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Abstract: Inside tumors, cancer cells display several mechanisms to create an immunosuppressive
environment. On the other hand, by migration processes, mesenchymal stromal cells (MSCs) can
be recruited by different cancer tumor types from tissues as distant as bone marrow and contribute
to tumor pathogenesis. However, the impact of the immunoregulatory role of MSCs associated
with the aggressiveness of breast cancer cells by soluble molecules has not been fully elucidated.
Therefore, this in vitro work aimed to study the effect of the conditioned medium of human bone
marrow-derived-MSCs (hBM-MSC-cm) on the immunoregulatory capability of MDA-MB-231 and
BT-474 breast cancer cells. The hBM-MSC-cm on MDA-MB-231 cells induced the overexpression of
TGF-β, IDO, and IL-10 genes. Additionally, immunoregulation assays of mononuclear cells (MNCs) in
co-culture with MDA-MB-231 and hBM-MSC-cm decreased lymphocyte proliferation, and increased
proteins IL-10, TGF-β, and IDO while also reducing TNF levels, shooting the proportion of regulatory
T cells. Conversely, the hBM-MSC-cm did not affect the immunomodulatory capacity of BT-474
cells. Thus, a differential immunoregulatory effect was observed between both representative breast
cancer cell lines from different origins. Thus, understanding the immune response in a broader tumor
context could help to design therapeutic strategies based on the aggressive behavior of tumor cells.
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1. Introduction

Worldwide, breast cancer is the most common malignancy in women and is considered
the second leading cause of cancer-related death in women over 25 years of age. In 2020,
2.3 million new cases were diagnosed, representing 24.5% of all cancer types affecting the
female population [1].

Breast cancer is considered a multifactorial disease with great cellular heterogeneity;
diverse types of cells within the tumor engage in highly complex molecular interactions,
with wide-ranging clinical implications [2]. Breast cancer is classified into various subtypes
according to histopathology and at the molecular level, considering the expression of cell
surface markers such as the estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (ERBB2), among others, whose expression help to
predict possible treatment responses [3–5]. Luminal and basal subtypes are highly prevalent,
and the basal subtype is commonly referred to as triple-negative; the absence of these
receptors determines their classification [3,6].
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The tumor microenvironment is a dynamic and complex system in which cellular and
non-cellular elements interact to regulate cancer progression. These elements include a
wide range of soluble factors, such as cytokines, growth factors, chemokines, and cellular
elements, such as immune cells, fibroblasts, endothelial cells, and mesenchymal stromal
cells (MSCs), among others.

In breast cancer, as in other types of cancers, a high proportion of MSCs present in the
tumor is recruited through migration processes from various tissues, the most common
of which is the bone marrow [7,8]. MSCs are attracted to the tumor microenvironment
through a chemotactic gradient comprised of soluble factors that include growth factors
(e.g., TGF-β, EGF, PDGF, SCF, HGF, IGF-1 y GF, βFGF, HIF1α y VEGF) and some chemokine
ligands (e.g., CCL2, CCL5, CCL22 y SDF-1α) secreted by tumoral cells [8–17]. In such a
context, MSCs can promote and facilitate tumor growth, angiogenesis, metastasis, and
chemoresistance and can modulate the antitumoral immune response [18,19].

In vitro, MSCs have an inhibitory effect on the proliferation of T lymphocytes [20].
MSCs under inflammatory conditions promote the differentiation of T lymphocytes to-
wards a regulatory immunophenotype (Treg). In addition, other studies indicate that
MSCs induce a protective effect on breast cancer cells by Treg cell promotion [21], thereby
inhibiting the function of immune cells such as NK cells and lymphocytes, among oth-
ers, through the expression of immunosuppressive factors including IL-4, IL-10, and
TGF-β [22], whose presence could be a determinant in tumor pathogenesis and gener-
ate an immunosuppressive environment [23,24].

On the other hand, it is well known that cancer cells display either by cell contact
or via paracrine a number of mechanisms to evade the immune system, which include
the secretion of soluble molecules such as cytokines and growth factors; modifications to
cell surface membrane-molecules expression [25], an increase in resistance to cell death
pathways or creating an immunosuppressive environment through the induction and
expansion of immunosuppressive Treg lymphocytes, which create a microenvironment that
blocks the antitumor immune response [26] and could be a determinant factor in tumor
pathogenesis [23,24].

Due to the serious technical and methodological difficulties, few studies to date have
comprehensively analyzed the variety of molecular interactions that occur among different
cell types within tumors. Thus, the use of breast cancer cell lines as an in vitro study model
is important to understand the heterogeneity that characterizes breast cancer at the molecu-
lar and cellular levels [27]. For this reason, the selection of molecular markers representing
each cell line from different subtypes is a key factor in breast cancer studies. On the other
hand, it is known that each subtype of breast cancer can acquire particular characteristics
that can be determined by the tumor microenvironment [28,29]. Although, multiple studies
have been undertaken with the aim of understanding tumor cell biology the immunomod-
ulatory effect that breast cancer cells with different aggressiveness characteristics may exert
via interaction with MSCs has not been fully studied. Therefore, as a first approach to
show a possible differential immunoregulatory response between breast cancer cell lines,
we decided to evaluate using in vitro assays, the effect of human bone marrow-derived
MSCs conditioned medium (hBM-MSC-cm) on the immunoregulatory properties of two
breast cancer cell lines: the breast adenocarcinoma cell line with high-growing and highly
metastatic potential MDA-MB-231(basal origin) triple-negative PR-, ER- and ERBB2- profile
and the ductal breast cancer cell line with slow-growing and the weakly invasive BT- 474
(luminal origin) triple positive PR+, ER+ and ERBB2+ profile [30]. Our results indicate that
MDA-MB-231 cells in co-culture with MNCs (lymphocytes) have an intrinsic capacity to
increase the proportion of immunosuppressive molecules and Treg cells, which is enhanced
by the presence of the hBM-MSC-cm, showing major immunosuppressive activity in vitro
relative to BT-474 cells.
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2. Materials and Methods
2.1. Cell Cultures

