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Abstract: A sequence of novel 2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-
1-yl)-acetamide analogues 9(a–n) were synthesized by multistep synthesis. The newly synthesized
compounds were well characterized, and their antimicrobial activities were carried out by disc
diffusion and broth dilution methods. Further, all the novel series of compounds (9a–n), were
tested against a variety of bacterial and fungal strains in comparison to Ketoconazole, Chloramphenicol,
and Amoxicillin as standard drugs, respectively. Compounds 9a, 9e, and 9g as a lead molecule
demonstrated a good inhibition against tested strains. Further, molecular docking studies have been
performed for the potent compounds to check the three-dimensional geometrical view of the ligand
binding to the targeted proteins.

Keywords: 2-Azetidinone; benzophenone; antimicrobial; in vitro; in silico; molecular docking simu-
lations

1. Introduction

For the past several years the emergence of organisms resistant to almost all the classes
of antimicrobial agents has become a serious public health concern [1,2]. The discovery
and designing of new anti-microbial drugs in the pursuit of better treatment have been
the main goal for scientists. In recent decades, problems of multi-drug resistant microor-
ganisms have reached an alarming level in many countries around the world [3]. WHO
has declared that AMR (antimicrobial resistance) is one of the top ten global public health
threats facing humanity. Yet the number of people facing antibiotic resistance in the United
States is still too high and also more than 2.8 million antibiotic-resistant infections occur
in the United States each year, in addition, more than 35,000 people die as a result. Fur-
ther, nearly 223,900 people in the United States required hospital care for Clostridioides
difficile and at least 12,800 people died in 2017 [4]. Resistance to several anti-microbial
agents (β-lactamase antibiotics, macrolides, quinolones and vancomycin) has been reported;
also, a number of current clinical reports describe the increasing occurrence of Methi-
cillin resistant Staphylococcus aureus (MRSA), Drug-resistant Streptococcus pneumoniae
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(S. pneumoniae), Carbapenem-resistant Enterobacteriaceae (CRE), Erythromycin-resistant
group A Streptococcus, and Clindamycin-resistant group B Streptococcus, which is the
most disturbing cause of serious infections in developed countries [5,6]. Even in past
decades, it has been a challenging increase in the frequency of systematic fungal infection
in man. The first orally active antifungal agent that was effective against a broad collection
of systematic and superficial fungal infections was ketoconazole [7]. Further, a few azoles
antifungal agents viz., itraconazole [8], fluconazole [9], voriconazole [10], ravuconazole [11]
etc., and glucan synthesis inhibitor caspofungin [12] have been introduced to the clinic.
Antibiotics are one of our most vital weapons in fighting bacterial infections and have
significantly benefited the quality of health-related human life since their introduction.
However, these health benefits are under threat as many commonly used antibiotics have
become less and less effective against certain illnesses, not only because many of them
produce toxic reactions but also due to the emergence of drug resistant bacteria. Infections
caused by these microorganisms pose a serious challenge to the medical community and
the need for effective therapy has led to the search for novel antimicrobial drugs with lesser
resistance [13].

2-Azetidinone is a four membered heterocyclic amide, commonly known as β-lactam,
a well-known compound among organic and medicinal chemists for their structural feature
of a number of broad-spectrum β-lactam antibiotics, including penicillins, cephalosporins,
carbapenems, nocardicin, monobactams, clavulanic acid, sulbactam, and tazobactam, which
have been extensively used as chemotherapeutic agents to treat bacterial infections and
microbial diseases [14–24]. Azetidinones are one of the important class of compounds
possessing a wide range of biological activities [25–30]. Aside from their biological activities,
the importance of β -lactams as synthetic intermediates have been widely recognized in
organic synthesis [31], for example in the semi synthesis of Taxol [32]. Like azetidinone,
benzophenone analogues also showed extensive evidence to establish the efficiency as
anticancer [33–35], anti-inflammatory [36] and antimicrobial agents [37,38]. In the light
of these facts, here we hybridized benzophenone with azetidinone moiety. Moreover, the
antimicrobial and antifungal activities of the synthesized compounds have been predicted
virtually by using in silico docking simulations. The antimicrobial target in docking studies
was selected based on the literature survey which reported β-lactam, an excellent inhibitor
of transpeptidases, making it a potent antibiotic class used to treat bacterial infections and
microbial diseases [14–24]. Moreover, the targets of antifungals have been also chosen
based on the literature survey that reported azetidinone as good inhibitor of CYP51 and
other P450s enzymes in fungi. The inhibition of these enzymes causes the accumulation of
membrane-disrupting methylated sterol precursors of ergosterol, preventing fungal growth,
similar to the original inhibitor, Ketoconazole, which has the mechanism of inhibition of
the fungal 14-alpha-demethylase enzyme and also used as standard drug in vitro studies
of the current work.

Based on the findings and docking-simulated interaction we have made an emphasis
that among the newly synthesized series, the compounds 9a, 9e, and 9g emerged as potent
antimicrobial agents which can be used as a potential drug in the near future.

2. Materials and Methods

All solvents and reagents were purchased from Sigma Aldrich Chemicals Pvt Ltd.
India, Melting points were determined on an electrically heated VMP-III melting point
apparatus. The FT-IR spectra were recorded using KBr discs and Nujol on FT-IR Jasco
4100 infrared spectrophotometer. 1H NMR spectra were recorded using Bruker DRX 400
spectrometer at 400 MHz with TMS as an internal standard. Mass spectra were recorded
on LC-MS (API-4000) mass spectrometer. Further elemental analysis of the compounds
was performed on a Perkin Elmer 2400 elemental analyzer.
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2.1. Chemistry
2.1.1. General Procedure for the Preparation of Phenyl Benzoates 3(a–b)

Substituted benzoates 3(a–b) were synthesized by benzoylation of o-cresol (1, 0.001 mol)
with corresponding benzoyl chlorides 2(a–b), 0.001 mol) using 10% sodium hydroxide
solution. The reaction mixture was stirred for 2–3 h at 0 ◦C and monitored by TLC using 4:1
n-hexane: ethyl acetate solvent mixture. After completion of the reaction, the organic layer
was extracted with ether (3 × 15 mL). Ether layer was washed with 10% sodium hydroxide
solution (3× 30 mL) followed by water (3× 25 mL) and then dried over anhydrous sodium
sulphate and evaporated. The resulting solid was crystallized in ethanol to afford desired
compounds 3(a–b) in a pure state. Refer to Supplementary File for characterization data.

