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Abstract: The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioin-
formatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six tran-
scription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial
hypertension datasets, which makes them the most frequently dysregulated transcription factors.
Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with
fibration symmetries, were constructed to identify common connection patterns, alignments, main
regulators, and target genes in order to analyze transcription factor complex formation, as well
as its synchronized co-expression patterns in every type of lung cancer. The regulatory function
of the most frequently dysregulated transcription factors over lung cancer deregulated genes was
validated with ChEA3 enrichment analysis. A Kaplan–Meier plotter analysis linked the dysregulation
of the top transcription factors with lung cancer patients’ survival. Our results indicate that lung
cancer has unique and common deregulated genes and transcription factors with pulmonary arterial
hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcrip-
tional regulatory network that might be associated with critical biological processes and signaling
pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant
tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized
therapies against lung cancer.

Keywords: lung cancer; pulmonary arterial hypertension; differentially expressed genes; transcription
factors; co-expression networks; common connection patterns; gene regulatory network; coregulatory
network; fibration symmetries; transcriptional regulatory network; lung cancer biomarkers; patient’s
survival; transcriptomics and bioinformatics

1. Introduction

Lung cancer is an unrestrained tumor cell growth that can invade and affect other
tissues [1]. Lung cancer caused 11.4% of the deaths associated with cancer around the world
in 2020 [2]. Non-small-cell lung cancer (NSCLC) is the most frequent type represented
by 85% of the cases, and small-cell cancer (SCLC) is the less frequent with 15% of the
total cases [3]. The NSCLC histological subtype adenocarcinoma (LAC) is responsible for
around 40% of the cases, squamous cell carcinoma (SCC) is around 30%, while large-cell
carcinoma is very rare, at approximately 5–10% [4]. The potential treatment of lung cancer
is limited by the diagnosis based on the appearance of symptoms only in the late stages of
the disease [1]. Multiple genetic risk factors have been identified, such as mutations, gene
amplifications, deletions, and fusion genes, which have been associated with an increase in
the susceptibility to developing lung cancer [5]. However, no pharmacological treatment
has shown important changes in the tumoral phenotype of all patients. In this study, it is
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proposed that the lack of effective lung cancer biomarkers is associated with the fact that its
identification has not reached the complete molecular and cellular variability in the tumor
environment of each individual and population of individuals, and the group of important
biomarkers have not been identified within the significant number of deregulated genes
identified by genetic studies [6].

The transcriptomic studies that look for the complete gene expression scenario, such
as microarrays and RNA-Seq, have provided biological information about dysregulated
genes involved in cancer [7]. We have already performed a deeper analysis of microarray
studies used with a different bioinformatic pipeline, taking advantage of the huge amount
of knowledge that could be generated with this technology, and therefore, increasing the
understanding of cellular processes related to the early stages of complex diseases such as
lung cancer [6]. Our previous joint transcriptomic analysis allowed for the identification
of possible key biomarkers for early detection and the future development of treatments
against NSCLC. In the present work, we also want to show how the re-analysis of gene
expression data available in multiple databases can be used to obtain new knowledge and
propose new biological hypotheses based in a deeper and more focused bioinformatic
pipeline, in order to find a potential gene network of biomarkers associated with the
regulation of the unique tumoral functions in lung cancer.

The selection microarray and RNA-Seq datasets of all possible types and subtypes
of lung cancer will reach all deregulated genes and transcription factors specific to lung
cancer, regardless of their histopathologic classification. Moreover, the construction of
co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks can
allow us to identify synchronized biological clocks of deregulated genes co-expressed in
lung cancer, which are controlled by transcription factors inside the fibration symmetries
of the gene networks [8], leading to a better understanding of the oncogenic cellular
function embedded in their interactions [9]. Increased pulmonary arterial pressure has
been associated with the response to treatment in patients with lung cancer [10]. Moreover,
the possible association between the pulmonary arterial hypertension dataset (PAH) and
lung cancer [11], through different physio-pathogenic mechanisms, has previously been
suggested in several studies, with evidence that other pulmonary diseases share processes
characteristic of lung cancer that point to a possible causal association in the acquisition of
the hallmarks of cancer [6]. Therefore, it is important to take this comorbidity into account
when identifying transcriptomic risk factors for developing lung cancer.

Our bioinformatic pipeline seeks to identify a unique transcriptional regulatory
metafirm of lung cancer transcription factors associated with the acquisition of the hall-
marks of cancer during the lung tumoral process. Moreover, the lung cancer metafirm
can be characterized by the formation of functional blocks of genes co-expressed in lung
cancer that are regulated by a group of transcription factors important for the regulation of
gene expression during the acquisition of the hallmarks of cancer; therefore, they may be
interesting candidates that could be used as biomarkers for the development of diagnostic
tools and specific treatments against lung cancer.

2. Materials and Methods

All datasets are case–control studies, measuring the gene expression (microarrays and
RNA-Seq) of lung tumoral cells and adjacent non-tumoral lung cells using high-throughput
sequencing (Table 1), which represent lung cancer pathological types (NSCLC and SCLC)
and subtypes (squamous lung cancer and lung adenocarcinoma) from different populations.
The differentially expressed genes (DEGs) list of the six microarray and four RNA-Seq
datasets from our previous transcriptomic analyses in three types of cancer [12], along with
the pulmonary arterial hypertension dataset (PAH) from our previous joint transcriptomic
analysis (Table S1) [6], were compared to identify all deregulated genes in at least eight lung
cancer datasets. This was in order to identify the most frequent lung cancer (LC) DEGs and
highlight among them the most frequently dysregulated transcription factors (TFs) in lung
cancer and PAH. Therefore, the most frequent DEGs and TFs are the dysregulated genes
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present in at least eight of the ten lung cancer datasets. The fold change was previously
calculated for a given gene as the difference between the expression profile in cases versus
controls, and the value was averaged across all datasets, such that genes with fold change
values greater than one are upregulated, while those with fold change values less than one
are downregulated [13]. The gene expression of the most frequent DEGs was validated
with all TCGA gene expression studies on squamous cell carcinoma (SCC) and lung
adenocarcinoma (LAC), available at The University of ALabama at Birmingham CANcer
data analysis Portal (UALCAN), United States (http://ualcan.path.uab.edu/analysis.html
accessed on 10 January 2023). The DAVID (Version 2021) functional and enrichment
analyses with the official gene symbol of the most frequent LC DEGs identified those related
to biological processes and signaling pathways that might be related to the acquisition
of the hallmarks of cancer, through an enrichment analysis of gene ontology, signaling
pathways, and gene–disease association terms [14]. The gene expression correlation of
the most frequently dysregulated TFs in NSCLC (GSE19804) and SCLC (GSE108055) was
analyzed with the R package corrplot (Version 0.92) [15]. The visualization method of the
correlation matrix used was “color”, the ordering method of the correlation matrix was the
hierarchical clustering “hclust”, the number of rectangles drawn on the graph according
to the hierarchical cluster or addrect was “two”, and the colorRampPalette was "blue",
"white", and "red".

Table 1. Gene expression datasets, each study code, and number of samples.

Study Code Samples

GSE19804 Normal (60) vs. Cancer NSCLC (60)
GSE10072 Normal (49) vs. Cancer-Lung adenocarcinoma (58)
GSE3268 Normal (5) vs. Cancer-Squamous lung cancer cells (5)

GSE108055 Normal (9) vs. Cancer-Small-cell lung cancer (54)
E-MTAB-5231 Normal (18) vs. Cancer-NSCLC (22)
E-MTAB-3950 Normal (30) vs. Cancer-Early Squamous Carcinoma (30)

GSE52248 Normal (6) vs. Lung adenocarcinoma (12)
GSE70089 Normal (3) vs. Lung carcinoma (3)
GSE81089 Normal (19) vs. Cancer NSCLC (199)
GSE84776 Normal (9) vs. Squamous lung cancer (9)

GSE113439 Normal (11) vs. Pulmonary arterial hypertension (PAH) (15)

Co-expression networks were created for every dataset with a normalized gene ex-
pression matrix of the most frequent LC DEGs using the Pearson correlation coefficient,
with a threshold of 0.7. The co-expression layers were compared to identify intersection
subnetworks or common connectivity patterns (CCPs) with the Coexnet library (Version
1.15.0) in R, and to determine common elements or biomarkers among the co-expression
networks [16], as well as the most frequent alignments with Gedevo, as those with the
lowest graph editing cost, with a score representing the degree of similarity of each pair of
nodes, or statistically significant alignments with a median above 0.5 [17]. Every CCP was
constructed using the igraph package (Version 1.3.5) in R [18] and was analyzed with iReg-
ulon application (Version 1.3) of Cytoscape (Version 3.9.1) [19,20] to identify a regulator or
TF for every subnetwork, using motif and track discovery in proximal and distal sequences,
around ten thousand candidate motifs or position weight matrices, gene rankings according
to the highest ChIP peak within the regulatory space with over one thousand ChIP-Seq
tracks, and Reactome FIViz application (Version 8.0.4) to perform a signaling pathway
enrichment analysis, accessing the Reactome pathways stored database [21].