The MSC were isolated from human bone marrow by aspiration from the iliac crest
of three hematologically healthy adult donors, according to the procedure established in
the Traumatology and Orthopedics Hospital of the Mexican Institute of Social Security
(protocol 1411) and were characterized according to the criteria established by the Interna-
tional Society of Cell Therapy (ISCT) [31]. Once obtained, each bone marrow sample was
placed in 50 mL conical tubes (Corning, New York, NY, USA) containing 15 mL of Roswell
Park Memorial Institute (RPMI) culture medium supplemented with 10% fetal bovine
serum (FBS). The cells were washed with phosphate-buffered saline (PBS, Thermo Fisher,
Waltham, MA, USA) and separated on a density gradient with Ficoll-Paque Plus at a density
of 1.077 ± 0.001 g/mL (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The cells were
centrifuged at 1200 rpm for 30 min, and the interface was washed with PBS containing
3% FBS and 1 mM EDTA. The mononuclear cell pellet was resuspended in Dulbecco’s
Modified Eagle’s Medium (DMEM; low glucose) supplemented with 15% FBS, 10 µL/mL
glutamine (200 mM), 100 U penicillin, and 100 µg streptomycin. The number and viability
of nucleated cells were determined with Turck’s solution and trypan blue (Thermo Fisher,
Waltham, MA, USA), respectively; 5 × 106 mononuclear cells were seeded onto 100 mm
Petri dishes (Corning, New York, NY, USA) and incubated at 37 ◦C with 5% CO2 and 90%
humidity. After 4 days, the cells were washed with PBS, and the medium was replaced
twice per week. When the cultures reached 80–90% confluence, the cells were harvested
and seeded to be expanded. The experiments were carried out in passage ≤10.

All antibodies in this work were used according to the supplier’s instructions and are
shown in Table 1.

Table 1. Antibodies used for protein detection by flow cytometry.

Antigen Company Catalog Number

CD90 PE-Cy5 BD Biosciences, San Diego, CA, USA 555597

CD105 eFlour450 Ebioscience, San Diego, CA, USA 48-1057-42

CD73 PE-Cy7 BD Biosciences, San Diego, CA, USA 561258

HLA-A Biolegend, San Diego, CA, USA 555552

HLA-DR PE-Cy-7 Biolegend, San Diego, CA, USA 307616

CD45 PE BD Biosciences, San Diego, CA, USA 555483

CD31 FITC BD Biosciences, San Diego, CA, USA 555445

CD34 APC BD Biosciences, San Diego, CA, USA 555824

CD 14 PE BD Biosciences, San Diego, CA, USA 555398

CD3 PE BD Biosciences, San Diego, CA, USA 555333

7AAD BD Biosciences, San Diego, CA, USA 559925

CD45 APC BD Biosciences, San Diego, CA, USA 559865

IDO PE RyD systems, Minneapolis, MN, USA IC6030P

CD4 FITC BD Biosciences San Diego, CA, USA 555346

CD25 PE BD Biosciences San Diego, CA, USA 555432

FoxP3 PECy/7 Ebioscience, San Diego, CA, USA 25-4777-42

2.2. Characterization of hBM-MSC
2.2.1. Immunophenotype

hBM-MSC were characterized according to the criteria established by the ISCT [31].
Conjugated monoclonal antibodies against CD73, CD90, CD45, CD31, CD73, CD14, CD105,
HLA-A and HLA-DR were used to analyze the cells by flow cytometry.
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To analyze the morphology of the hBM-MSC, 0.3 × 106 hBM-MSC/cm2 were seeded
onto P35 Petri dishes at 40% of confluence (Corning, New York, NY, USA), after which
the cells were fixed with 4% PFA, stained with toluidine blue (Sigma-Aldrich, St. Louis,
MI, USA), and observed by microscopy Axiovert, Zeiss (Carl Zeiss AG, Oberkochen,
Stuttgart, Germany).

2.2.2. Differentiation to Adipocytes

To evaluate the differentiation potential of hBM-MSC, 0.8 × 105 hBM-MSC were
seeded in low glucose DMEM medium (Thermo Fisher, Waltham, MA, USA) supplemented
with 10% FBS in P35 Petri dishes (Corning, New York, NY, USA). Upon reaching 60%
confluence, the cells were induced with MesenCult Adipogenic Differentiation Kit medium
(STEMCELL Technologies, Vancouver, Canada) and incubated for 21 days. The medium
was replaced twice per week. To visualize lipid vacuoles, cells were stained with Oil Red O
solution (Sigma-Aldrich, St. Louis, MI, USA).