2.1.2. General Procedure for the Preparation of Substituted 4-Hydroxy Benzophenones
4(a–b)

Substituted 4-hydroxy benzophenones 4(a–b) were synthesized by Fries rearrange-
ment. Compounds 3(a–b) (0.001 mol) was treated with anhydrous aluminium chloride
(0.002 mol) as a catalyst and heated at 150–170 ◦C temperature under neat condition for
about 2–3 h. Then the reaction mixture was cooled to room temperature quenched with 6N
HCl in the presence of ice-cold water and stirred for about 2–3 h. The solid was filtered and
recrystallized from ethanol to obtain compounds 4(a–b) in pure form.

2.1.3. General Procedure for the Preparation of Ethyl 2-(4-Benzoyl-2-Methylphenoxy)
Acetates 5(a–b)

Compounds 5(a–b) were obtained by refluxing a mixture of compounds 4(a–b) (0.013 mol)
and ethyl chloroacetate (0.026 mol) in dry acetone (35 mL) and in presence of weak base
anhydrous potassium carbonate (0.019 mol) for 8–9 h. The reaction mixture was cooled,
and the solvent was removed by distillation. The residual mass was triturated with cold
water to remove potassium carbonate and extracted with ether (3 × 50 mL). The ether
layer was washed with 10% sodium hydroxide solution (3 × 50 mL) followed by water
(3 × 30 mL) and then dried over anhydrous sodium sulphate and evaporated to dryness to
obtain crude solid, which on recrystallization from ethanol afforded compounds 5(a–b) in
a pure state.

2.1.4. General Procedure for the Preparation of Substituted 2-(4-Benzoyl-2-Methylphenoxy)
Acetohydrazides 6(a–b)

To compounds 5(a–b) (0.01 mol) in ethanol (10 mL) 99% hydrazine hydrate (0.01 mol)
was added dropwise and continuously stirred for 2 h at room temperature to achieve
compounds 6(a–b) as a white solid. The solid was recrystallized with methanol to obtain
pure product 6(a–b).

2.1.5. General Procedure for the Preparation of Substituted
2-(4-Benzoyl-2-Methylphenoxy)-N-Benzylideneacetohydrazide 8(a–n)

To a solution of compounds 6(a–b) (0.01 mol) in absolute ethanol (50 mL), a catalytic
amount of acetic acid and an equimolecular number of corresponding aldehydes 7(a–g)
was added. The reaction mixture was refluxed for 8–10 h and after completion of the
reaction, the reaction mixture was cooled to room temperature, poured into crushed ice,
filtered, washed, dried, and recrystallized from acetonitrile to yield compounds 8(a–n) in a
good yield.

2.1.6. General Procedure for the Preparation of
2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-Acetamides 9(a–n)

The compounds (8(a–n) (0.01 mol) and triethylamine (0.01 mol) were dissolved in
dioxane (50 mL), cooled, and stirred. To this well-stirred cold solution, chloroacetyl chloride
(0.01 mmol) was added drop wise within a period of 20 min. The reaction mixture was then
stirred for an additional 3 h and left at room temperature for 48 h. The resultant mixture
was concentrated, cooled, poured into ice cold water, filtered, and then dried. The product
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thus obtained was purified by column chromatography over silica gel using 30% ethyl
acetate: 70% benzene as an eluent. Recrystallization was done from suitable solvent which
gave 2-azetidinones derivatives 9(a–n).

2.2. Pharmacology
2.2.1. In Vitro Antibacterial and Antifungal Activity
Antimicrobial Testing

The compounds 9(a–n) were dissolved in DMSO at different concentrations 12.5,
25, 50 and 100 µg/well. Bacterial strains Staphylococcus aureus, Bacillus subtilis, Klebsiella
pneumonia, Pseudomonas aeruginosa, and fungi Aspergillus niger and Pencillium chrysogenum
were obtained from the Department of Microbiology, Manasagangotri, Mysore, India.

2.2.2. Antimicrobial and Antifungal Assays

The in vitro antimicrobial studies were carried out by the agar wells diffusion method
against test organisms [39,40]. Nutrient broth (NB) plates were swabbed with 24 h old
broth culture (100 µL) of test bacteria. Using the sterile cork borer, wells (6 mm) were made
into each Petri plate. The compounds were dissolved in DMSO of 5 mg/mL and from
this 2.5, 5, 10, and 20 µL (12.5, 25, 50, 100 µg/mL) were added into the wells by using
sterile pipettes. Simultaneously the standard antibiotics, Chloramphenicol and Amoxicillin
for antibacterial activity and Ketoconazole for antifungal activity (as positive control) were
tested against the pathogens. The samples were dissolved in DMSO which showed no
zone of inhibition acts as a negative control. The plates were incubated at 37 ◦C for 24 h
for bacteria and at 28 ◦C for 48 h for fungi. After appropriate incubation, the diameter of
the zone of inhibition of each well was measured. Duplicates were maintained and the
average values were calculated for eventual antimicrobial activity. A broth dilution test was
used to determine the Minimum Inhibitory Concentration (MIC) of the above-mentioned
samples [41,42]. The freshly prepared nutrient broth was used as diluents. The 24 h old
culture of the test bacteria S. aureus, B.subtilis, P. aeruginosa and K. pneumoniae and the test
fungi A. Niger and P. Chrysogenum were diluted 100 folds in nutrient broth (100 µL bacterial
cultures in 10 mL NB). The stock solution of the synthesized compounds was prepared in
DMSO by dissolving 5 mg of the compound in 1 mL of DMSO. Increasing concentrations
of the test samples (1.25, 2.5, 5, 10, 20, 40 µL of a stock solution containing 6.25, 12.5, 25, 50,
100, 200 µg of the compounds) were added to the test tubes containing the bacterial and
fungal cultures. All the tubes were incubated at 37 ◦C for 24 h for bacteria and at 28 ◦C
for 48 h for fungi. The tubes were examined for visible turbidity and using NB as control.
Control without test samples and with solvent was assayed simultaneously. The lowest
concentration that inhibited the visible growth of the tested organisms was recorded as
MIC. To determine the Minimum Bactericidal Concentration (MBC) [43] and Minimum
Fungicidal Concentration (MFC) [44] for each set of test tubes in the MIC determination,
a loopful of broth was collected from those tubes which did not show any growth and
inoculated on sterile nutrient broth (for bacteria) and PDA (for fungi) by streaking. Plates
inoculated with bacteria and fungi were incubated at 37 ◦C for 24 h and at 28 ◦C for 48 h,
respectively. After incubation, the lowest concentration was noted as MBC (for bacteria) or
MFC (for fungi) at which no visible growth was observed.