The most frequent LC DEGs list was then divided into DEGs found only in eight lung
cancer datasets, and those that were found in eight lung cancer datasets and PAH, and each
list was analyzed with the DAVID tool in order to identify biological process and signaling
pathways related to the acquisition of hallmarks of cancer [14]. Gene regulatory networks
(GRNs) of the most frequent DEGs and TFs were inferred with CoRegNet (Version 1.32.0),
based on a hybrid version of LICORN, which combines both a discrete and a statistical

http://ualcan.path.uab.edu/analysis.html
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model with an emphasis on regulator cooperativity [22]. This was performed for the two
types of lung cancer—NSCLC (GSE19804) and SCLC (GSE108055)—in order to identify the
most frequent DEG targets of the most frequently dysregulated TFs, related only to lung
cancer (LC) and lung cancer along PAH (LC-PAH). The most frequent target DEGs of every
TF were analyzed with the DAVID functional and enrichment analysis [14]. Then, GRNs
were divided by TF targets related to the acquisition of every hallmark of cancer. ChIP-X
Enrichment Analysis 3 (ChEA3 Version 3) performed a TF enrichment analysis (TFEA) in
the lists of the most frequent LC DEGs, according to ChIP-seq experiments from ENCODE,
ReMap, and individual publications; TF co-expression based on RNA-seq studies from
GTEx and ARCHS4; co-occurrence of TFs with other genes performed by Enrichr; and
genome-wide gene expression resulting from TF silencing experiments, in order to validate
the target genes of the most frequently dysregulated transcription factors [23].

The coregulatory networks of most frequently dysregulated transcription factors were
also inferred with CoRegNet, to find the coregulators in the GRNs or possible interactions
at the protein level of the most frequently dysregulated TFs to accomplish its regulatory
function. The R library “Fibration symmetries” (Version 1.1) was used to identify fibers
or functional/biological blocks formed by the most frequently dysregulated TFs in every
GRN [9], with the get.building.blocks function, and analyze the molecular functional syn-
chronization of the lung cancer transcriptional network related to the biological processes
and oncogenic signaling pathways involved in the acquisition of the hallmarks of cancer.

A transcriptional regulatory network (TRN) was constructed to analyze if the top
deregulated TFs might be able to recognize specific DNA sequences to control the expres-
sion of other frequently dysregulated TFs, with one hundred permutations in the RTN
(Version 2.18.0) (Reconstruction of Transcriptional regulatory Networks and analysis of
regulons library of R) [24]. The online Kaplan–Meier plotter tool (http://kmplot.com/
analysis/index.php?p=service&cancer=lung accessed on 10 January 2023) was used to per-
form a meta-analysis-based discovery and validation of the top deregulated TFs identified
with the transcriptomic analysis of lung cancer, using default settings and all probe sets
available which include several lung cancer datasets from GEO, EGA, and TCGA. This
revealed a correlation between the expression of the genes (mRNA, miRNA, protein) and
patients’ survival, through the calculation of a hazard ratio of 95% confidence intervals
and a log rank P-value [25]. The first stage of the bioinformatic analysis identified the
most frequent lung cancer DEGs and TFs, validated their gene expression levels, found the
related biological functions and signaling pathways, and performed a correlation analysis
of the TF mRNA expression. The second stage started with a co-expression analysis of the
most frequent DEGs and TFs, followed by a gene regulatory analysis to identify the most
frequent DEG targets of the most frequent deregulated TFs, followed by a validation of
the most frequent deregulated gene targets of the TFs. Then, a transcriptional regulatory
network identified the most frequent deregulated TFs that can be regulated out of the
top seven deregulated TFs. Finally, a coregulatory analysis was performed to identify the
protein–protein complexes and functional blocks that can be formed by the most frequent
deregulated TFs to accomplish its regulatory function during the acquisition of the hall-
marks of cancer (Figure 1). The analysis was performed following our own bioinformatic
pipeline with several packages in R (Table S2).

http://kmplot.com/analysis/index.php?p=service&cancer=lung
http://kmplot.com/analysis/index.php?p=service&cancer=lung
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Figure 1. Bioinformatic pipeline for the construction of a lung cancer gene regulatory network of
transcription factors related to the hallmarks of cancer.

3. Results
3.1. Co-Expression Networks Analysis

On average, there are 140 upregulated or downregulated genes in at least eight
lung cancer datasets, and every lung disease dataset, except for PAH, has an average of
6500 deregulated genes (Table S1) [6,12]. The UALCAN analysis validated the expression
of all 190 upregulated genes and 185 downregulated genes (Table S3). There are twenty-six
deregulated TFs in at least eight of the ten lung cancer datasets, of which nineteen are
also deregulated in PAH, and seven are only deregulated in lung cancer (Table 2). The
gene expression correlation is positive and negative between different groups of the most
frequently dysregulated TFs in the two types of lung cancer: NSCLC (Figure 2A) and SCLC
(Figure 2B). All possible comparisons between co-expression networks of lung cancer and
PAH have CCPs, which can be regulated by two top deregulated TFs, FOXM1 and MYBL2,
according to the iRegulon analysis (Table 3). All co-expression networks have a CCP in
common, and FOXM1 can regulate all nine genes, while MYBL2 regulates all except CEP55
(Figure 3).

The CCPs formed between lung cancer and PAH have FOXM1 and FOXF1 co-expressed
with the most frequent DEGs in microarrays and RNA-Seq datasets, respectively. The CCP
formed between lung cancer co-expression networks of microarray datasets have TCF21,
FOXM1, and MYBL2, while the CCP of lung cancer RNA-Seq datasets have TCF21, FOXM1,
FOXF1, SOX17, TAL1, LMO2, KLF2, and TBX4 co-expressed with some of the most frequent
LC DEGs. Moreover, P53, integrin-mediated, and Wnt signaling pathways have some
nodes involved in LC-PAH CCPs, and ATR, FoxO, P53, and BMP signaling pathways have
some nodes involved in LC CCPs (Table S4). Coexnet CCPs are related to multiple cell cycle
and biological functions that might be related to the acquisition of hallmarks of cancer such
as sustained angiogenesis, evading apoptosis, limitless replicative potential, activating
invasion and metastasis, self-sufficiency of growth signals, insensitivity of anti-growth
signals, and sustaining proliferative signaling (Table S4).
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Table 2. The most frequently dysregulated lung cancer transcription factors and their fold change. In
blue are the downregulated transcription factors, and in red the upregulated transcription factors in
lung cancer and pulmonary arterial hypertension (PAH). The gray shading highlights the transcription
factors that are dysregulated only in lung cancer.

Transcription Factor Lung Cancer Fold Change Pulmonary Arterial
Hypertension Total

1 SOX4 10 2.04040127 PAH 11
2 SOX17 10 0.50804133 - 10
3 BZW2 9 1.86844644 PAH 10
4 FOXM1 9 2.92595918 PAH 10
5 ZBTB16 9 0.36129524 PAH 10
6 TAL1 9 0.71569014 PAH 10
7 KLF4 9 0.34963135 - 9
8 EPAS1 8 0.29798652 PAH 9
9 HOXC6 8 1.64583097 PAH 9

10 ID4 8 0.58410489 PAH 9
11 KLF2 8 0.35253951 PAH 9
12 MEIS1 8 0.53393586 PAH 9
13 NR2F1 8 0.65817465 PAH 9
14 TBX4 8 0.66704351 PAH 9
15 TCF21 8 0.25969303 PAH 9
16 TFAP2C 8 1.86076131 PAH 9
17 LMO2 8 0.43204536 PAH 9
18 MNDA 8 0.43069329 PAH 9
19 FOXF1 8 0.25699375 PAH 9
20 HLF 8 0.51723087 PAH 9
21 RFX2 8 0.80986159 PAH 9
22 DLX5 8 1.76223624 − 8
23 MYBL2 8 1.79966863 − 8
24 NR4A3 8 0.39647141 − 8
25 PKNOX2 8 0.64308105 − 8
26 GPRASP1 8 0.77475237 − 8
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correlated TFs, and in red are the positively correlated TFs.