2.2.3. Differentiation to Chondrocytes

3× 105 hBM-MSC were placed in 15-mL tubes and resuspended in low-glucose DMEM
medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10%
FBS. The tubes were centrifuged at 300× g to obtain a cellular pellet. The supernatant was
removed and chondrogenic differentiation medium supplemented with TGF-β (Cambrex
Bio Science, Walkersville, MD, USA) was added. The pellet was incubated for 28 days.
The micromass was fixed, hydrated, and embedded in Tissue-Tek (Sakura CA, USA),
after which 4-µm slices were cryosectioned and stained with Alcian Blue (Sigma-Aldrich,
St. Louis, MI, USA) to evaluate the presence of chondroitin sulfate.

2.2.4. Differentiation to Osteocytes

0.8 × 105 hBM-MSC were seeded in P35 Petri dishes (Corning, New York, NY, USA)
with low-glucose DMEM medium (Thermo Fisher, Waltham, MA, USA) supplemented with
10% FBS at 60% confluence. The cells were incubated with StemPro osteogenic medium
(Gibco, Carlsbad, CA, USA) for 21 days. The differentiation medium was replaced twice
per week. Osteocyte analysis was performed with Alizarin Red staining, which detects
calcium deposits (Sigma-Aldrich, St. Louis, MI, USA).

2.3. Conditioned Media Preparation

To obtain the conditioned medium, hBM-MSC were grown until they reached 70–80%
confluence, after which the media were replaced with FBS-free media. After 48 h, the
medium was collected and centrifuged for 5 min at 2000 rpm and filtered with a 0.22-µm
membrane (Millex GS; Millipore, MA, USA). The conditioned medium was either used
immediately or frozen at –80 ◦C until use. A 2:3 mixture of conditioned medium plus fresh
medium was prepared for experimental use as Sepehr et al. previously reported [32].

2.4. Breast Cancer Cell Lines

The breast cancer cell lines MDA-MB-231 and BT-474 were purchased from ATCC and
grown in RPMI 1640 medium (Biowest, Missouri, MO, USA) supplemented with 10% FBS,
2 mM L-glutamine, 25 mM Hepes, 100 U penicillin, and 100 µg streptomycin in a 5% CO2
atmosphere and 90% humidity at 37 ◦C. The experiments were carried out in passage ≤13.

2.5. qRT-PCR Assays

The breast cancer cell lines MDA-MB-231 and BT-474 were seeded onto 100 mm Petri
dishes at 60–70% confluence. Subsequently, the medium was replaced with hBM-MSC-cm.
After 48 h, the total RNA was extracted using TRIzol-chloroform and treated with DNAse
I (Invitrogen, Carlsbad, CA, USA). The cDNA was synthesized from 1 µg of total RNA
using an oligo (dT18), following the supplier’s instructions (RevertAid First Strand cDNA
Synthesis Kit, Gibco, Thermo Fisher Scientific, Waltham, MA, USA). The relative expression



Curr. Issues Mol. Biol. 2023, 45 272

levels of various genes were analyzed by qRT-PCR using the Maxima SYBR Green/ROX
qPCR Master Mix Kit (Thermo Fisher Scientific, Waltham, MA, USA), and the expression of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a normalization control.
The amplification conditions were as follows: denaturation at 95 ◦C for 10 min, followed by
40 cycles of 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. Finally, the relative expression
was calculated using the 2−∆∆CT method [33]. The oligonucleotides for each analyzed gene
were designed using the Oligo Analyzer Tool program and are shown in Table 2.

Table 2. Primers used for qRT-PCR gene expression.

Probe Sequence Amplicon Length (bp)

GAPDH F FGGTGTGAACCATGAGAAGTATGA
R GAGTCCTTCCACGA TACCAAAG 123

IDO F AGGATTCTTCCTGGTCTCTCT
R GTGTCCCGTTCTTGCATTTG 102

TGF-β F CGTGGAGCTGTACCAGAAATAC
R CACAACTCCGGTGACATCAA 112

IL-10 F GCTGGAGGACTTTAAGGGTTAC
R GATGTCTGGGTCTTGGTTCTC 106

IL-4 F GTTCTACAGCCACCATGAGAA
R CCGTTTCAGGAATCGGATCA 94

2.6. MNCs Proliferation Assays in Co-Cultures

To perform immunomodulation assays, peripheral blood-derived MNCs were ob-
tained from healthy adult donors (n = 3). The peripheral blood was diluted with PBS (1:2),
and the cells were separated in a density gradient with Ficoll-Paque Plus at a density of
1.077 ± 0.001 g/mL (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The cells were
centrifuged at 1200 rpm for 30 min, after which the interface was collected and washed
with PBS. Then, the MNCs were incubated for 2 h at 37 ◦C with 5% CO2 and 90% humid-
ity to remove monocytes. The number and viability of nucleated cells were determined
with Turck’s solution and Trypan Blue (Thermo Fisher, Waltham, MA, USA), respectively.
The MNCs were maintained in RPMI 1640 medium supplemented with 10% FBS, 2 mM
L-glutamine, 100 U penicillin, and 100 µg of streptomycin until use.