2.3. Docking Simulation (Methodology)

Docking simulations were carried out by using AutoDock Tools version 4 (ADT4) [45].
The structure data of target proteins (pdb ID: 5E1G) for antibacterial and (pdb ID: 3LD6)
for antifungal were downloaded from RCSB PDB website (http://www.rcsb.org/pdb/
accessed on 5 October 2022). They were selected based on the literature survey, which
reported β-lactam and azetidinone as potent inhibitors of microbial and fungal protein
targets that could be utilized to devolve the antimicrobial and antifungal therapies. Further-
more, the skeleton of our synthesized compounds shared substructure features with the
target’s cocrystal ligand. Hence, based on the on the literature data and shared substructure,

http://www.rcsb.org/pdb/
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we have chosen 5E1G and 3LD6 proteins as targets of antibacterial and antifungal for in
silico docking studies with the compounds.

Earlier to docking simulations, all co-crystal ligands, ions, and water molecules have
been detached from the proteins. Moreover, charge neutralization, polar hydrogens setting,
and rotatable bonds were processed by ADT4. On the other hand, Chem Draw Ultra
12.0 was adopted to construct the ligands and minimized the energy by using MM2 force
field and then saving them in pdb format. In silico docking studies for all ligands against
proteins were executed with the Lamarckian Genetic Algorithm (LGA) model [46] that
was extensively employed to predict the binding modes and conformations [47,48]. The
grid map was cantered at the active site pocket of the proteins with grid box dimensions
of 120 × 120 × 120 Å3 points and grid-point spacing of 0.425 Å. Amongst all ligand-
receptor docking results, the ligands 9a, 9e, and 9g showed a significant affinity score with
remarkable hydrogen bonds. Table 1 lists the conformation details of ten docking results
for 9a, 9e, and 9g compounds including the binding energy, hydrogen bonds interactions,
and ligand efficiency (LE), that are calculated as the ratio of Gibbs free energy of binding
(G) to the number of non-hydrogen atoms of the compound (i.e., a result of dividing the
Gibbs free energy of binding (G) by the number of heavy atoms) [49], which can be given
mathematically as LE = (G)/N.

Table 1. The in vitro antibacterial activity of compounds 9(a–n).

Compounds

Diameter of Zone of Inhibition (mm)

Gram-Positive Bacteria Gram-Negative Bacteria

B. subtilis S. aureus K. pneumoniae P. aeruginosa

12.5
µg/well

25
µg/well

50
µg/well

100
µg/well

12.5
µg/well

25
µg/well

50
µg/well

100
µg/well

12.5
µg/well

25
µg/well

50
µg/well

100
µg/well

12.5
µg/well

25
µg/well

50
µg/well

100
µg/well

9a 23 ± 2 23 ± 1 27 ± 3 29 ± 2 17 ± 1 18 ± 2 20 ± 1 23 ± 3 30 ± 1 31 ± 2 33 ± 3 36 ± 1 26 ± 2 29 ± 3 32 ± 1 33 ± 2

9b - - - - - - - - - - - - - - - -

9c - 7 ± 3 9 ± 2 11 ± 3 - - - - 12 ± 2 13 ± 1 15 ± 3 18 ± 1 9 ± 2 11 ± 2 14 ± 2 18 ± 2

9d - - 7 ± 1 9 ± 3 - - - - 10 ± 2 11 ± 2 13 ± 2 16 ± 1 10 ± 2 12 ± 2 14 ± 2 17 ± 2

9e 22 ± 3 24 ± 1 27 ± 2 31 ± 1 16 ± 2 18 ± 3 20 ± 1 23 ± 2 31 ± 3 33 ± 1 35 ± 2 38 ± 1 28 ± 2 30 ± 1 33 ± 2 34 ± 3

9f - - - - - - - - - - - - - - - -

9g 21 ± 2 21 ± 1 25 ± 2 28 ± 3 13 ± 1 15 ± 3 19 ± 2 21 ± 3 29 ± 1 28 ± 3 31 ± 2 35 ± 1 25 ± 3 28 ± 2 30 ± 1 33 ± 1

9h 17 ± 1 19 ± 2 21 ± 1 24 ± 3 11 ± 2 13 ± 1 15 ± 2 17 ± 1 24 ± 2 26 ± 1 28 ± 1 31 ± 2 19 ± 1 23 ± 2 25 ± 2 29 ± 3

9i 9 ± 1 10 ± 3 11 ± 2 13 ± 1 - - - 8 ± 2 14 ± 1 18 ± 3 20 ± 1 21 ± 2 10 ± 2 12 ± 2 15 ± 1 19 ± 3

