with low-concentration combination therapy, where significant ALDH
level changes did not occur due to mild β-agonist concentrations. In contrast, DEAB’s
efficacy was limited in samples treated with high-concentration combined treatment of
CAR and ISO, where ALDH levels were already low. Reduction in ALDH was seen in
protein expression and activity rather than gene expression, suggesting post-transcriptional
and translational effects of the CAR and β-agonist combination. This aligns with Yen
et al.’s study on protein-mRNA level disparities, emphasizing that the regulation of mRNA
post-transcriptionally can lead to differences and that mRNA presence does not ensure
translation or protein function [75]. In addition, Qian et al. believed that results for the



Curr. Issues Mol. Biol. 2023, 45 8005

protein level were more reliable and instructive than mRNA [76]. Thus, CAR’s actions
on ALDH could be attributed to ISO and EPI blockade or an adrenoceptor-independent
pathway [34]. CAR’s multifunctionality, beyond β-adrenoceptor blocking, underlies its
observed anticancer action in this study and previous in vivo and clinical studies [77,78],
potentially stemming from simultaneous inhibition of multiple oncogenic mechanisms [34]
in addition to ALDH.

The lack of ALDH changes in PROP and β-agonist combined treatment samples indi-
cated that ALDH was not involved in PROP’s cytotoxicity. Several studies suggest PROP’s
anticancer mechanism involves decreasing pro-proliferative Ki-67 and pro-survival Bcl-2
markers, disrupting cell cycle progression, altering cyclin levels, elevating p53, enhancing
caspase cleavage, and inducing apoptosis, as demonstrated in breast cancer cases and other
tumor types [79–84].

In summary, CAR and PROP exhibit the strongest inhibition of cell survival in NSCLC
cells compared to other tested β-blockers. While CAR’s mechanism of cancer inhibition,
involving ALDH inhibition, is a novel discovery, as presented in Figure 7, other pathways
may also contribute, as seen in H1299 cells, which lack ALDH yet display cytotoxicity simi-
lar to that seen in A549. In this study, we mainly used 10 µM of CAR. Lower concentrations
of CAR could be used to demonstrate cell survival inhibition and ALDH downregulation,
but more studies are warranted to investigate this effect. Given CAR’s superior ALDH
reduction compared to DEAB, combining CAR with endogenous or exogenous β-agonists
could serve as a preclinical or adjuvant lung cancer treatment. Additionally, CAR holds the
potential for creating novel, less-toxic derivatives targeting ALDH for further investigation
of ALDH’s biological role in cancer. Future research should explore NSCLC cell sensitivity
to chemotherapy with CAR and β-agonist combined therapy and investigate CAR’s anti-
tumor effects across various NSCLC cell lines and cancer types in vitro and in vivo under
sympathetic system stimulation.
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4. Materials and Methods
4.1. Materials

Human NSCLC cell lines, including A549 (ATCC CCL-185, with LOT numbers
70018877) and H1299 (ATCC CRL-5803, with LOT numbers 70008730) were purchased from
the American Type Culture Collection (ATCC, Manassas, VA, USA). Phosphate-buffered
saline (PBS), Roswell Park Memorial Institute (RPMI)-1640 medium, trypsin, fetal bovine
serum (FBS), and L-glutamine were purchased from Euroclone (Pero, Italy); drugs used
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in this research including DEAB, CAR, PROP and isoprenaline hydrochloride (isopro-
terenol; ISO) were purchased from ACROS organics (Morris Plains, NJ, USA), while EPI
was from Sigma (Hertfordshire, UK). 4-Nitrobenzaldehyde (4-NBA), dithiothreitol (DTT),
and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), were pur-
chased from Sigma (UK). β-Nicotinamide adenine dinucleotide (NAD+) was purchased
from Apollo Scientific (Bredbury, UK). Dimethyl sulfoxide (DMSO) was purchased from
TEDIA (Fairfield, OH, USA). RIPA lysis buffer (sc-24948A) was purchased from Santa
Cruz Biotechnology (Dallas, TX, USA). Bicinchoninic acid (BCA) assay kit was purchased
from Thermoscientific, (Waltham, MA, USA). Western blot reagents were purchased from
Sigma (UK), while polyvinylidene difluoride membrane (PVDF) was purchased from Santa
Cruz Biotechnology, and primary antibodies anti-ALDH1A1 (ab206396), anti-GAPDH
(ab9485) and goat anti-rabbit IgG H&L (HRP) (ab205718) were purchased from Abcam
(Cambridge, UK).