To evaluate the effect of hBM-MSC-cm on the immunomodulation of MDA-MB-
231 and BT-474 cancer cells, lymphocyte proliferation assays were performed in 48-well
plates over a period of 6 days. Previously, MNCs were stained with carboxyfluorescein
succinimidyl ester (CFSE, Thermo Fisher, Waltham, MA, USA) and seeded in co-cultures
with breast cancer cells. The ratios are 3:1 MNC/MDA-MB-231 and 2:1 MNC/BT-474 cells
with or without hBM-MSC-cm growing in plates of 48 wells with a surface area of 0.95 cm2.
Finally, MNCs were activated with phytohemagglutinin (7.5 µg/mL). The groups analyzed
were: (1) activated MNCs (positive control); (2) MNCs plus tumor cells; (3) MNCs plus
tumor cells plus hBM-MSC-cm and (4) MNCs plus hBM-MSC-cm. The co-culture cells
were seeded in the following proportions: 1 × 105 MNCs, 5 × 104 BT-474 cells, and 3 × 104

MDA-MB-231 cells.
Following the incubation period, the cells present in the co-cultures were prepared for

the analysis of the proliferation of MNCs by flow cytometry. The cells were disaggregated
and washed with PBS containing 1 mM EDTA and centrifuged at 1200 rpm for 5 min.
Subsequently, the cells were blocked with FBS for 20 min at 4 ◦C and washed with PBS-
EDTA. The cells were then incubated with CD3 antibody (lymphocytes T antigen) and
7AAD (exclude dead cells) in 100 µL of PBS-EDTA at 4 ◦C for 20 min. The proliferation
of MNCs (lymphocytes CD3+) was analyzed on a FACSCanto II Flow Cytometer (BD
Biosciences, San Diego, CA, USA), acquiring 10,000 events per sample. The cells obtained
in the proliferation assays were normalized using activated MNCs as a proliferation control,
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whose value was considered 100%. The data were analyzed with the FlowJo™ v.10.7.1
program (Ashland, OR, USA).

2.7. Quantitative Analysis of Soluble Molecules

The supernatants from each group were collected and frozen at –70 ◦C until use. The
cytokine concentration was determined according to De la Rosa et al. using a Cytometric
Bead Array kit (BD Biosciences, San Diego, CA, USA) [34]. A standard curve was developed
by preparing serial dilutions for each analyzed molecule (0–500 pg/mL). Later, 10 µL of the
beads that recognize the TNF, IL-10, and IL-4 cytokines were added to 50 µL of each sample
or standard sample. Then, the samples were incubated at room temperature and protected
from light for 30 min. After three washes with 1 mL of the wash buffer, the samples were
centrifuged at 1200 rpm, and the pellet was resuspended in 300 µL of the same buffer.
The samples were analyzed in the FACSCanto II Flow Cytometer (BD Biosciences, San
Diego, CA, USA), and the cytokine concentrations were determined with LegendPlex v7.1
software (San Diego, CA, USA).

The concentration of TGF-β was determined using the TGF-β Cytometric Bead Array
Kit (BD Biosciences, San Diego, CA, USA) according to the supplier’s instructions. TGF-β
serial dilutions were used to perform a standard curve (40–10,000 pg/mL). Subsequently,
17 µL each sample was activated with 3.4 µL HCl 1 N for 10 min at room temperature.
Then, the samples were neutralized with 3.4 µL NaOH 1.2 N/Hepes 0.5 M. Next, 17 µL
of activated samples or standard samples were incubated with capture beads for 2 h
protected from light. At end of the incubation time, 300 µL of washing buffer was added
and centrifuged at 1800 rpm for 5 min. Finally, the samples were incubated with PE
detector reagent at room temperature for 2 h and a second wash was performed before
being analyzed in the Spectral flow cytometer Aurora (Cytek Biosciences, Fremont, CA,
USA), and TGF-β concentration was determined with LegendPlex v7.1 software (San Diego,
CA, USA).

2.8. Detection of IDO Expression in Breast Cancer Cells

The same groups assayed above were used to quantify by flow cytometry the intracel-
lular IDO expression in breast cancer cells. After 6 days of co-culture, the cells were treated
with Golgi Stop (BD Biosciences, San Diego, CA, USA) for 5 h. The cells in co-culture
were harvested and labeled with CD45 antibody for 30 min at 4 ◦C, after which they were
fixed and permeabilized with Fixation/Permeabilization Buffer (Sigma-Aldrich, St. Louis,
MI, USA) for 1 h. Finally, the cells were labeled with anti-IDO for 30 min at 4 ◦C. The
CD45-IDO+ cells were analyzed in a FACSCanto II Flow Cytometer (BD Biosciences, San
Diego, CA, USA), 10,000 events were acquired from each sample and analyzed with the
FlowJo™ v.10.7.1 software (Ashland, OR, USA).

2.9. Detection of Treg Cells

The same groups assayed above were used for flow cytometry to assess the pro-
portion of regulatory T lymphocytes that have a CD4+CD25+FoxP3+ immunophenotype.
After 6 days of co-culture, MNCs were harvested and labeled with CD4 and CD25 an-
tibodies for 30 min at 4 ◦C, after which they were fixed and permeabilized with Fixa-
tion/Permeabilization Buffer (Sigma-Aldrich, St. Louis, MI, USA) for 1 h. Finally, the cells
were labeled with FoxP3 for 30 min at 4 ◦C. The triple-positive cells were analyzed in a
FACSCanto II Flow Cytometer (BD Biosciences, San Diego, CA, USA), 10,000 events were
acquired from each sample and analyzed with the FlowJo™ v.10.7.1 software (Ashland,
OR, USA).