Curr. Issues Mol. Biol. 2023, 45 440

Table 3. Common connection patterns (CCPs) of lung cancer (LC) (microarrays (MA) and RNA-
Seq (RNAS)) and pulmonary arterial hypertension (PAH), iRegulon main regulators (FOXM1 and
MYBL2), number of targets, number of binding motifs (BM), and normalized enrichment score of the
motifs (NES).

CCPs
CCPs FOXM1 MYBL2

Nodes Edges Targets BM NES Targets BM NES

ALL LC—PAH 9 11 9 6 10.190 8 1 5.598

MA LC—PAH 39 91 30 6 10.318 19 1 6.552

RNAS LC—PAH 32 36 24 6 11.294 13 1 4.127

ALL LC 29 39 21 6 10.427 19 1 6.352

MA LC 94 555 47 6 9.595 40 1 5.509

RNAS LC 118 370 53 6 11.199 26 1 4.395
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Figure 3. Common connection pattern (CCP) of all lung cancer co-expression networks and pul-
monary arterial hypertension co-expression networks. In green are the two main regulators of the
genes (magenta) in the CCP.

The comparison of the LC co-expression networks with Gedevo identified eight align-
ments that appeared in at least 40% of the possible alignments, all of them also appear in
the Coexnet CCPs, and four are statistically significant (median >0.5) (Table 4). ASPM and
KIF20A are in Gedevo alignments and the CCP of all datasets (Figure 3), but only ASPM
has a statistically significant alignment. Gedevo alignments are also related to multiple
cell cycle functions, and some of them show evidence of dysregulation in cancer (ASPM,
CENPF, TOP2A, and TPX2) and the acquisition of two hallmarks of cancer: sustaining
proliferative signaling and evading apoptosis (Table S4).
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Table 4. Gedevo most common alignments in lung cancer co-expression networks.

Alignment Number of Alignments Percentage Median

ASPM—ASPM 6 60% 0.512949636

CENPF—CENPF 6 60% 0.525433165

PRC1—PRC1 6 60% 0.446116868

TPX2—TPX2 6 60% 0.570271269

TOP2A—TOP2A 5 50% 0.551322899

KIF20A—KIF20A 4 40% 0.444933142

KIF2C—KIF2C 4 40% 0.469979467

NUSAP1—NUSAP1 4 40% 0.484566649

3.2. Gene Regulatory Networks Analysis

In the 375 most frequent DEGs, there are 257 that are also deregulated in PAH, and 117
are deregulated only in lung cancer (Table S1) (Figure 4). According to the DAVID analysis,
92 common DEGs of lung cancer and PAH have experimental cancer-related evidence;
moreover, there are DEGs related to the positive regulation of transcription, angiogenesis,
cell division, growth, adhesion, differentiation, proliferation, migration, senescence, and
apoptosis, as well as Wnt, BMP, insulin, metabolic, FoxO, and p53 signaling pathways, and
among all of them are twelve of the most frequent TFs (SOX4, TAL1, FOXM1, KLF2, MEIS1,
TBX4, EPAS1, ZBTB16, ID4, NR2F1, TFAP2C, and FOXF1). Furthermore, thirty-eight unique
LC DEGs have experimental evidence of their association with cancer and DEGs related to
the positive regulation of gene expression, cell division, growth, adhesion, proliferation,
and differentiation, as well as TGF-β, metabolic, and BMP signaling pathways, and among
all of them are five of the most frequent TFs (SOX17, NR4A3, MYBL2, DLX5, and KLF4)
(Table S1).
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The NSCLC and SCLC GRNs were made with the most frequent LC DEGs dysregu-
lated in eight lung cancer datasets, and the most frequent LC DEGS dysregulated in eight
lung cancer datasets and PAH, considering the most frequently dysregulated TFs (Table 2).
The GRN analysis identified the top target DEGs dysregulated in lung cancer datasets and
PAH of the most frequently dysregulated TFs deregulated in lung cancer and PAH, the top
DEG targets dysregulated only in lung cancer datasets related to the most frequently dys-
regulated TFs dysregulated in lung cancer and PAH, and the most frequently dysregulated
TFs only in lung cancer (Table 5). The most frequent LC DEG targets of the most frequently
dysregulated TFs are related to multiple cell cycle and biological functions that might be
related to the acquisition of hallmarks of cancer such as sustained angiogenesis, evading
apoptosis, limitless replicative potential, self-sufficiency of growth signals, insensitivity of
anti-growth signals, activating invasion and metastasis, deregulated metabolism, evading
immune system, and inducing inflammation (Table S5).

Table 5. Gene regulatory networks (GRNs) of the most frequently dysregulated transcription factors
(TFs) of the two types of lung cancer: non-small-cell lung cancer (NSCLC) and small-cell lung cancer
(SCLC). The number of most frequently dysregulated DEG targets in lung cancer and pulmonary
arterial hypertension (LC-PAH) and only in lung cancer (LC) of each most frequently dysregulated
transcription factor (TF).

NSCLC SCLC

LC-PAH LC LC-PAH LC

TF Targets TF Targets TF Targets TF Targets

1 TCF21 176 TCF21 76 MNDA 127 DLX5 67

2 ZBTB16 175 ZBTB16 74 ZBTB16 123 MNDA 66

3 FOXF1 173 FOXF1 73 KLF2 120 KLF2 64

4 FOXM1 172 NR4A3 73 EPAS1 113 EPAS1 62

5 EPAS1 164 KLF2 73 SOX4 90 ZBTB16 55

6 KLF2 164 KLF4 73 NR2F1 90 NR2F1 50

7 ID4 151 EPAS1 71 FOXF1 87 FOXF1 39

8 MNDA 143 ID4 67 HLF 63 SOX4 36

9 HLF 82 SOX17 67 HOXC6 57 TCF21 35

10 LMO2 52 GPRASP1 51 FOXM1 47 HLF 26

11 HOXC6 47 MNDA 50 TCF21 45 HOXC6 20

12 SOX4 24 HLF 31 LMO2 37 FOXM1 18

13 TFAP2C 12 FOXM1 23 ID4 34 LMO2 10

14 BZW2 10 LMO2 21 RFX2 8 RFX2 9

15 MEIS1 10 HOXC6 12 ID4 8

16 TAL1 3 MEIS1 10

17 SOX4 6

18 TFAP2C 3

19 TAL1 1

20 PKNOX2 1

21 RFX2 1
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Eight of the most frequent TFs regulate DEGs related to angiogenesis, of which seven
regulate DEGs in SCLC and PAH, and seven regulate DEGs in NSCLC and PAH. Eighteen
of the most frequent TFs regulate DEGs related to limitless replicative potential, of which
eleven regulate DEGs in SCLC and PAH, ten regulate DEGs in SCLC, thirteen regulate
DEGs in NSCLC and PAH, and sixteen regulate DEGs in NSCLC. Fifteen of the most
frequent TFs regulate DEGs related to invasion and metastasis, of which eight regulate
DEGs in SCLC and PAH, eight regulate DEGs in SCLC, eight regulate DEGs in NSCLC
and PAH, and twelve regulate DEGs in NSCLC. Thirteen of the most frequent TFs regulate
DEGs related to growth signaling, of which seven regulate DEGs in SCLC and PAH, six
regulate DEGs in SCLC, seven regulate DEGs in NSCLC and PAH, and ten regulate DEGs in
NSCLC. Thirteen of the most frequent TFs regulate DEGs related to apoptosis, of which ten
regulate DEGs in SCLC and PAH, and twelve regulate DEGs in NSCLC and PAH. Eleven
of the most frequent TFs regulate DEGs related to inflammatory and immune responses,
of which seven regulate DEGs in SCLC, two regulate DEGs in NSCLC and PAH, and four
regulate DEGs in NSCLC. Sixteen of the most frequent TFs regulate DEGs related to the
dysregulation of metabolism, of which eleven regulate DEGs in SCLC, nine regulate DEGs
in NSCLC and PAH, and ten regulate DEGs in NSCLC (Figure 5). Furthermore, the SCLC
GRNs are related to TGF-β, integrin-mediated, cell surface receptor, BMP, p53, metabolic,
FoxO, and cGMP-PKG signaling pathways. Meanwhile, the NSCLC GRNs are related to
TGF-β, integrin-mediated, adenylate cyclase-activating G-protein coupled receptor, FoxO,
BMP, insulin receptor, cGMP-PKG, p53, HIF-1, AMPK, and mTOR signaling pathways
(Table S5). ChEA3 analysis identified twenty-one of the most frequent TFs associated with
the regulation of the most frequent LC DEGs; the other five TFs are part of their targets,
related mostly by co-expression and ChIP-Seq experiments found in the literature, ARCHS4,
Enrichr, ReMap, GTEx, and ENCODE databases (Table S6).
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3.3. Coregulatory Networks and Fibration Symmetries Analysis