9j 15 ± 1 16 ± 2 18 ± 3 20 ± 1 9 ± 3 10 ± 2 12 ± 1 14 ± 2 21 ± 2 23 ± 1 25 ± 2 28 ± 1 16 ± 1 20 ± 2 22 ± 3 25 ± 2

9k 10 ± 2 13 ± 3 15 ± 1 17 ± 1 8 ± 3 9 ± 1 11 ± 2 12 ± 1 17 ± 1 19 ± 3 22 ± 1 24 ± 2 14 ± 2 16 ± 2 19 ± 1 23 ± 3

9l 16 ± 2 18 ± 3 20 ± 1 24 ± 2 10 ± 2 11 ± 1 13 ± 3 15 ± 1 22 ± 2 24 ± 2 26 ± 1 29 ± 2 18 ± 2 21 ± 1 24 ± 2 27 ± 3

9m 9 ± 1 11 ± 2 13 ± 3 15 ± 2 - 7 ± 1 8 ± 3 10 ± 1 16 ± 2 17 ± 1 19 ± 3 21 ± 2 11 ± 2 14 ± 1 16 ± 3 21 ± 1

9n 11 ± 2 13 ± 1 15 ± 2 18 ± 1 10 ± 1 11 ± 2 12 ± 1 13 ± 2 20 ± 3 21 ± 2 23 ± 1 26 ± 1 15 ± 1 19 ± 2 20 ± 2 24 ± 1

Chloramphenicol 33 ± 2 34 ± 2 36 ± 3 40 ± 1 30 ± 1 32 ± 3 35 ± 2 37 ± 3 38 ± 1 40 ± 2 42 ± 1 44 ± 1 25 ± 2 27 ± 3 29 ± 1 32 ± 2

Amoxicillin 30 ± 2 36 ± 1 28 ± 2 30 ± 2 32 ± 2 34 ± 1 32 ± 1 32 ± 2 35 ± 1 42 ± 1 40 ± 2 45 ± 1 28 ± 1 29 ± 2 28 ± 2 36 ± 1

Control
(DMSO) - - - - - - - - - - - - - - - -

(-) No activity; (±) Standard deviation.

Using the thermodynamic equation for Gibbs free energy, ∆G = −RTlnKi, and substi-
tuting IC50 for Ki (a less rigorous approximation), ligand efficiency can be calculated as
follows [50]: LE = 1.4(pIC50)/N

Besides ADT4, we have also utilized BIOVIA [51] and PyMOL [52] software to visual-
ize and present the conformations.

3. Results and Discussion
3.1. Structure-Based Design

An adequate literature study was carried out to reveal the importance of four mem-
bered nitrogen containing heterocyclic compound, in particularly azetidinone and also
about benzophenone analogues. The study showed that researchers reported excellent
antimicrobial activity of azetidinone analogues [53,54]. A few benzophenone analogues
reported by our group are also promising antimicrobial agents [2,55–58]. In addition, drugs
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such as penicillins, cephalosporins, carbapenems, monobactams consist of the β-lactam ring
(Figure 1), and they are renowned antimicrobial drugs. β-Lactam antibiotics are currently
the most used class of antibacterial agents in the infectious disease armamentarium. As
shown in (Figure 2), β-lactams account for 65% of all prescriptions for injectable antibiotics
in the United States. Nevertheless, the title compounds contain essential pharmacophoric
elements that are essential for a molecule to exhibit antimicrobial activity such as a β-lactam
ring, distal benzoyl group, lipophilic aryl group, and the donor nitrogen atom of acetamide
bridge. Furthermore, the carbonyl oxygen of lactam ring forms hydrogen bonding interac-
tion with Arg144 and Tyr75 and even amide oxygen showed hydrogen bonding interaction
with Arg144. The substituted phenyl ring exhibited pi-cation interaction with Pro87, Asn89,
Elu240 and Arg84 residues. Based on these points we designed new analogues containing
N-CO and other pharmacophores necessary to show antimicrobial performance (Figure 3).
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a synthetic procedure as shown in (Scheme 1). All the synthesized compounds were
characterized by IR, NMR, and mass spectral data. The starting materials substituted
phenyl benzoate analogues (3a–b) were synthesized by benzoylation of o-cresol (1) with
corresponding benzoyl chlorides 2(a–b) using 10% sodium hydroxide solution. Fries rear-
rangement of compounds 3(a–b), was carried out under neat conditions, using anhydrous
aluminium chloride as a catalyst to afford hydroxy benzophenones 4(a–b). The compounds
4(a–b) on etherification with ethyl chloroacetate using dry acetone as a solvent gave substi-
tuted ethyl 2-(4-benzoylphenoxy) acetates 5(a–b). The compounds 5(a–b) in ethanol were
treated with hydrazine hydrate dropwise, with continuous stirring for two hours to achieve
substituted 4-benzoyl-phenoxy aceto hydrazides 6(a–b). Further, the compounds 6(a–b) in
absolute ethanol were treated with substituted aldehydes 7(a–g) with a catalytic amount of
acetic acid and refluxed for 8–10 h to obtain substituted 2-(4-benzoyl-2-methylphenoxy)-
N-(2-benzylidene) acetohydrazides 8(a–n). Finally, the compounds 8(a–n) and triethyl
amine as catalyst in dioxane were cooled and stirred. To this well-stirred cold solution,
chloroacetyl chloride was added dropwise within a period of 20 min and stirring was
continued for an additional 3 h to furnish the title compounds substituted 2-(4-benzoyl-
2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-acetamides 9(a–n). Among
3(a–b) the spectrum of compound (3a), is selected as a representative example. The forma-
tion of this compound was confirmed by the appearance of the carbonyl stretching band
for the ester group at 1715 cm−1 in the IR spectrum and the appearance of nine aromatic
protons between 7.0 and 7.8 ppm in the proton NMR spectrum. The mass spectrum of
compound (3a) gave a significant stable (M + 1) peak at m/z 213 which is also evident for the
formation of compound (3a). Further, the spectrum of compound (4a), was considered as a
representative example of the series (4a–b). The IR spectrum showed the disappearance
of the carbonyl stretching band of the ester group of compound (3a). The proton NMR
spectrum of compound (4a) was established by the appearance of the OH stretching band
at 3510–3600 cm−1, and the appearance of a broad singlet for the OH proton at δ 12.0 ppm
and a decrease in one aromatic proton between 6.71 and 7.70 ppm. The mass spectrum
of compound (4a) offered a significant stable (M + 1) peak at m/z 213 which is considered
as additional evidence for the formation of this compound. Subsequently, compound (5a)
was taken as a representative example for the 5(a–b) series, which was confirmed by the
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appearance of the carbonyl stretching band for the ester group at 1760 cm−1 in the IR
absorption spectrum. Moreover, it was confirmed by the disappearance of a broad singlet
peak for the OH proton of compound (4a) and the appearance of a triplet and quartet for
CH3 and CH2 protons at δ 2.31 and 4.15 ppm, respectively by proton NMR observation.
Furthermore, the mass spectrum gave a significant stable (M + 1) peak at m/z 299 which
clearly confirmed the formation of the compound (5a). The synthesis of compound (6a)
was confirmed by the appearance of NH and NH2 stretching bands in the range between
3120–3220 cm−1 and carbonyl stretching band of amide at 1670 cm−1 in the IR spectrum. It
was also confirmed by the proton NMR spectrum with the appearance of singlet amide
−NH peak at δ 9.55 ppm and singlet NH2 peak around δ ppm and by the disappearance
of triplet and quartet peaks for CH3 and CH2 protons respectively of compound (5a). The
mass spectrum of this compound gave a significant stable (M + 1) peak at m/z 286 which
also affirmed the formation of product (6a). Likewise, the structure of the compound (8a)
was confirmed by the disappearance of NH2 band of compound (6a) and the appearance
of C = N stretching band at 1630 cm−1 in the IR spectrum. Furthermore, in proton NMR,
the appearance of a singlet peak of HC = N proton at δ 8.45 ppm, and an increase in four
aromatic protons, confirmed the formation of the product (8a). The mass spectrum of com-
pound (8a) gave two significant stable (M+) peak at m/z 407 and (M + 2) peak at 409 which
also proves the formation of the compound (8a). Finally, the spectrum of the compound
(9a) was considered as a representative example for the title compounds series 9(a–n). This
was supported by the disappearance of C = N stretching band of the compound (8a) and by
the appearance of the carbonyl stretching band of azetidinone ring at 1655 cm−1 in the IR
spectrum. It was also proved by the NMR spectrum by the disappearance of singlet proton
peak of HC = N and appearance of N-CH proton singlet peak at δ 5.45 ppm and singlet
peak of Cl-CH at 5.6 ppm. The mass spectrum of compound (9a) gave two significant peaks
of m/z 483 (M+) and 485 (M + 2), which also revealed the formation of the compound (9a).