2.10. Statistical Analyses

Nonparametric statistical tests were performed for all assays. Bonferroni-corrected
pairwise comparisons were made for relative gene expression analyses. On the other hand,
the assays of the relative proliferation of MNCs and the quantification of soluble factors
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were analyzed by one-way ANOVA with Bonferroni-corrected pairwise comparisons. Data
analysis was performed using the Prism 8 program (GraphPad Software, Inc., San Diego,
CA, USA). A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Characterization of hBM-MSC

Isolated primary cultures of hBM-MSC were characterized according to the criteria
set forth by the ISCT [31]. The surface marker expression profile was analyzed by flow
cytometry. The hBM-MSC showed a high expression of the cell-surface markers CD90,
CD105, CD73, and HLA-A, whereas they did not express HLA-DR, CD45, CD34, CD14, and
CD31 (Figure 1A). Afterward, their differentiation capability for the three basic lineages
was evaluated, adding specific induction media (see Materials and Methods).
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  Figure 1. Characterization of human bone marrow mesenchymal stromal cell (hBM-MSC).
(A) Representative histogram of immunophenotypes evaluated (n = 3) by flow cytometry, showing
the surface markers evaluated. (B) Differentiation assay: hBM-MSC (control); adipocytes differenti-
ated after 21 days, showing vacuoles stained with oily red; chondrocytes differentiated after 21 days,
showing chondroitin sulfate staining with alician blue, and osteocytes differentiated after 28 days,
showing calcium deposits stained by alizarin red.

The hBM-MSC cultures showed adherent properties with fibroblast-like morphol-
ogy (control), and they showed differentiation to the three basic lineages: adipocytes that
were identified by the formation of lipid vacuoles; chondrocytes that evidenced the for-
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mation of the chondrogenic matrix and osteocytes by detecting the formation of calcium
deposits (Figure 1B).

Once the identity of hBM-MSC was confirmed, we evaluated the influence of hBM-
MSC-cm on the immunoregulatory properties of two breast cancer cell lines.

3.2. Effect of hBM-MSC-cm on the Expression of Immunomodulatory Genes in MDA-MB-231 and
BT-474 Cells

It is known that cancer-derived cell lines produce a series of cytokines that can, in turn,
modify the local immune response. Thus, to answer the question of whether hBM-MSC-cm
can modulate the expression of some immunoregulatory genes, MDA-MB-231 and BT-474
cells were incubated with hBM-MSC-cm, and the expression levels of TGF-β, IDO, IL-4,
and IL-10 were evaluated by qRT-PCR (Figure 2). We observed a significant increase in
the relative expression of the inflammatory genes TGF-β (7.1 ± 0.20), IDO (17.79 ± 0.61)
and IL-10 (2.19 ± 0.3) but not in IL-4 (0.49 ± 1.02) in MDA-MB-231 cells incubated with
hBM-MSC-cm compared to controls (fresh medium). In the case of BT-474 cells, no changes
in the expression of the immunoregulatory genes were observed (Figure 2).
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Figure 2. The hBM-MSC-cm induces the overexpression of immunomodulatory genes in MDA-MB-
231 breast cancer cells. MDA-MB-231 and BT-474 cells were incubated with hBM-MSC-cm or fresh
medium. After 48 h, RNA was isolated, and the expression level of TGF-β, IDO, IL-4, and IL-10 was
evaluated by qRT-PCR. The results are presented as the relative fold-change in expression. All values
represent the average of three replicate from three independent experiments. Data are shown as
mean ± SEM; * p < 0.05; *** p < 0.001.

The modification of the expression levels of these genes induced by the hBM-MSC-
cm suggests that MDA-MB-231 cells may possess a greater immunosuppressive capacity
relative to BT-474 cells. Although both cell lines are derived from breast cancer, the effect
exerted by the hBM-MSC-cm on each cancer cell line differed.

3.3. Proliferation Analysis of Mononuclear Cells Derived from Peripheral Blood as a Result in
Co-Culture with Breast Cancer Cells Lines and hBM-MSC-cm

To analyze the effects of hBM-MSC-cm on the immunoregulatory capacity of tumor
cells (MDA-MB-231 and BT-474), co-culture assays with MNCs-derived peripheral blood
previously stained with CFSE and activated with phytohemagglutinin were performed.
Then, the proliferation of MNCs (lymphocytes/CD3+) was evaluated. As is observed
in Figure 3, in MDA-MB-231 cells, a marked decrease in the proliferation of MNCs was
observed in two of the groups analyzed: (1) MNCs plus MDA-MB-23 cells and (2) MNCs
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plus MDA-MB-231 cells plus hBM-MSC-cm, even in the last group, we observed a strong
decrease in the proliferation rate of MNCs. However, the hBM-MSC-cm did not show a
proliferative effect on MNCs alone. Conversely, BT-474 cells did not affect MNCs prolifer-
ation in the groups analyzed, which attests to the inability of BT-474 cells to regulate the
proliferation of lymphocytes under these conditions. As the expression assays denoted,
the hBM-MSC-cm did not influence BT-474 cells to modify the proliferation of MNCs.
In addition, no changes were observed in MNCs proliferation plus hBM-MSC-cm alone.
Unlike BT-474 cells, MDA-MB-231 cells showed an immunoregulatory capability on MNCs
proliferation, which is amplified when the hBM-MSC-cm was present.
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Figure 3. Immunomodulatory effect of breast cancer cells induced by hBM-MSC-cm. Mononuclear
cells (MNCs) were stained with CFSE, activated with phytohemagglutinin, and co-cultured in the
presence of MDA-MB-231 or BT-474, with or without hBM-MSC-cm for 6 days. The proliferation rate
of activated MNCs (lymphocytes CD3+) was used as a positive control (100%). The figure shows
(A) the histograms of a representative experiment, from three hBM-MSC-cm isolated from different
donors (n = 3) (B) the graphs show the relative proliferation of MNCs (lymphocytes CD3+) from three
independent experiments. Data are presented as mean ± SEM; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.4. Evaluation of Candidate Molecules Involved in the Regulation of MNCs Proliferation