The NSCLC and SCLC coregulatory networks were made based on the GRNs showing
important functional associations between two, three, and six of the most frequent TFs
specific to every type of lung cancer (Figure 6). The coregulatory networks or group of
transcription factors might form protein–protein complexes to regulate the gene expression
of DEGs unique to lung cancer in NSCLC and SCLC, and the complexes regulate common
DEGs between lung cancer and PAH in NSCLC and SCLC (Table S5). The clusters of
synchronized genes or fibers are the synchronized building blocks of every gene regulatory
network, and symmetry fibrations are transformations that maintain information flow
dynamics in the network [10]. The analysis identified thirty-five functional blocks in
NSCLC and thirty-eight functional blocks in SCLC GRNs from five to fourteen regulators
each (Table S7). The most frequent LC-PAH TFs form twenty-four blocks from five to
thirteen regulators (Figure 7A), regulating the most frequent LC-PAH DEGs in NSCLC-
GRN related to lung cancer and PAH. The most frequent LC-PAH and LC TFs form eleven
blocks from nine to fourteen regulators (Figure 7B), regulating the most frequent LC DEGs
in NSCLC-GRN related only to lung cancer. The most frequent LC-PAH TFs form twenty-
nine blocks from two to eleven regulators (Figure 7C), regulating the most frequent LC-PAH
DEGs in SCLC GRN related to lung cancer and PAH. The most frequent LC-PAH and LC
TFs form nine blocks from four to ten regulators (Figure 7D), regulating the most frequent
LC DEGs in SCLC-GRN related only to lung cancer.
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Figure 7. Largest blocks from fibration symmetries analysis related to the control of gene expression
of (A) NSCLC and PAH deregulated genes, (B) NSCLC deregulated genes, (C) SCLC and PAH
deregulated genes, and (D) SCLC deregulated genes.

3.4. Transcriptional Regulatory Network Analysis of the Most Frequently Dysregulated
Transcription Factors

The RTN analysis showed the importance of the regulatory function of the top seven
deregulated transcription factors (Table 2) in the regulation of the transcriptional regulatory
network in NSCLC (Figure 8A) and SCLC (Figure 8B). In NSCLC, the top seven deregulated
transcription factors regulate eighteen of the most frequently dysregulated transcription factors,
and in SCLC, they regulate seven of the most frequently dysregulated transcription factors.
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Figure 8. Transcriptional regulatory network of the top seven deregulated transcription factors
(squares) over the other nineteen frequently dysregulated transcription factors (circles) in every lung
cancer type ((A). NSCLC and (A). SCLC). In blue are the downregulated TFs, and in red are the
upregulated TFs.
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3.5. Survival Analysis of the Top Seven Deregulated Transcription Factors

The Kaplan–Meier plotter analysis of the top deregulated TFs revealed a statistically
significant association between the expression levels of the top five TFs deregulated also in
PAH (BZW2, FOXM1, SOX4, TAL1, and ZBTB16) and the top two TFs deregulated only in
lung cancer (KLF4 and SOX17), with the survival of lung cancer patients (Figure 9).
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4. Discussion

The selected datasets represent an important number of studies that allow the gene
expression of lung cancer cases and non-tumor tissue controls to be compared, in order to
identify a differentially expressed gene metafirm of the disease. Datasets of the two types
(NSCLC and SCLC) and subtypes (LAC and SCC) in different populations were searched to
represent, as completely as possible, the dysregulation in transcriptional control processes
in lung cancer. The pulmonary arterial hypertension (PAH) dataset stood out for the large
number of dysregulated genes [6], much higher than lung cancer [6,12], which made it
more likely to find an important number of common DEGs with lung cancer. Pulmonary
arterial hypertension (PAH) is the increase in mean pressure greater than 20 mmHg, found
by right heart catheterization, which is associated with the lower survival of patients
with lung cancer, since it increases the rate of complications during diagnosis and the
treatment [10,27]. PAH is a very complex disease similar to cancer, with an important
effect of environmental stress in its etiology, such as inflammation and hypoxia, which
induce the formation of hyperproliferative and apoptotic-resistant clones of different cells
involved in lung tissue, which in turn influence the development of PAH-affected cells
that exhibit several hallmarks of cancer [26]. Moreover, cancer and PAH shared three
robust hallmarks, involved with the phenotypic, angiogenic, and glycolytic switch, along
with inflammation and metabolic changes, which might be related to the cancer treatment
response [28]. The most frequent DEGs found in at least eight LC datasets are related to
important biological processes and signaling pathways associated with the acquisition of
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the hallmarks of cancer described by Hanahan and Weinberg, according to the DAVID
functional annotation analysis (Table S1). Moreover, the transcriptomic analysis identified
a TF regulatory network in the most frequent LC DEGs, of which some are also deregulated
in PAH, and others are unique to lung cancer (Table 2).

The common connection patterns (CCPs) formed between the most frequent LC DEGs
co-expressed in LC and PAH suggest that there is an important group of genes and TFs
(FOXM1 and FOXF1) that act as a group in all types and subtypes of lung cancer during
the acquisition of the hallmarks of cancer, while others (TCF21, SOX17, TAL1, LMO2, KLF2,
and TBX4) are important during lung cancer progression. The importance of FOXM1 and
MYBL2 in regulating the biological processes that trigger lung cancer can be seen from
the smallest CCP formed when comparing all co-expression networks, to the largest CCP
formed among RNA-Seq studies of lung cancer (Table 3). Moreover, FOXM1 is co-expressed
in the CCPs of LC microarray datasets, and PAH, FOXM1, and MYBL2 are co-expressed in
the CCP of all LC microarray datasets (Table S4), suggesting their key importance during
the lung cancer oncogenic process.

According to the DAVID analysis, FOXM1 is related to the regulation of cell growth
and proliferation, while FOXM1 and MYBL2 are related to cellular senescence and the
positive regulation of transcription (Table S1 and Table S4). FOXM1 has been previously
identified as an essential molecular marker of NSCLC prognosis, because its expression
is closely correlated with lymph node status and TNM stage, giving proliferation and
invasion advantages to NSCLC cells [29]. FOXM1 increases the nuclear translocation of
β-catenin and the TCF/LEF interaction (Figure 10) [30,31]. MYBL2 has been related to
the proliferation and migration of NSCLC cells [32], as well as genomic instability in lung
adenocarcinoma [33]. MYBL2 and FOXM1 have been identified as the upstream regulators
of a local “driver network” related to NSCLC cell proliferation [34]. MYBL2 and FOXM1
were related to cancer-specific enhancers, and its high expression in lung adenocarcinomas
has been related to poor patient survival [35]. The complex formed between MYBL2 and
MuvB is needed to increase target specificity for FOXM1 binding. Moreover, DREAM and
other MuvB-derived complexes bind to DNA through cell cycle gene homology regions
(CHRs), and DREAM can associate to E2F/pRB-related components and to B-MYB and
FOXM1 to regulate transcription during the cell cycle [36]. The highest expressed genes
in G1 and S phases are controlled through E2F or E2F/CLE sites and can be activated
by E2F1-3/DP complexes; meanwhile, genes expressed in the G2 phase and mitosis are
upregulated by MMB and FOXM1-MuvB activator complexes through CHR or CDE/CHR
elements [37].