3.3. Biology
In Vitro Antibacterial and Antifungal Activity

The development of hybrid drugs offers better treatment for various diseases, es-
pecially for microbial infections. Hybrid molecules with two or more pharmacophores
have the potential to overcome drug resistance and reduce the risk of side effects through
multiple mechanisms [59,60] and such compounds may inhibit two or more conventional
targets simultaneously. It has been reported that molecules having heterocyclic moiety
exhibited a wide range of biological activities. Therefore, hybridization of benzophenone
moiety with 2-azetidinone heterocyclic pharmacophore increases the ability of new drug
candidates that can resolve drug resistance problems. Considering these facts, a series
of novel benzophenone fused azetidinone derivatives 9(a–n) were efficiently synthesized
with a moderate to good yield.

All the synthesized compounds 9(a–n) were screened for antibacterial as well as
antifungal activities. The antimicrobial activity was determined by using the disc diffusion
method by means of measuring the zone of inhibition in mm, which was followed by
the determination of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal
Concentration (MBC) and Minimum Fungicidal Concentration (MFC) of compounds 9a,
9e and 9g by broth dilution method against selected strains. In the series of compounds
9(a–n), some of them demonstrated activities ranging from good, moderate, to poor activity
that has been summarized in Table 1 for antibacterial activity and in Table 2 for antifungal
activity. Compounds 9a with chloro group at the ortho position in phenyl ring, 9e with the
nitro group at the ortho position and chloro group at the meta position in the phenyl ring
and 9g with bromo group at meta position in the benzoyl ring exhibited maximum zone of
inhibition in both bacterial and fungal strains compared that of the remaining analogues in
the series with respect to standard drug Chloramphenicol/Amoxicillin in the case of bacterial
strain (B. subtilis, S. aureus, K. pneumoniae and P. aeruginosa) and ketoconazole with respect
to fungal strain (A. niger and P. chrysogenum).
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After the preliminary screening compounds 9a, 9e and 9g were evolved as lead
molecules. These lead molecules were again subjected to the broth dilution method to
calculate the MIC, MBC, and MFC (µg/mL) for the selected strains. Among the lead
molecules, compound 9e with the nitro group at the ortho position and chloro group at the
meta position in the phenyl ring and compound 9g with bromo group at meta position in
the benzoyl ring exhibited good inhibition at lower concentration against tested strains in
comparison with that of the other analogues in the series. Compound 9a with chloro group
at the ortho position in phenyl ring, showed good antibacterial and moderate antifungal
activity. Compounds 9j and 9l showed moderate antibacterial and antifungal activity,
whereas compounds 9c, 9d, 9h, 9i, 9k, 9m, and 9n showed less activity and compounds
9b and 9f with methoxy substituent showed no activity. In conclusion, the chloro and
nitro substituents at the meta and ortho position in the phenyl ring have highly influenced
the structure and morphology of the compound 9e and the bromo substituent at the para
position in the benzoyl ring of the compound 9g shows the synergic effect, which in turn,
is expected to be the reason for the inhibition of microbial growth. This is most likely due
to the interaction of the β-lactam ring of compounds 9e and 9g, which gives the compound
a three-dimensional shape that mimics the D-Ala-D-Ala peptide terminus that serves as
the natural substrate for transpeptidase activity during cell wall peptidoglycan synthesis.
Tight binding of these β-lactam drugs to the transpeptidase active site inhibits cell wall
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synthesis. Death results from osmotic instability caused by faulty cell wall synthesis, or
the binding of the beta-lactam to penicillin binding proteins may trigger a series of events
that lead to autolysis and death of the cell. Further, the diffusion of compounds 9e and 9g
inside the cell membrane may also result in the ruin of vital functions of the cells such as
replication, transcription, and translation. This may lead to DNA damage and imbalance
in cell metabolism. (Figure 4). Finally, we can conclude that halo (chloro and bromo) and
nitro substitutes have revealed good activity as seen in Table 3. Further, the in-vitro assay
results were also compared with in-silico studies.