To determine which molecules may be involved in inhibiting MNCs proliferation, the
supernatant of the same groups assayed in Figure 3 were collected, and TNF, IL-4, IL-10
and TGF-β were quantified (Figure 4A).
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Figure 4. Quantification of cytokines and IDO. MNCs were activated with phytohemagglutinin and
co-cultured for 6 days in the presence of MDA-MB-231 or BT-474, with or without hBM-MSC-cm
(n = 3). (A) TNF, IL-4, IL-10, and TGF-β levels were quantified in the supernatants using cytometric
bead array. The concentration of cytokines detected in the supernatant of activated MNCs (n = 3) was
considered a basal concentration. (B) IDO was quantified as intracellular percentage in MDA-MB-231
and BT-474 cells by flow cytometry from three independent experiments. Data are presented as
mean ± SEM; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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In MDA-MB-231 cells, TNF levels decreased in the following groups: (1) MNCs plus
MDA-MB-231 cells and (2) MNCs plus MDA-MB-231 cells plus hBM-MSC-cm. However,
TNF levels did not change significantly in the MNCs plus hBM-MSC-cm group. Contrary
to TNF, the expression of IL-10 increased in the following groups: (1) MNCs plus MDA-
MB-231 cells and (2) MNCs plus MDA-MB-231 cells plus hBM-MSC-cm, with a substantial
increase in the latter group. On the other hand, no significant changes in IL-10 expression
were found in the group with the presence of MNCs plus hBM-MSC-cm compared to the
control. In addition, no significant changes in IL-4 expression levels were found in any of
the groups.

In MDA-MB-231 cells, the TGF-β levels were significantly increased in the groups:
(1) MNCs plus MDA-MB-231 cells; (2) MNCs plus MDA-MB-231 cells plus hBM-MSC-cm
and (3) the MNCs plus hBM-MSC-cm. However, no differences were observed among
these three groups. The lower rate of MNCs proliferation in the presence of MDA-MB-231
cells could be explained by the decreased levels of the pro-inflammatory cytokine TNF and
increased levels of the anti-inflammatory cytokine IL-10 and TGF-β.

With respect to experiments using BT-474 cells, TNF levels did not change significantly
in the following groups: (1) MNCs plus BT-474 cells and (2) MNCs plus BT-474 cells
plus hBM-MSC-cm and (3) MNCs plus hBM-MSC-cm. Similarly, Figure 4A shows the
concentration levels of IL-10 and IL-4. Although the concentration levels of these cytokines
differ, this pair of molecules present a similar tendency. However, when each group was
analyzed, no statistically significant changes were found.

TGF-β analysis showed a significant decrease in the groups: (1) MNCs plus BT-474
cells and (2) MNCs plus BT-474 cells plus hBM-MSC-cm, but without difference between
these two groups. On the other hand, no statistically significant difference was found in
MNCs plus hBM-MSC-cm group in comparison with the control group.

3.5. hBM-MSC-cm Differentially Induces IDO Expression on MDA-MB-231 Breast Cancer
Cell Line

To evaluate the effect of hBM-MSC-cm on the ability of cancer cells (MDA-MB-231 and
BT-474) to produce immunosuppressive molecules in co-culture with MNCs, we quantified
the expression of IDO intracellular in tumor cells by Flow cytometry (Figure 4B). The
IDO protein levels were increased in MDA-MB-231 cells in the groups: (1) MNCs plus
MDA-MB-231 cells, and (2) MNCs plus MDA-MB-231 cells plus hBM-MSC-cm. However,
it is very striking that this last group has a higher expression of IDO. This fact confirms
that the hBM-MSC-cm can exert a synergistic effect on the immunoregulatory properties of
MDA-MB-231 cells possibly by significantly increasing IDO levels. In contrast, none of the
co-culture groups analyzed with BT-474 cells showed significant changes in IDO protein
expression levels.

3.6. Evaluation of the Effect of hBM-MSC-cm on the Capability of MDA-MB-231 and BT-474
Breast Cancer Cells to Generate Regulatory T Lymphocytes (CD4+CD25+FoxP3+)

The influence of MSCs throughout tumor development has been associated with the
establishment of an immunotolerogenic environment via the release of soluble molecules.
In this sense, MSCs can promote immune cell differentiation to certain regulatory pheno-
types, whose presence can facilitate tumor development, inhibiting the antitumor immune
response. The gene expression profile and cytokine concentration previously described
in Figures 2 and 4 showed that the immunomodulatory ability in both breast cancer cell
lines could differ under the influence of hBM-MSC-cm. Therefore, we wondered whether
these immunomodulatory mechanisms could involve the presence of regulatory T cells
with a CD4+CD25+FoxP3+ phenotype (Figure 5). For BT-474 cells, no significant changes
were found in the proportion of Treg cells in the following groups: (1) MNCs plus BT-474
cells and (2) MNCs plus BT-474 cells and hBM-MSC-cm. However, in the MNCs plus
hBM-MSC-cm group, we observed an increase in the proportion of Treg cells, as expected,
due to the presence of soluble factors which may be secreted by MSCs.
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Figure 5. Capability of MDA-MB-231 and BT-474 breast cancer cells to generate regulatory T lympho-
cytes (CD4+CD25+FoxP3+) under the influence of hBM-MSC-cm (n = 3). (A) Once MNCs activated
with phytohemagglutinin and co-cultured in the presence of MDA-MB-231 or BT-474, with or with-
out hBM-MSC-cm. The average percentage of CD4+CD25+Foxp3+ cells was determined by flow
cytometry after 6 days of culture. The population of CD4+CD25+Foxp3+ observed in the activated
MNCs culture was considered as the control. (B) Plots representative of each group. The data show
the mean ± SEM of the percentage of CD4+CD25+Foxp3+ cells from three independent experiments;
* p < 0.05; ** p < 0.01.