ASPM, TPX2, TOP2A, and CENPF are the most significant Gedevo alignments (Table 4).
These alignments and KIF20A appear in all datasets of CCP (Figure 3). KIF20A is upreg-
ulated in lung adenocarcinoma, and it is related to cell proliferation and apoptosis [38].
TPX2 is upregulated in NSCLC, promoting metastasis and the progression of the tumoral
disease [39]. TOP2A is also upregulated in lung adenocarcinoma, and it is related to poor
patient prognosis [40]. ASPM overexpression in lung adenocarcinoma has been correlated
with poor prognosis [41] and tumor aggressiveness [42]. ASPM is downregulated in PAH
and upregulated in lung cancer, and it has been related to the positive regulation of canon-
ical Wnt signaling pathway (Table S1), along with a top deregulated LC-PAH TF SOX4,
and a top deregulated LC TF DLX5, suggesting that it might be related to the regulation
of this pathway in lung cancer (Figure 10). ASPM regulates the expression of N-cadherin,
vimentin, and Snail during epithelial–mesenchymal transition, promoting cell invasion in
NSCLC cells and the activation of Wnt/β-catenin signaling pathway (Figure 10) [43]. The
ASPM/Dishevelled signal axis is highly activated in superpotent CSCs (Figure 10) [44].
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CENPF (Centromere protein F) is a gene related to chromosome segregation during
mitosis that reduces overall survival in lung cancer and is a hub gene (AURKB, BUB1B,
KIF2C, HMMR, CENPF, and CENPU) overexpressed in cancer patients [45]. CENPF is one
of the most frequently dysregulated LC DEGs related to cell division and differentiation,
along with seven of the most frequently dysregulated LC-PAH TFs (FOXF1, LMO2, SOX4,
ID4, NR2F1, ZBTB16, and MEIS1) (Table S1), and three of the most frequently dysregulated
lung cancer TFs (SOX17, DLX5, and KLF4), suggesting a role in the process of cancer
stem cells’ differentiation into lung cancer cells (Figure 11). CENPF expression has been
related to lung adenocarcinoma progression through the regulation of the ERβ2/5 signaling
pathway [46] and the PI3K–AKT–mTORC1 signaling pathway (Figure 10) [47]. CENPF
overexpression is positively associated with an advanced differentiation stage and a shorter
overall survival, making it a risk factor for the cancer prognosis related to the ability of
tumor cell proliferation and migration [48,49]. CENPF is one of the overexpressed genes
that appeared in three of the LC CCPs and formed five different alignments with Gedevo,
one of which was in 60% of the possible comparisons (Table 3), suggesting its importance
in lung cancer. The overexpression of FOXM1 and CENPF in prostate cancer have been
linked to the loss of microRNAs such as miR-101 and miR-27a, to the synergistic cancer
induction through the upregulation of PI3K and MAPK signaling pathways, and to the
poor prognosis prediction of cancer patients [50]. Combining functional pathways and
protein–protein interaction analyses, five hub genes (CDC20, CENPF, KIF2C, BUB1, and
ZWINT) were identified, which are also in the CCPs, and two of which are in the Gedevo
analysis [51].
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LC RNA-Seq and PAH, suggesting that it is an important regulator for the tumoral pro-
cess (Table S5). FOXF1 is related to the positive regulation of cell migration, transcription, 
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portance as a tumor suppressor gene regulating the inflammation, invasion, and metasta-
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increase its expression, thus inhibiting cell apoptosis induced by cisplatin, promoting cell 
proliferation and the expression of stem cell characteristics and self-renewal ability, which 
also suggests that it could be a prognostic biomarker of platinum-based chemotherapy 
resistance in NSCLC [54]. FOXF1 overexpression inhibits vascular endothelial growth fac-
tor A1 (VEGFA) in in vitro and in vivo attenuated angiogenesis [55]. FOXF1 expression is 
upregulated by p53, tAp63, and tAp73, which directly binds to its promoter and decreases 
E-cadherin expression, inhibiting cell invasion and migration (Figure 10) [56]. FOXF1 is 
upregulated in lung cancer CAFs by the hedgehog signaling pathway, which might be 
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pressed in the CCP of the LC RNA-Seq datasets, along with seven of the most frequently 

Figure 11. Model of the acquisition of cancer stem characteristics and lung cancer cell differentiation
regulated by the most frequently dysregulated transcription factors, simultaneous to the acquisition
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FOXF1 (forkhead box F1) is a stemness reprogramming mediator (when mesenchymal
stem cells fuse with lung cancer cells) which is also related to the inhibition of cell growth,
proliferation, and migration [52]; therefore, it must be downregulated in lung cancer cells
(Table 1). FOXF1 downregulation in lung-resident mesenchymal stromal cells is associated
with upregulation of genes important for the regulation of high cell proliferation, migration,
and inflammatory responses [53]. FOXF1 is co-expressed in the CCP of LC RNA-Seq
and PAH, suggesting that it is an important regulator for the tumoral process (Table
S5). FOXF1 is related to the positive regulation of cell migration, transcription, and the
negative regulation of inflammatory response (Table S1), suggesting its importance as a
tumor suppressor gene regulating the inflammation, invasion, and metastasis of cancer
stem cells (CSC) (Figure 11). In vitro hypomethylation of FOXF1 is able to increase its
expression, thus inhibiting cell apoptosis induced by cisplatin, promoting cell proliferation
and the expression of stem cell characteristics and self-renewal ability, which also suggests
that it could be a prognostic biomarker of platinum-based chemotherapy resistance in
NSCLC [54]. FOXF1 overexpression inhibits vascular endothelial growth factor A1 (VEGFA)
in in vitro and in vivo attenuated angiogenesis [55]. FOXF1 expression is upregulated by
p53, tAp63, and tAp73, which directly binds to its promoter and decreases E-cadherin
expression, inhibiting cell invasion and migration (Figure 10) [56]. FOXF1 is upregulated
in lung cancer CAFs by the hedgehog signaling pathway, which might be related to their
ability to modulate the inflammatory response and stimulate tumor cell growth, invasion,
angiogenesis, and metastasis [57]. Moreover, FOXF1 is also co-expressed in the CCP of the
LC RNA-Seq datasets, along with seven of the most frequently dysregulated TFs (FOXM1,
SOX17, TAL1, TCF21, TBX4, LMO2, and KLF2), suggesting its importance as a regulator of
gene expression during lung cancer progression.

TCF21 (transcription factor 21) is a tumor suppressor gene that is methylated and
downregulated in lung cancer and is related to cell viability, proliferation [58], apopto-
sis, and growth [59], as well as angiogenesis, epithelial–mesenchymal transition, tissue
invasion, and metastasis [60]. Moreover, TCF21 overexpression is related to chromatin
accessibility blocking at the SMAD3 binding site, inhibiting the SMAD3 function of gene
expression regulation (Figure 10). TBX4 (T-box 4) regulates lung branching morphogenesis
and vascular development, maintaining proper tissue homeostasis during lung develop-
ment through the interaction of TBX4-FGF10 and SHH-FOXF1 cascades [61]. TBX4 is a
tumor suppressor in lung adenocarcinoma and NSCLC [62] whose expression is regulated
by a methylating pattern, avoiding its inhibition of cell growth and proliferation or the
induction of apoptosis [63]. TAL1 (T-cell acute lymphocytic leukemia 1) is a basic helix–
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loop–helix (bHLH) TF that is important for hematopoietic commitment and physiological
and pathological vascular processes [64]. TAL1 promotes the expression of the kinase insert
domain receptor to activate the TGF-β signaling pathway [65]. TAL1 interacts with SMAD3
and strengthens the positive or negative regulation of SMAD3, including TGF-β1 inhibition
(Figure 10) [66]. SCL/TAL1 interrupting locus (STIL) promotes proliferation, invasion, and
cancer progression by regulating the expression of CDK1, CCNB2, CDC20, CCNA2, BUB1,
and AURKB [67].