Table 2. The in vitro antifungal activity of compounds 9(a-n).

Compounds
Diameter of Zone of Inhibition (mm)

A. niger P. chrysogenum

12.5 µg/well 25 µg/well 50 µg/well 100 µg/well 12.5 µg/well 25 µg/well 50 µg/well 100 µg/well

9a 25 ± 2 27 ± 2 29 ± 1 32 ± 3 18 ± 1 19 ± 2 20 ± 2 23 ± 3

9b - - - - - - - -

9c 11 ± 2 12 ± 2 14 ± 2 17 ± 2 - - 8 ± 2 10 ± 2

9d 18 ± 3 20 ± 1 22 ± 1 25 ± 3 12 ± 2 14 ± 2 15 ± 1 17 ± 2

9e 32 ± 1 34 ± 3 36 ± 2 39 ± 2 23 ± 1 25 ± 3 27 ± 1 31 ± 2

9f - 11 ± 2 8 ± 2 10 ± 2 - - - -

9g 31 ± 2 33 ± 1 35 ± 1 38 ± 3 22 ± 2 23 ± 1 25 ± 2 29 ± 3

9h 22 ± 1 24 ± 1 27 ± 2 30 ± 1 13 ± 2 15 ± 3 17 ± 1 20 ± 2

9i 10 ± 2 11 ± 2 12 ± 2 15 ± 1 - - - -

9j 27 ± 1 29 ± 3 31 ± 2 34 ± 2 17 ± 1 19 ± 3 21 ± 1 24 ± 2

9k 18 ± 2 19 ± 2 21 ± 3 24 ± 1 11 ± 2 12 ± 2 14 ± 2 16 ± 2

9l 26 ± 1 29 ± 2 32 ± 1 35 ± 2 20 ± 2 22 ± 1 24 ± 3 26 ± 2

9m 21 ± 1 22 ± 1 24 ± 3 27 ± 1 12 ± 2 14 ± 3 16 ± 1 19 ± 2

9n 15 ± 2 17 ± 1 19 ± 3 22 ± 2 9 ± 2 10 ± 2 12 ± 2 14 ± 3

Ketoconazole 30 ± 1 32 ± 3 34 ± 2 37 ± 3 35 ± 3 36 ± 1 37 ± 2 38 ± 3

Control
(DMSO) - - - - - - - -

(-) No activity; (±) Standard deviation.
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Table 3. MIC, MBC and MFC of compounds 9a, 9e, and 9g.

Compounds
Minimum Inhibitory Concentration, MIC, MBC and MFC g/well

B. subtilis S. aureus K. pneumoniae P. aeruginosa A. niger P. chrysogenum

9a

MIC 25 50 12.5 6.25 12.5 50

MBC 100 200 50 12.5 - -

MFC - - - - 50 200

9e

MIC 25 50 12.5 6.25 12.5 50

MBC 100 200 50 12.5 - -

MFC - - - - 50 200

9g

MIC 50 100 25 25 6.25 25

MBC 200 >200 100 100 - -

MFC - - - - 12.5 100

Chloramphenicol MIC 6.25 6.25 12.5 6.25 - -

Amoxicillin MIC 12.5 12.5 6.25 6.25

Ketoconazole MIC 6.25 12.5

3.4. Molecular Docking Simulation

The prediction of antibacterial and antifungal activities of the compounds have been
carried out using in silico docking studies against (pdb ID: 5E1G) and (pdb ID: 3LD6) which
are identified as a target for antibacterial and antifungal compounds, respectively [61,62].
Among all compounds, the outcomes of the current docking studies revealed the reasonable
hydrogen bonds and binding affinity score for 9a, 9e, and 9g compounds that exhibited the
best free energy and rational bonding interactions with the proteins and bridged diverse
hydrogen bonds with the most important amino acids in the active site pockets of the
proteins. The best binding energy value of 9a compound against 5E1G protein found to be
−8.99 kcal/mol for three hydrogen bonds with ligand efficiency and inhibition constant
values of −0.27 and 2.14 µM, respectively (see Table 4). In this conformation, THR320
residue built a hydrogen bond with the oxygen atom of the carbonyl group attached to the
bridge between phenyl and phenoxy rings at distance of 1.84 Å. Furthermore, the amino
acids CYS354 and HIS336 also formed two hydrogen bonds with two oxygen atoms (=O
and –O–) in acetamide bridge at distances of 1.95 and2.42 Å, respectively. Moreover, HIS352
residue exhibited two pi-cation and pi–pi stacking interactions with phenoxy ring as well
as another one pi-cation interaction with chlorophenyl ring as depicted in Figure 5. The
other docking conformations of 9a with 5E1G protein also showed good results (Table 4).