On the other hand, we observed a significantly higher proportion of Treg cells in the
groups in presence of tumor cells MDA-MB-231 than those generated only in the presence
of hBM-MSC-cm alone (Figure 5). However, the interaction between the hBM-MSC-cm plus
MDA-MB-231 cells resulted in a significantly higher proportion of Treg cells, which did
not occur with BT-474 cells. This result appears to corroborate the idea that hBM-MSC-cm
could act synergistically and enhance the immunoregulatory power of MDA-MB-231 cells
relative to that of BT-474 cells.

We propose a model base on our work to clarify the differential effect of hBM-MSC-cm
on the immunoregulatory response of MDA-MB-231 and BT-474 breast cancer cells, via
the secretion of soluble molecules (Figure 6). The breast cancer cell line triple-negative
MDA-MB-231 exposed to hBM-MSC-cm overexpresses genes TGF-β, IDO, and IL-10. In
immunoregulation assays of mononuclear cells (MNCs) in co-culture with MDA-MB-231
and hBM-MSC-cm, we see a reduction in lymphocyte proliferation along with increases in
IL-10 and TGF-β and reduced TNF levels; increases in intracellular IDO in MDA-MB-231
cells were also seen. Consequently, the presence of these molecules increases the proportion
of regulatory T cells. In contrast, the hBM-MSC-cm does not affect the immunomodulatory
capacity of luminal subtype BT-474 cells. Therefore, there is a differential immunoregulatory
effect of MSCs on MDA-MB-231 and BT-474 breast cancer cells.
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Figure 6. Proposed model of the differential effect of hBM-MSC-cm on the immunoregulatory ability
of MDA-MB-231 and BT-474 breast cancer cells. The figure shows the possible interactions promoted
by soluble factors secreted to the medium by hBM-MSC over (A) MDA-MB-231 and (B) BT-474 cells,
affecting in a differential way the capability of each cell line to modulate the immune response. The
MDA-MB-231 cells show a major suppressive potential relative to B-474 cells. (↑: increase; ↓: decrease;
–: no modification). (Figure created with BioRender.com; December 26, 2022.

4. Discussion

In order to understand some of the possible effects of the cellular interactions that
occur among different components of the tumor microenvironment, we analyzed the effect
of hBM-MSC-cm on the immunomodulatory properties in vitro of two breast cancer cell
lines: MDA-MB-231 and BT-474. These cell lines were carefully chosen for this work
based on their clinical relevance and the subtype to which they belong. The BT-474 cells
represent luminal-type breast cancer and are slow-growing. In contrast, the MDA-MB-231
cell line represents basal-type or triple-negative breast cancer, and is highly proliferative.
Interestingly, triple-negative breast cancer patients have higher rates of metastasis, cell
heterogeneity, and drug resistance. They have a worse prognosis and exhibit high morbidity
and mortality rates [2]. Clinically, triple-negative cancer patients tend to have a recurrence
within three years after primary surgery, while luminal breast cancer patients tend to have
a recurrence a long time after primary surgery [35].

For this reason, as a first approach, we questioned whether through their conditioned
medium, MSCs could differentially promote the expression of immunoregulatory genes
such as IDO, TGF-β, IL-4, and IL-10 in MDA-MB-231 and BT-474 cells lines, which may be
crucial to favor the establishment of an immunotolerant state, because the overexpression of
these immuno-regulatory genes correlate with a poor prognosis and, generally, are present
in advanced tumor stages [36–40].

Our study found a marked overexpression of IDO, TGF-β and IL-10 in MDA-MB-
231 cells in the presence of hBM-MSC-cm, which could enhance the immunoregulatory
capability due to the powerful suppressive effect of these gene products, as described in
previous studies [41,42]. In fact, these molecules can induce the protection of tumor cells
through the generation of Treg cells [43]. In BT-474 cells, low expression levels of these
genes were found. In the case of IDO, its low expression in these cells has been related
to the presence of estrogen receptors, which could induce hypermethylation of the IDO
gene promoter [44].
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The tumor microenvironment is characterized by the promotion of generalized dys-
function in T cells and, through some mechanisms can block their activation and func-
tion [45]. Therefore, we quantified the proliferation of MNCs (lymphocytes CD3+) as an
effect established by the interaction that occurs between soluble factors present in the
hBM-MSC-cm and both cancer cells. The results showed that BT-474 cells were unable to in-
hibit MNCs proliferation, whereas MDA-MB-231 cells had a powerful immunosuppressive
effect, which may be associated with the observed expression of TGF-β, IDO, and IL-10.

Interestingly, it was observed that the hBM-MSC-cm added to the MDA-MB-231 cells
(but not on BT-474) synergistically favored their immunomodulatory capability, since
we found decreased levels of proliferating MNCs (lymphocytes CD3+) relative to those
observed in the presence of MDA-MB-231 alone. Similarly, the proliferation values of
MNCs using hBM-MSC-cm alone did not change significantly, possibly due to the lack of
cell–cell contact (MNCs–MSCs), as previously reported [46,47].