LMO2 (LIM-domain only 2) is an important regulator of embryonic hematopoiesis [68]
and angiogenesis [69]. The downregulation of LMO2 occurs due to the establishment of tu-
morigenesis, inhibiting apoptosis and promoting cell proliferation, migration, invasion [70],
and tumor growth through the Wnt signaling pathway [71]. LMO2 has been correlated
to oncogenic pathways related to the regulation of stemness and epithelial–mesenchymal
transition, PPAR, TGF-beta/BMP, and mTOR pathways, central carbon metabolism, cell
senescence [72], and genomic instability [73]. KLF2 (Kruppel-like factor 2) is a tumor sup-
pressor whose downregulation is related to region 4 hypermethylation in NSCLC tissues,
and it is associated with lymph node metastasis and advanced TNM stage, cell viability,
cell cycle, inhibition of apoptosis [74], promotion of cell growth, cell survival and prolif-
eration [75], and angiogenesis, improving vascular stability [76], vascular permeability
in NSCLC [77], and inflammation, possibly through the regulation of AP-1 [78]. KLF2
expression is related to the inhibition of TGF-β signaling through the induction of Smad7
(Figure 10) [79]. KLF2 upregulation decreases the glutamine level and participates in the
consumption of glutamine by NSCLC cells, inhibiting its energy metabolism [80].

SOX17 belongs to sex-determining region Y (Sry), a box-containing family of transcrip-
tional regulators that are essential for stem cell maintenance, lung morphogenesis, and
tissue homeostasis [81]. SOX17 in mice tumor endothelial cells promotes tumor progression,
angiogenesis, and vascular destabilization [82]. Notch intracellular domain overexpression
downregulates SOX17 expression in primary endothelial cells, avoiding the excessive tip
cell formation and hyperbranching of the vascular network during development and tumor
angiogenesis [83]. The downregulation of SOX17 might also be related to the promoter
methylation of CpG sites, suggesting that demethylating drugs would be a promising
approach for lung cancer treatment [84]. SOX17 regulates respiratory epithelial cell differ-
entiation [85]; therefore, it must be downregulated (Table 1), or its upregulation could avoid
epithelial–mesenchymal transition in lung cancer cells, probably as a mutated cancer driver
gene and a re-engineered reprogramming factor through the cross-talk with the WNT/β-
catenin pathway (Figure 10) [86]. SOX17 overexpression acts as a tumor suppressor of
cancer cell growth, proliferation, migration, and invasion [87].

The GRN analysis of lung cancer types associated the hallmarks of cancer with the
target DEGs of twenty-three of the most frequently dysregulated TFs (Figure 5). Eight out of
the nine deregulated TFs that are important in the co-expression network analysis are also
important for the regulation of the most frequent LC DEGs (FOXM1, FOXF1, TCF21, TBX4,
TAL1, LMO2, KLF2, and SOX17), along with sixteen other deregulated TFs (BZW2, DLX5,
SOX4, ID4, NR2F1, EPAS1, ZBTB16, MNDA, HOXC6, HLF, RFX2, NR4A3, KLF4, GPRASP1,
MEIS1, and TFAP2C). However, MYBL2 is only co-expressed in lung cancer microarray
CCP, TBX4 is only co-expressed in lung cancer RNA-Seq CCP, PKNOX2 is not co-expressed
in any CCP, and neither is a regulator in the GRNs. BZW2 (basic leucine zipper and W2
domains 2) overexpression in lung adenocarcinoma has been related to tumor size, stage,
and lymphatic invasion [88]. BZW2 knockdown inhibits cell proliferation and promotes cell
apoptosis within the LINC00174/miR-4500/BZW2 axis, possibly through the inactivation
of the AKT/mTOR signaling pathway [89]. Therefore, BZW2 overexpression suggests that
it is an oncogene in lung cancer related to the phosphorylation of the components of the
AKT/mTOR pathway (Figure 10).
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DLX5 (distal-less homeobox 5) is mainly related to embryonic and postnatal develop-
ment and cell differentiation, and it is overexpressed in lymphomas and lung cancer [90].
DLX5 is methylated in early stage lung cancers [91], suggesting that it is only deregulated
in lung cancer progression, and it is not in PAH (Table 1), in which it induces the expression
of MYC and β-catenin, promoting cell proliferation and metastasis (Figure 10) [92]. The
downregulation of miR-339-5p expression also increases DLX5 expression, inducing stem
cell differentiation and the activation of the Wnt/β-catenin signaling pathway [93], which
could suggest its participation in the differentiation process of CSC in lung tumor cells
(Figure 11). SOX4 belongs to the SRY-related HMG box family of TFs; it is related to embry-
onic development and cell-fate differentiation [94] and promotes epithelial–mesenchymal
transition and stemness of cancer cells, and TGF-β is related to the upregulation of its
expression in cancer cells (Figure 10) [95]. SOX4 is related to the positive regulation of
transcription, cell differentiation and proliferation, and the positive regulation of the canon-
ical Wnt signaling pathway (Table S1). SOX4 overexpression in lung cancer is related to
the mechanisms of gene amplification, and the active form synergizes to promote cell
growth along with the RHOA-Q63L oncogene, suggesting its importance as a lung cancer
oncogene [96].

SOX17 represses and SOX4-enhanced canonical Wnt signaling (Figure 10) to keep
up CSC proliferation, self-renewal, and differentiation, thus assisting the invasion and
metastasis of lung cancer through the regulation of Wnt target genes mainly related to
cell cycle, stem cell pluripotency, and epithelial–mesenchymal transition (Figure 11) [81].
Therefore, SOX17 must be downregulated and SOX4 upregulated (Table 1) to allow for the
establishment and progression of lung cancer. The p53/miR-30a-5p/SOX4 feedback loop
has been related to NSCLC cell proliferation, apoptosis, and invasion [97]. The HMG box
domain of SOX4 interacts with p53, repressing p53-mediated apoptosis (Figure 10) [98].
SOX4 regulates melanoma glycolytic metabolism controlling the transcriptional expression
of glucose transporter type 1, hexokinase 2, and lactate dehydrogenase A, and activates
mTORC1 to promote proliferative signals [99] and cell growth when SOX4 is upregulated
by CD147 [100].

ID4 belongs to the DNA-binding (ID) protein family, which are dominant negative
inhibitors of basic helix–loop–helix (bHLH) transcription factors, regulating developmental
processes and promoting stem cell survival, differentiation, and epigenetic inactivation
of gene expression in late cancer stages [101]. ID4 is related to cell differentiation and the
positive regulation of transcription and gene expression (Table S1). ID4 is a reprogramming
factor that differentiates glioma cells and immortalized astrocytes to glioma CSCs [102].
The activation of the PDGF-NO-ID4 axis promotes tumor progression, increasing CSC
self-renewal and tumor angiogenesis [103]. ID4 regulates factors associated with angio-
genesis [104], among which there are regulators of inflammatory responses such as AOC3,
AGTR1, CDO1, PTGER4, SPP1, SELP, and SDC1 (Table S1). ID4 is a tumor metastasis
suppressor regulating EMT in lung adenocarcinoma [105], increasing cell apoptosis, and
inhibiting cell proliferation through S-phase progression arrests [101]. ID4 may inhibit
colorectal cancer cell growth, epithelial–mesenchymal transition, and metastasis, thus
inhibiting the PI3K/AKT pathway [106]. The BMP-Smad1-Id pathway regulates the acqui-
sition of the oncogenic phenotype in Kaposi’s sarcoma (Figure 10) [107]. ID4 is involved in
cell metabolism and transcription regulation in the pathogenesis of lung cancer and could
become a biomarker of lung cancer occurrence and prognosis [108].
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NR2F1 or Coup-TF1 (nuclear receptor subfamily 2, group F, member 1) is an orphan
nuclear receptor of the retinoic acid receptor family, known as a tumor dormancy marker,
which is downregulated in cancer to promote cell proliferation [109] and metastasis by in-
ducing the epithelial–mesenchymal transition [110,111]. NR2F1 downregulation is related
to high cancer mutation rates, immune responses, and cell infiltrations, and it is upregu-
lated in inflammatory cancer-associated fibroblasts (CAFs) [109]. NR2F1 downregulation
might be related to the activation of cell growth and the inhibition of apoptosis during
cell differentiation [112]. Long noncoding RNA NR2F1-AS1 is upregulated by the hypoxia
inducible factor, promoting cell proliferation, migration, and invasion through the activa-
tion of the NR2F1/AKT/mTOR pathway (Figure 10) [113]. NR2F1-AS1 induces NSCLC
cell tumorigenesis sponging miR-363-3p in order to increase SOX4 [114]. Hypoxia in the
tumor microenvironment promotes excessive angiogenesis, metabolic reprogramming,
immune escape, cell proliferation, and metastasis [115]. NR2F1-AS1 is upregulated under
hypoxia, triggering hypoxia-related glycolysis and migration through the miR-140/HK2
pathway [116].