The compound 9e exhibited remarkable results with both proteins and recorded strong
binding energies reaching up to −11.57 kcal/mol with 3LD6 protein through formation of
four hydrogen bonds having ligand efficiency and inhibition constant values of −0.32 and
3.31 µM, respectively (see Table 4). The shortest hydrogen bond in this conformation has
been formed between the residue LYS156N and one of the oxygen atoms attached to the
nitro group at a distance of 1.67 Å, while another oxygen atom attached to the nitro group
exhibited a hydrogen bond with the residue TYR145 at a distance of 1.98 Å. Furthermore,
TYR131 and ARG382 residues formed two hydrogen bonds with the oxygen atom attached
to the azetidine moiety at distances of 1.80 and 2.47 Å, respectively. Moreover, the phenyl
ring in this conformation showed two pi–pi stacking interactions with TRP239 and also
pi-cation interaction with HIS236 residue, respectively, (see Figure 5). The details of other
conformations of 9e compound with 3LD6 protein are listed in Table 4. On the other hand,
the result of 9e with 5E1G showed multiple effectiveness hydrogen bonds and affinity
score, in which the best binding energy registered −9.86 kcal/mol associated with five
hydrogen bonds and−0.27 and 59.52 µM values of ligand efficiency and inhibition constant,
respectively, as listed in Table 4. In this conformation, one of oxygen atom attached to
the nitro group built double hydrogen bonds with HIS352 amino acid at distances of 1.80
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and 2.60 Å, respectively, and another oxygen atom attached to the nitro group constructed
two hydrogen bonds with HIS336, and ANS356 residues at distances of 2.14 and 2.30 Å,
respectively. Moreover, the oxygen atom attached to the azetidine moiety has formed
the shortest hydrogen bond with THR320 residues at distance of 1.69 Å. Furthermore,
this conformation is stabilized with pi–pi stacking interaction between the centroid of
chlorophenyl ring and TRP340 amino acid as depicted in Figure 5. All other conformation
of 9e compound docked with 5E1G protein are listed in Table 4.
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Figure 5. 2D interaction plots of the ligands at the active site of the proteins showing pi- cation and
hydrogen bond interactions.

Regarding to the docking result of 9g compound with 3LD6 protein, the best con-
formation had −0.31 and 27.82 µM values of ligand efficiency and inhibition constant,
respectively, with binding energy value of −10.31 kcal/mol for one hydrogen bond formed
between TYR145 residue and nitrogen atom in the acetamide group at distance of 2.04 Å.
Additionally, there is one pi–pi stacking interaction linked TYR131 residue with the centroid
of phenoxy ring (see Figure 5). The parameters of all other docking conformations of 9g
compound with 3LD6 are listed in Table 4.

Hence, the synthesized compounds 9a and 9e fit nicely in the pocket site of 5E1G
protein and are enclosed by several hydrophobic, hydrogens and pi contacts with the active
amino residues TYR308, TYR318, THR320, GLY332, VAL333, PHE334, HIS336, TRP340,
SER351, HIS352, GLY353, CYS354, ASN356. which found to be similar to the interaction
seen in the cocrystal ligand and others 5E1G inhibitors structures [61]. On the other
side, the synthesized compounds 9e and 9g also fit properly in 3LD6 active site and are
surrounded by several hydrogen bonds, hydrophobic contacts, and pi interactions with the
active amino acids TYR131, LEU134, TYR145, THR135, PHE152, LYS156, HIS236, TRP239,
LIE377, MET380, MET381, ARG382, HIS447, CYS449, MET487, which are analogous to the
interactions of original inhibitor of 3LD6 protein [62].

Figure 6 represents three-dimensional illustrations of the ligand-protein complexes
with a close view showing the placing of the ligands in the active site groove of the proteins.
The ribbon model of the protein targets with ligands in ball-stick representation for the best
conformations are depicted in Figure 7.
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Table 4. Results of in silico docking studies for 9a, 9e and 9g ligands with 3U2K, antibacterial, and
1JIP, antifungal, targets.

Conf No. Ligand Protein
B.E

(kcal/mole) L. E I.C,µM
T = 298.15 K

vdW-Hb-Des-Energy
kcal/mol

Hb of Residues and Ligands with
Bond Length (Å)

Pi Interactions (Å)
* RMSD

pi–pi pi-Cation

1

9a

5E1G

−8.99 −0.27 2.14 −10.99
THR320OH:O(1.84)
CYS354NH:O(1.95)
HIS336NH:O (2.42)

HIS352–Cg2 (3.92) HIS352–Cg1 (3.00)
HIS352–Cg2 (2.68) 0.172

9e

−9.86 −0.27 59.52 −1198

THR320 OH:O (1.69)
HIS352NH:O (1.80)
HIS352NH:O (2.60)
HIS336NH:O (2.14)

ANS356 NH:O (2.30)

TRP340–Cg1 (3.59) 0.201

3LD6
−11.57 −0.32 3.31 −12.07

LYS156NH:O (1.67)
TYR131OH:O (1.80)
TYR145O:HN (1.98)
ARG382NH:O (2.47)

TRP239–Cg3 (3.91)
TRP239–Cg3 (3.96) HIS236–Cg3 (2.84) 0.182

9g −10.31 −0.31 27.82 −12.42 TYR145O:HN (2.04) TYR131–Cg2 (3.92) 0.216

2

9a

5E1G

−8.67 −0.26 444.19 −10.69 THR320OH:O (2.10) TRP340–Cg1 (2.50) 1.046

9e

−9.81 −0.27 64.39 −11.84
THR320OH:O (2.09)
HIS352NH:O (1.82)
HIS352NH:O (2.17)

TYR318–Cg2 (4.00) TRP340–Cg1 (2.23) 1.311

3LD6
−11.31 −0.31 5.16 −12.26

LYS156NH:O (2.24)
HIS447NH:O (2.23)
TYR145OH:O (1.91)

1.692

9g −10.06 −0.30 42.13 −12.18 HIS489NH:O (1.83) 25.669

3

9a

5E1G

−8.52 −0.26 566.15 −10.58 10.364

9e

−9.57 −0.27 96.45 −11.91 THR320OH:O (1.69)
HIS352NH:O (1.76) TYR318–Cg2 (3.84) TRP340–Cg1 (2.41) 2.504

3LD6
−11.27 −0.31 5.52 −12.04

LYS156NH:O (1.90)
HIS447NH:O (2.07)
TYR145OH:O (2.02)