4.2. Methods
4.2.1. Cell Culture

A549 and H1299 cells were cultured in RPMI-1640 medium, supplemented with
10% (v/v) FBS and L-glutamine (2 mM) (complete medium). The cells were maintained in
a 5% CO2 humidified incubator at 37 ◦C.

4.2.2. Sample Preparation for Measuring ALDH Levels

A549 and H1299 cells were placed in 10 cm dishes and cultured overnight. The next
day, cells were subjected to different treatments: CAR at 10 µM, ISO at 20 µM, 40 µM,
and 60 µM, EPI at 12.5 µM, 25 µM, and 50 µM, and combinations of CAR at 10 µM
with ISO or EPI at the mentioned concentrations. After 120 h, cells were washed with
cold PBS, then lysed using RIPA buffer, and the resulting lysates were centrifuged at
13,000× g for 10 min at 4 ◦C. This separated proteins in the supernatant from cell debris.
The supernatant was stored at −80 ◦C or used directly for measuring ALDH activity and
protein expression.

4.2.3. Quantification of Total Protein Concentration in Cell Lysate

Total protein concentration in cell lysates was determined using a BCA kit. The pro-
tocol followed herein was according to the manufacturer’s suggestion. The kit includes
a standard protein stock solution with 2 mg/mL concentration. This stock was serially
diluted at a 1:2 ratio, resulting in standard protein solutions with known concentrations
ranging from 0.125 to 2 mg/mL. A working solution of colorimetric reagents was pre-
pared by mixing 50 parts reagent A with one part reagent B. The reactions in the wells
containing standard protein solution and unknown samples started when 200 µL of the
working solution was dispensed into each well in a 96-well plate. The plate was left in the
incubator at 37 ◦C for 30 min before measuring absorbance at 562 nm wavelength using the
SynergyHTX® spectrophotometer. A standard curve with a straight-line equation was gen-
erated by plotting known concentrations of standard protein solutions against absorbance.
After determining the unknowns’ absorbance, the equation was used to calculate the total
protein concentration of unknown samples.

4.2.4. NADH Fluorescence Spectrophotometric Activity Assay

The ALDH activity was monitored by measuring the rate of increasing NADH fluores-
cence signals over a 60 min reaction period. The enzymatic reaction was initiated by the
addition of a mixture of the substrate 4-NBA and cofactor NAD+ at a final concentration of
500 µM and 200 µM, respectively, to the wells containing PBS buffer (pH 7.4), a volume
of cell lysate (containing 80 µg protein) and reducing agent DTT (5 mM) using a 96-well
black plate. The cell lysates were prepared from untreated control and 120 h-treated cells of
A549 and H1299 cell lines. The treated samples were prepared as mentioned above. The
fluorescence signal of NADH resulting from oxidation of 4-NBA was measured per minute
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over 60 min until the plateau was reached through excitation at 340 nm and emission at
460 nm with a SynergyHTX® spectrophotometer at 37 ◦C. The linear region of the curve
was selected to determine the slope. The slope for each cell line under different conditions
was calculated from at least five independent experiments. An assay without cell lysate in
the reaction mixtures was also carried out with each experiment to confirm the absence of
fluorescent signals from any of the mentioned reagents. The results are the percentage of
remaining ALDH activity, calculated relative to the untreated control and expressed as the
mean with standard error (SE) [85].