EPAS1 (endothelial PAS domain-containing protein 1 or hypoxia-inducible factor
2 alpha (HIF2α)) is related to vascular network remodeling [117], tumor angiogenesis,
tumor size, tissue invasion [118], metastasis, cell dedifferentiation, enhanced glycolytic
metabolism, antiapoptotic activity, and genomic instability [119]. EPAS1 is upregulated in
PAH and downregulated in eight datasets of lung cancer (Table 1), suggesting that it could
be an important oncogene during the lung cancer tumorigenic process. Hypoxic-stabilized
EPAS1 proteins transactivate DNMT1, promoting EPAS1 promoter hypermethylation and
thus decreasing EPAS1 mRNA levels, which is much lower in poorly differentiated tumors
compared with well and moderately differentiated ones, indicating that it can be a poor
prognosis marker of NSCLC [120]. EPAS1 rs4953354 polymorphism is related to gene
expression and NSCLC susceptibility, specifically in female never- smokers with lung
adenocarcinoma [121], along with DNA methylation regulation of mRNA levels [122].
Hypoxia-inducible factors represent an adaptive mechanism to promote tumor growth
under hypoxic microenvironments through direct cytokine and ROS production as well as
angiogenesis, a signaling switch for pro-tumorigenic inflammatory responses through the
recruitment of pro-tumor immune cells, and an effector that suppresses antitumor immune
responses [123].

ZBTB16 (zinc finger and BTB domain-containing 16, promyelocytic leukemia zinc
finger protein (PLZF), or zinc finger protein 145 (ZFP145)) is a tumor suppressor gene
that is downregulated by promoter hypermethylation, which stimulates cancer cell prolif-
eration, migration, invasion [124], metastasis [125], high tumor grade, tumor stage, and
shorter overall survival in NSCLC [126]. ZBTB16 balances stem cell differentiation and
self-renewal in a cell-type-specific manner [127], as well as cell growth [128], differentiation,
and apoptosis [129,130]. ZBTB16 is an intrinsic factor that suppresses mTORC1 activity in
stem cells to maintain self-renewal capacity (Figure 10) [131]. ZBTB16 targets LC DEGs
that are related to the induction of angiogenesis (Table S5) [132]. ZBTB16 is involved in
almost all processes underlying the pathogenesis of metabolic syndrome, mainly related to
immune function, inflammation, and oxidative stress [133]. ELFN1-AS1 recruits DNMTs to
the ZBTB16 promoter and silences its expression, leading to the activation of the PI3K/AKT
signaling pathway and tumorigenesis [134] and the inhibition of the MAPK pathway [135].
ZBTB16 downregulation is related to a higher expression of inflammatory cytokines and
initiates an amplified inflammatory response to infectious stimuli [136].
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MNDA (myeloid cell nuclear differentiation antigen) is related to innate immu-
nity [137]. Its downregulation is controlled by transcriptional and posttranscriptional
mechanisms such as methylation and miRNAs (hsa-miR-33a-5p and hsa-miR-33b-5p) in
lung adenocarcinoma. It is related to immune cell infiltration [138], the increase of cell
proliferation, migration, invasion, growth, as well as the inhibition of apoptosis [139].
MNDA binds directly to YY1, enhancing YY1 affinity for its target DNA, keeping the
association stable longer, and giving lineage-specific features to the YY1 function [140]. YY1
is overexpressed in NSCLC and co-expressed in the NSCLC gene network [6], probably
related with the activation of cell proliferation and invasion [141], forming a regulatory
loop with cancer stem cell transcription factors (SOX2, OCT4, and BMI1) in the NF-kB/PI3K
/AKT axis [142].

HOXC6 (homeobox C6) is overexpressed in lung cancer, regulating the expression of
genes related to cell proliferation, migration, and invasion in NSCLC [143]. HOXC6 regu-
lates EMT, high immune cells infiltration, the expression of immune checkpoint genes [144],
cell migration, invasion [145], cell growth [146], cell proliferation [147], cell apoptosis,
and viability through the TGF-β/smad signaling pathway (Figure 10) [148]. HLF (hep-
atic leukemia factor) downregulation is related to genetic deletions and methylation, to
distant NSCLC cells metastasis, promoting anaerobic metabolism to support NSCLC cell
growth in a low nutritional environment [149]. HLF has an anti-apoptotic program char-
acterized by the upregulation of specifically related genes, and the downregulation of
pro-apoptotic genes [150]. RFX2 (DNA-binding protein RFX2) dysregulation is charac-
teristic of SCLC, which could become a diagnostic marker, key for the development of
molecular-targeted drugs [151]. NR4A3 (Nuclear receptor subfamily 4 group A member 3)
is a tumor-suppressive gene with p53-dependent and -independent functions, which is a
direct transcriptional target of p53 and related to cell proliferation, migration, and apopto-
sis [152], and elevating the intracellular levels of reactive oxygen species [153]. NR4A3 reg-
ulates genes involved in inflammatory response, complement activation, metabolism [154],
pro-inflammatory signaling, cell proliferation, growth, apoptosis, survival, migration,
angiogenesis, and tumor immune surveillance [155].

KLF4 (Krüppel-like factor 4) induces pluripotent stem cells, controls cell fate repro-
gramming and self-renewal of embryonic stem cells (Figure 11) [156]. KLF4 acts as a
negative regulator of the AKT/GSK3β pathway during cell differentiation (Figure 10) [157].
KLF4 is a tumor suppressor, and its downregulation is related to class I histone deacetylases,
lung inflammation in conjunction with K-ras activation, tumorigenesis, the modulation
of cell proliferation [158], cell growth [159], epithelial–mesenchymal transition [160], inva-
sion, and metastases [161]. KLF4 downregulation activates hTERT and telomerase activity,
MAPK signaling, and thus lung cancer cell growth [161]. Cancer cells sustain growth
under metabolic stress due to the Warburg effect, so KLF4 downregulation is involved
in metabolic pathways that respond to low glucose, increased reactive oxygen species
(ROS), and decreased autophagic response to glucose starvation. Therefore, KLF4 has a
non-Warburg metabolic behavior as a tumor suppressor gene [162]. GPRASP1 (G protein
coupled receptor-associated sorting protein 1) is deregulated in several types of cancer [12],
and its downregulation is related to the inhibition of the Tachykinin Receptor family, which
is involved in inflammation and cancer cell proliferation [163].

MEIS1 (Meis homeobox 1) downregulation is related to lung adenocarcinoma cell
proliferation [164], anchorage-independent growth, cell cycle progress, apoptosis, invasion,
and migration [165]. The suppression of MEIS1 expression is related with epigenetic reg-
ulation mediated by EZH2-DNMT3a and lncRNA ELFN1-AS1, cell viability and tumor
growth [166], and CpG island methylation of squamous cell carcinomas and lung adeno-
carcinomas cells [167]. MEIS1 inhibition regulates angiogenesis [168], cell growth [169],
expression of stem cell markers [170], self-renewal, proliferation, differentiation of human
pluripotent stem cells (hPSCs), the upregulation of cell cycle regulators such as checkpoint
kinase 1 (CHEK1) and cyclin D2 (CCND2), and the downregulation of negative regulators
of the cell cycle such as tumor protein p53 (Figure 10) [171]. MEIS1 inhibition downregu-
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lates Hif-1α and Hif-2α in hematopoietic stem cells (HSCs), causing a shift to mitochondrial
metabolism, increasing reactive oxygen species production and maintaining HSCs [172].
MEIS family genes can promote or inhibit cancer probably through the different degrees
of immune silencing [173] and the significant correlation of MEIS1 with immune genes
according to a gene regulatory network analysis [174]. Proteoglycans in cancer is the
most enriched pathway associated with MEIS1 and HOXB13 inhibition, inducing tumor
suppression and DCN, LUM, and TGFBR3, as well as regulating growth factor, migration,
and invasion signaling through receptor tyrosine kinases [175]. TFAP2C (transcription
factor activating enhancer-binding protein 2C) overexpression in NSCLC is related to cell
proliferation and the downregulation of GADD45B and PMAIP1 [176]. TFAP2C upregula-
tion induces cell cycle hyperactivation, disease aggressiveness through the miR-183 and
miR-33a pathways [177], cell cycle progression, cell viability, proliferation, motility, and
migration [178].