0.703

9g −9.42 −0.29 124.28 −11.41 LYS156NH:O (2.05) 0.958

4

9a
5E1G

−8.51 −0.26 580.09 −10.57 ASN356NH:O (2.14) CYS354–Cg2 (3.00) 8.259

9e
−8.07 −0.22 1.21 −10.69 ASN356NH:O (1.78) THR320–Cg1 (2.72) 0.951

3LD6
−10.90 −0.30 10.19 −12.35 PHE234–Cg3 (4.00) LYS156–Cg1 (2.83) 4.989

9g −9.38 −0.30 62.65 −11.89 1.392

5

9a
5E1G

−8.05 −0.24 1.26 −10.09 TRP340–Cg1 (2.88)
HIS352–Cg1 (2.96) 3.343

9e
−7.19 −0.20 5.39 −9.73 13.219

3LD6
−10.59 −0.29 17.39 −12.08 LYS156–Cg1 (2.95) 3.821

9g −9.32 −0.28 148.35 −11.32 ILE379NH:O (2.11) TRP239–Cg3 (4.00)

6

9a
5E1G

−8.03 −0.24 1.30 −10.05 THR320OH:O (2.23) 0.649

9e
−6.71 −0.19 11.99 −9.23 THR320OH:O (1.93) TYR318–Cg2 (3.73) 0.826

3LD6
−9.35 −0.26 140.29 −10.47 TYR145OH:O (1.56) 0.816

9g −9.30 −0.28 151.46 −11.41 5.911

7

9a

5E1G

−7.74 −0.23 256.69 −9.76 THR320OH:O (2.97) TRP340–Cg1 (2.36) 0.638

9e
−5.67 −0.16 69.43 −8.19 TYR318OH:O (1.90)

HIS352–Cg1 (2.74)
HIS352–Cg2 (2.83)
TRP340–Cg2 (2.93)

0.417

3LD6
−9.00 −0.25 254.09 −11.06 8.952

9g −8.87 −0.27 316.81 −10.95 ILE450NH:O (2.01) 19.951

8

9a
5E1G

−6.87 −0.21 9.2 −8.96 THR320OH:O (2.17) 0.924

9e
−5.43 −0.15 104.17 −7.92 15.240

3LD6
−9.05 −0.25 231.56 −10.86 LYS156NH:O (2.16) 2.964

9g −8.76 −0.27 379.07 −10.82 LEU310–Cg3 (2.86) 3.585

9

9a
5E1G

−6.00 −0.18 39.80 −7.97
HIS352NH:O (1.67)
ASN356NH:O (1.67)
HIS352NH:O (1.88)

TRP340–Cg2 (4.00) TYR318–Cg1 (2.95) 0.258

9e
−5.15 −0.14 168.76 −7.18 TPR340NH:O (1.63)

ASN356NH:O (1.52)
HIS352–Cg1 (2.57)
HIS352–Cg1 (2.59) 11.381

3LD6
−7.90 −0.22 1.61 −10.16 14.948

9g −8.73 −0.26 396.42 −10.81 0.671

10

9a
5E1G

−5.86 −0.18 50.95 −7.95 HIS352NH:O (1.19)
ASN356NH:O (1.66) 4.503

9e

−4.20 −0.12 832.99 −6.74 THR320OH:O (1.59) 7.214

3LD6
−6.61 −0.18 14.28 −7.40

LYS160NH:O (2.23)
LYS436NH:O (1.97)

ARG448NH:O (1.96)
GLY445–Cg1 (2.41) 34.125

9g −7.66 −0.23 2.43 −9.78 ILE450–Cg4 (2.92) 0.794

Conf. No.: Conformation Number, I.C: Inhibition Constant, B.E: Binding Energy, L.E: Ligand Efficiency,
T: Temperature, vdW: Vander Walls energy, Hb: Hydrogen bond energy and Des: Desolv energy, Cg1, Cg2,
Cg3 and Cg4 are centroids of chlorophyl, phenoxy, phenyl and bromophenyl rings, respectively. * RMSD values of
our ligands and the original inhibitors, co-crystal ligands, redocked with the same proteins.
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Figure 7. Ball and stick representation of the ligands with ribbon model of the protein targets showing
hydrogen bond as dashed lines.

The docking simulations have been validated by redocking the original inhibitors,
co-crystal ligands, and with the same proteins that exhibited good overlapping with our
ligands having RMSD values of 0.172 and 0.201 for 9a and 9e docked with 5E1G (see
Figure 8a). While RMSD values of 9e and 9g docked with 3LD6 are found to be 0.182 and
0.216, respectively, as illustrated in Figure 8b.

The result of in silico docking has been matched to the experimental result and revealed
the importance of acetamide group, azetidinone, and phenyl ring in the biological activity
of these compounds as antibacterial and antifungal candidates.
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Figure 8. Overlapping of cocrystal ligands (blue color) with our synthesized compounds, 9a (yellow
color), 9e (purple color) and 9g (cyan color) docked with; (a) 5E1G and (b) 3LD6 proteins.

4. Conclusions

In conclusion, the synthesis of various benzophenone fused azetidinone derivatives
were achieved by multi-step synthesis. All the synthesized compounds were characterized
for structural confirmation. Further, newly synthesized benzophenone fused azetidinone
derivatives were assessed for antibacterial and fungal activities. In vitro results revealed
that the compounds 9a, 9e, and 9g showed good antibacterial and antifungal activity. The
remaining compounds demonstrated moderate to poor antimicrobial inhibition towards all the
tested strains. On the other hand, in silico docking result has been matched the experimental
results and revealed the importance of acetamide group, azetidinone, and phenyl ring in the
biological activity of these compounds as antibacterial and antifungal candidates.
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