4.2.5. Western Blot

Samples of A549 and H1299 cells were lysed with RIBA lysis buffer. Total protein
concentration was measured using the BCA assay. Approximately 20 µg of isolated proteins
was mixed with 5× laemmli loading dye. Proteins were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (12%) and electrophoretically trans-
ferred at a constant current of 25 V for 30 min using a Trans-Blot TurboTM Transfer System
(Bio-Rad, Hercules, CA, USA) onto a PVDF membrane. After blocking with 3% w/v fat-
free milk diluted in TBST (50 mM Tris-HCl; 150 mM NaCl, pH 7.4; 0.1% Tween 20) for
30 min at 4 ◦C, the membrane was incubated overnight at 4 ◦C with one of the following
primary antibodies: anti-ALDH1A1 or anti-GAPDH. Anti-GAPDH antibody was used as a
loading control. The amount of each antibody used was according to the manufacturer’s
instructions. The next day, after washing, a secondary antibody was applied for 90 min.
Then, the membrane was prepared for imaging using a ChemiDocTM Imaging System
(Bio-Rad, USA).

4.2.6. MTT Cytotoxicity Assay

An MTT assay was conducted as previously outlined [86–88]. Briefly, A549 and
H1299 cells were seeded at 750 and 1000 cells per well in 96-well plates and allowed to
adhere overnight. Cells were treated with DEAB, β-blockers and β-agonists at concen-
trations ranging from 0.01 µM to 1000 µM for 96 h. β-blockers used were cardioselective
ones (atenolol, esmolol, metoprolol, bisoprolol), non-cardioselective ones (nadolol, pro-
pranolol), and a mixed α/β-blocker (carvedilol) [72,89]. Cell survival was determined us-
ing the MTT cell viability assay after 96 h of treatment. MTT solution (50 µL, 0.5 mg/mL)
was added and incubated for 3 h at 37 ◦C, and formazan crystals were dissolved in
200 µL DMSO. Optical densities were measured on a SynergyHTX® spectrophotometer
at 540 nm and analyzed with Gen5 Software. The surviving cell fraction relative to the
control was calculated from the results, and GraphPad Prism 9.1.0 Software generated
dose–response curves from at least three independent experiments. IC50 values, repre-
senting the drug concentration reducing cell survival by 50% of control, were determined
from these curves.

4.2.7. Gene Expression Analysis

Gene expression by real-time polymerase chain reaction (PCR) was performed as
described before [90]. A549 cells received the same treatments, mentioned in Section 4.2.2.;
for 96 h, considering gene rather than protein levels. Total mRNA was extracted from
treated and untreated control cells using RNeasy Mini Kit (Qiagen, Germany). Extracted
mRNA was quantified, and cDNA was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA). Gene expression was
evaluated by normalizing target genes to ACTB housekeeping gene using a 2-fold change
analysis, and calculated relative to the untreated control. Primers from IDT were used,
as listed in Table 2. After optimizing conditions, quantitative reverse transcription-PCT
(qRT-PCR) was conducted with Advanced SYBR Green Supermix on a Bio-Rad CFX96
real-time PCR system.
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Table 2. Forward and reverse primer sequences employed for real-time PCR.

Genes Sequence of Nucleotides (5′-3′)

ALDH1A1
Forward CAA GAT CCA GGG CCG TAC AA
Reverse CAG TGC AGG CCC TAT CTT CC

ADRB2
Forward CAA GAA TAA GGC CCG GGT GA
Reverse CCG GTA CCA GTG CAT CTG AA

B1AR
Forward CCG GGA ACA GGA ACA CAC
Reverse GAA AGC AAA AGG AAA TAT GTC

ACTNB
Forward TTC CTT CCT GGG CAT GGA GT
Reverse GCA ATG ATC TTG ATC TTC ATT

4.2.8. Statistical Analysis

Data are shown as individual data points with the mean ± SE represented by a line.
GraphPad Prism version 9.1.0 was used for graphing, and data analysis via unpaired
t-test and one-way ANOVA test. Groups were deemed statistically significant when
* p-value < 0.05.
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