The transcriptional regulatory network of most frequently dysregulated TFs showed
consistent evidence of its ability to accomplish their regulatory function throughout the
course of lung cancer, in the CCP, regulatory, coregulatory, and fibration symmetries
analysis, by means of a cooperative and coordinated function during the acquisition of
each hallmark of cancer (Figure 5), each biological process (Figure 7), and each signaling
pathway (Figure 10), as well as forming co-regulatory complexes to control transcriptional
expression in a specific way (Figure 6). Likewise, the top deregulated TFs may form a
transcriptional regulatory network (Figure 8) to regulate the transcriptional expression of
the other frequently deregulated TFs and therefore be at the top of the gene regulation
inside oncogenic signaling pathways related to the acquisition of the hallmarks of cancer
(Figure 10).

In NSCLC, for RTN, there seems to be a regulatory function of the top deregulated TFs
over the other TFs (Figure 8A), suggesting the importance of the top seven TFs regulating
the oncogenic processes. NSCLC regulatory complexes might be formed by other types of
cofactors or proteins because the coregulatory networks are small, both in TFs with targets
in lung cancer and PAH (Figure 6A) and targets unique to lung cancer (Figure 6B), so the
regulatory function is accomplished with the coordinated activity of the most frequently
dysregulated TFs as verified by the number of regulators in the blocks related to NSCLC
and PAH (Figure 7A) and only to NSCLC (Figure 7B). However, in SCLC, the RTN does not
seem to have this regulatory function of the top TFs over the other frequently deregulated
TFs (Figure 8B), but the regulatory complexes that are formed to regulate targets in SCLC and
PAH (Figure 6C) and only in SCLC (Figure 6D) are larger, suggesting that these are the ones
in charge to fulfill the regulatory function in a cooperative manner. This is also justified by the
number of regulators in the blocks that might be related to SCLC and PAH (Figure 7C) and
only to SCLC (Figure 7D). The regulatory function of the lung cancer transcriptional regulatory
network of the most frequently dysregulated TFs over the most frequent LC DEGs has been
experimentally validated by multiple ChIP-Seq and co-expression independent studies in
several tissues [23]. Moreover, most of the transcriptional regulatory network is also important
for other types of cancer, with FOXF1, HOXC6, and RFX2 being the only ones that seem
to be lung-cancer-specific biomarkers, and even though SOX4 and SOX17 are deregulated
in all lung cancer datasets, they are also deregulated in some types of breast cancer and
leukemia, suggesting a more general tumor function [12]. Consequently, it is the coordinated
and cooperative regulatory function of the transcriptional network of transcription factors
that may be related to the acquisition of the hallmarks of cancer during the tumor process and
each type and subtype of lung cancer.
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The Kaplan–Meier plotter analysis of the top deregulated TFs revealed a strong associ-
ation of their expression with a decreased probability of long-term survival (Figure 9). The
KM plot analysis showed that the overregulation of three oncogenes (SOX4, BZW2, and
FOXM1) as well the downregulation of four tumor suppressors (SOX17, ZBTB16, TAL1,
and KLF4) is associated with worse overall survival (OS) for lung cancer patients. The
statistically significant association between the expression levels of the TFs with a poor
prognosis of lung cancer patients suggests that these TFs are important for the oncogenic
disease and could become new targets for the diagnosis, treatment, and prognosis of lung
cancer. Controlling the expression of a specific group of oncogenic and tumor-suppressive
transcription factors might lead to selective death of cancer cells, because healthy cells are
able to tolerate the loss of TF function with slight consequences, due to the presence of
proteins in the transcriptional regulatory network that are capable of supplying the missing
function in normal signaling pathways [179].

In the last decade, new strategies have been developed for targeting oncogenic and
rescuing tumor-suppressive TF functions, modulating their expression or degradation by
blocking protein/protein interactions, and preventing its DNA binding either through a
binding pocket or at the DNA-interacting site; some of these inhibitors are currently being
used or evaluated for cancer treatment [180]. Cortezomib or Velcade is a compound that
can directly degrade a TF using the ubiquitin-proteasome or sumoylation processes [181].
Another strategy is associated with the inhibition of a TF activity blocking its DNA bind-
ing using synthetic oligodeoxynucleotide decoys, which are double-stranded nucleotide
sequences derived from conserved genomic regulatory elements that are recognized by
the selected TF, avoiding its ability to bind with other proteins [179]. The pharmacological
inhibition of FOXM1 expression at a transcriptional, translational, and post-translational
level and/or its interactions with target sites, blocking DBD, nuclear localization, or protein–
protein interaction may be an effective way to inhibit FOXM1 oncogenic mechanisms of
action [182]. Thiazolidinedione (TZD) inhibits FOXM1 expression through the downreg-
ulation of SP1, negatively regulating tumor cell growth and promoting apoptosis [183].
Diarylheptanoids can also suppress FOXM1 expression, suppressing Gli1 in pancreatic
cancer cells [184]. The regulation of TFs to treat cancer is a current research field that is
continually improving and able to develop specific and more effective strategies to control
the abnormal gene expression patterns of cancer.

5. Conclusions

Our bioinformatic pipeline allowed for the identification and analysis of the positively
and negatively dysregulated genes in most of the lung cancer datasets, which are dysregu-
lated only in lung cancer, or dysregulated also in PAH, to identify an essential group of
co-expressed TFs, which might be related to the overall tumoral process, independently
of the type or subtype of lung cancer. There is experimental evidence that supports that
the transcriptional regulatory network of TFs identified perform an important number of
key functions during the acquisition of the hallmarks of cancer, through the regulation
of the gene expression of oncogenes and tumor suppressors associated specifically with
the tumoral process of the lung. Two of the most frequently dysregulated transcription
factors are co-expressed in lung cancer and PAH (FOXM1 and FOXF1), while the other six
frequently deregulated transcription factors are co-expressed only in lung cancer (TCF21,
SOX17, TAL1, LMO2, KLF2, and TBX4). Moreover, twenty-four of the most frequently
dysregulated transcription factors regulate the most frequent DEGs, from which eight
are also in the co-expression analysis. The coregulatory analysis identified sixteen of the
most frequently dysregulated transcription factors capable of forming protein–protein
complexes to regulate gene transcription in a cooperative manner. The fibration symme-
tries analysis identified groups of genes that regulated up to fourteen of the frequently
deregulated transcription factors, which might regulate gene expression in a cooperative
and/or coordinated manner.
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The seven top deregulated transcription factors (SOX4, SOX17, BZW2, FOXM1,
ZBTB16, TAL1, and KLF4) consistently appear to be co-expressed with other frequent
DEGs and transcription factors throughout the analysis in lung cancer and PAH. Their
regulatory function might be related to the formation of co-regulatory complexes and
biological functional blocks or fibers, which seem to be able to regulate the function of
the other frequent transcription factors, at least in NSCLC, and are associated with the
survival of lung cancer patients. The functional analysis and experimental evidence show
an association between the frequently deregulated transcription factors with the control of
signaling pathways related to the acquisition of the hallmarks of cancer. Moreover, there is
evidence of the functional association between the hub TFs, as cooperators or coregulators,
supporting a strong transcriptional regulatory network connected with lung cancer.

The analysis of the overall transcriptomic changes in the lung cancer oncogenic process,
which was performed through the creation of co-expression, regulatory, coregulatory, and
transcriptional networks of the most frequently dysregulated DEGs in lung cancer, allowed
for the identification of potential biomarkers for lung cancer diagnosis for the future
development of specific and more efficient anticancer therapies. The coordinated and
cooperative biological function of the transcriptional regulatory network must be evaluated
experimentally to fully understand and validate their importance in the regulation of
signaling pathways related to the acquisition of the hallmarks of cancer, and to use them as
specific biomarkers for the diagnosis and treatment of complex tumor diseases in the lung.
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