Due to the decrease in the proportion of proliferating MNCs (lymphocytes CD3+) in
some of the co-cultures with tumor cells plus hBM-MSC-cm, we decided to assess the levels
of some cytokines present in the supernatants of the groups studied, because the balance
between pro-inflammatory (e.g., TNF) and anti-inflammatory (e.g., IL-4, IL-10, and TGF-β)
cytokines is key to controlling the regulation of the immune response [48]. This decrease in
MNCs proliferation may be associated with the presence of Th2-type immunosuppressive
cytokines, such as IL-4, IL-10 and TGF-β, which are mainly responsible for immunosuppres-
sion in different types of cancer [49]. As our results showed, MDA-MB-231 cells have an
intrinsic capacity to decrease the proliferation of MNCs, decrease TNF levels, and increase
IL-10, and TGF-β levels and some of these effects were enhanced by hBM-MSC-cm presence.
The result is relevant, given that the overexpression of IL-10 and TGF-β in cancer are key
cytokines in the generation of an immunotolerant status, which affects the proliferation
of T cells and avoids the maintenance of antitumor function [41,43,50,51]. On the other
hand, in BT-474 cells, no evidence of a proliferative effect in MCNs was found; likewise, no
significant changes were found in the concentrations of TNF, IL-4, and IL-10 but curiously,
we observed a decrease in TGF-β levels.

We also analyzed IDO-protein expression in tumor cells (MDA-MB-231 and BT-474),
since IDO is considered a major contributor to tumor-induced immune suppression and
a negative regulator of the immune system modulating T cell proliferation and immune
tolerance associated with regulatory FoxP3+ T-cells in breast cancer [52]. The result ob-
served in our work is interesting because the overexpression of IDO has been associated
with aggressive tumors such as triple negative. At the same time, IDO is related to the
expression of other immune response genes such as IL-10 [53].

As MSCs, tumor cells have the ability to promote the generation of Treg cells
(CD4+CD25+Foxp3+) through mechanisms that may or may not involve cellular contact
between T lymphocytes and tumor cells or MSCs [22,41,54,55]. For this reason, we evalu-
ated Treg cell populations in all experimental groups, MDA-MB-231 cells were found to
have an intrinsic capacity to increase the proportion of Treg cells, which is enhanced by the
presence of the hBM-MSC-cm, this could indicate a major immunosuppressive power of
MDA-MB-231 cells in a tumoral context, comparing BT-474 cells, whose Treg cells levels
did not change significantly.

Some reports indicated that basal or triple-negative tumor subtypes are surrounded
by an inflammatory environment [22] in which MSCs may co-exist [56]. However, iden-
tifying the cells responsible for the overexpression of inflammatory mediator molecules
has proved challenging [57]. In this context, our results could suggest that immunosup-
pressive molecules are produced by MDA-MB-231, and are possibly assisted by MSCs via
soluble molecules.

In the tumor microenvironment where MSC are educated, Sepehr et al. described
the major immunomodulatory potential of the conditioned medium of MSCs derived
from breast tumors, versus the conditioned medium of MSCs derived from normal breast
adipose tissue; these differences depend on the pathological or physiological context from



Curr. Issues Mol. Biol. 2023, 45 282

which they were isolated. Interestingly, the hBM-MSC-cm used in our work did not
promote an inhibitory effect on proliferation lymphocyte levels, as Sepehr et al. previously
reported [32]. Despite that the hBM-MSC used in our experiments were not educated in a
tumor environment, we did observe that the soluble agents secreted by hBM-MSC influence
the immunoregulatory properties of MDA-MB-231 cells. Thus, it is important to study the
immunoregulatory mechanisms that MSCs can influence in cancer, especially MSCs that are
recruited from bone marrow to the tumor microenvironment because malignant cells mainly
metastasize into bone tissue in advanced breast cancer [2,58,59]. Although several studies
have described the immunosuppressive properties of MSCs, their capability to secrete
a cocktail of proteins that modulate the immune response in vitro may be questionable
because this protein profile could be modified by the culture conditions or even by donor
inherent factors [60]. Thus, the study of molecules secreted by the MSCs could be decisive
in the immunomodulatory response of the tumor microenvironment and remains an
enormous challenge.

Based on the results obtained in this work, we propose a model that suggests a dif-
ferential effect in the immunoregulatory properties of MDA-MB-231 and BT-474 breast
cancer cell lines, interacting with hBM-MSC through soluble factors present in their condi-
tioned medium.

However, it is necessary that future studies consider the other immunoregulatory
mechanisms that different breast cancer cells may have under the influence of normal-MSCs
and tumor-MSCs, either by paracrine signaling or cellular contact and determine whether
the participation of MSCs inside the tumor microenvironment is key to the aggressive
behavior in breast cancer. Likewise, it is necessary to elucidate in detail, the signaling
pathways involved in the immunoregulatory effects observed.

In conclusion, our results demonstrated that hBM-MSC-cm may induce a differential
effect on the immunoregulatory properties of MDA-MB-231 cells, but not BT-474 cells.
Finally, understanding the immune response in the tumor context using a broader panel
of tumor cell lines and clinical samples could help to correlate the breast cancer subtype
with a possible immune response, which would be advantageous to design new therapeu-
tic strategies.
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