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Abstract: For the development of atypical antipsychotics, the selective positive allosteric modulation
of the ionotropic GABAA receptor (GABAAR) has emerged as a promising approach. In the presented
research, two unrelated methods were used for the development of QSAR models for selective positive
allosteric modulation of 1-containing GABAARs with derivatives of imidazo [1,2-a]-pyridine. The
development of conformation-independent QSAR models, based on descriptors derived from local
molecular graph invariants and SMILES notation, was achieved with the Monte Carlo optimization
method. From the vast pool of 0D, 1D, and 2D molecule descriptors, the GA-MLR method developed
additional QSAR models. Various statistical methods were utilised for the determination of the
developed models’ robustness, predictability, and overall quality, and according to the obtained
results, all QSAR models are considered good. The molecular fragments that have a positive or
negative impact on the studied activity were obtained from the studied molecules’ SMILES notations,
and according to the obtained results, nine novel compounds were designed. The binding affinities to
GABAAR of designed compounds were assessed with the application of molecular docking studies
and the obtained results showed a high correlation with results obtained from QSAR modeling. To
assess all designed molecules’ “drug-likeness”, their physicochemical descriptors were computed and
utilised for the prediction of medicinal chemistry friendliness, pharmacokinetic properties, ADME
parameters, and druglike nature.
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1. Introduction

Of all the psychiatric illnesses, schizophrenia is recognised as one of the most serious.
This is a complex, chronic mental disorder affecting approximately 1% of the world popu-
lation. Illness symptoms range from delusions to hallucinations to disorganised thinking
and impaired cognitive ability [1,2]. The disorder is modestly more common in men than
in women [3]. For many patients and their families, the early onset of schizophrenia and
its chronic nature make schizophrenia a very disabling disorder [4,5]. The life expectancy
of schizophrenia patients is reduced by approximately ten years, mainly by suicide. Even
if the recovery prognosis is considered more optimistic today, only a minority of patients
are still fully recovered [6]. Among those who have good outcomes, the diagnosis has
life−changing consequences, including social isolation and stigma [3].

Antipsychotic agents are necessary for the effective rehabilitation of most schizophre-
nia patients. Antipsychotics are the mainstay of pharmacological therapy, but they are
associated with side effects that can cause disability [1]. Gamma-aminobutyric acid (GABA)
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is the most abundant inhibitory neurotransmitter in the mammalian central nervous system,
and its distribution suggests that it plays a significant role in virtually all brain physiologi-
cal functions, as well as transmission in neurodevelopmental disorders [7]. The GABAA
receptor is one of the principal drug targets in the treatment of neuropsychiatric disorders
such as insomnia, anxiety, epilepsy, and anaesthesia in surgical interventions [8]. This type
of GABA receptor serves as the target of numerous classes of drugs [7]. There is strong evi-
dence implicating impairments of the GABA signalling mechanism in the pathophysiology
of schizophrenia [9]. Postmortem studies have provided confirmation of an altered GABA
system in its pathophysiology [10].

In the drug discovery and development process, research time and financial aspects
have a high impact. Both of these limiting factors could be highly influenced by the appli-
cation of in silico methods since these methods accelerate research and reduce financing by
discarding unfavourable molecules. For instance, quantitative structure-activity relation-
ship (QSAR) studies are aimed at developing a mathematical model that can predict the
studied activity for molecules that have not been synthesised and discarding molecules
with undesired activity. Not only can in silico methods be used to predict studied activity,
but also they could be used to predict and optimise pharmacological activity (or pharma-
cokinetic properties), key parameters for clinical approval [11,12]. The QSAR modelling
process can be summarised as the development of a mathematical correlation, in most
cases represented as a mathematical equation, between molecular descriptors and studied
activity, where molecular descriptors are numerical parameters of each molecule calculated
from its defined molecular structure. It has to be noted that currently a vast number of
methodologies are used for QSAR modelling purposes, with their strengths and weak-
nesses derived from different molecular descriptors and with the application of different
computational algorithms used for model development [13–15].

The main aim of the presented research was the development of QSAR models
for positive allosteric modulation of the ionotropic GABAA receptor. Two approaches
were used for this purpose: first based on the Monte Carlo optimization method and
conformation−independent molecular descriptors (both SMILES notation and local graph
invariants were used), and second based on a genetic algorithm coupled with multiple
linear regression and 0D, 1D, and 2D molecular descriptors, with further determination of
molecular fragments or structural requirements responsible for allosteric modulation of the
ionotropic GABAA receptor. For the “final validation” of the developed QSAR models and
designed molecules’ allosteric modulation potential, molecular docking studies were used
and the binding affinities to GABAAR of designed compounds were assessed.

2. Material and Methods
2.1. Molecules Database

The literature provided a data set of 33 imidazo [1,2-a]-pyridine derivatives as selective
positive allosteric modulators of α1-containing GABAARs [16]. The anti-psychotic activi-
ties, related to positive allosteric modulation of α1-containing GABAARs and expressed
in nM, were converted into the corresponding pKi (pKi = −log10 Ki) values, which are
used as dependent variables in this study. The chemical structures of all used molecules
are represented with appropriate SMILES notation with their pKi listed in Table S1 (see
Supplementary Materials), while their general chemical structure is presented in Figure 1.
One of the main requirements for developing QSAR models with the Monte Carlo optimiza-
tion method is that SMILES notation for all molecules be canonized in the same manner.
For this purpose, all molecules were drowned using ACD/ChemSketch 2018 v2.5 (Toronto,
ON, Canada). The same software was used to obtain the SMILES notation of all molecules.
Final SMILES notation canonization was performed using OpenBabel v2.4.1 (Pittsburgh,
PA, USA). From the original data set, three random splits into the training (25 compounds,
75%) and test set (8 compounds, 25%) were generated, and for all splits, the normality of
the activity distribution was checked according to the literature [17].
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2.2. The Monte Carlo Optimization Method

Molecular descriptors derivated from both SMILES notation and molecular graph
were used to develop conformation-independent QSAR models with the Monte Carlo
optimization method as the main computer algorithm. Local graph invariants with the
most elementary concepts like walks and paths were used as molecular graph-based
descriptors and their detailed mathematical definition can be found in the literature [18].
As optimal topological descriptors, the following local graph invariants were used in
the presented research: the number of carbon atom neighbors (Number of Carbon) and
the number of non-carbon atom neighbors (Number of Non Carbon), Morgan extended
connectivity indices (EC0), valence shells of range 2 and 3 (s2, s3), and path numbers of
length 2 and 3 (p2, p3). One of the main downfalls of molecular topological descriptors
is the lack of mechanistic interpretation. To overcome this issue, SMILES notation based
molecular descriptors are used since correlation with molecular fragments can be made.
In the Monte Carlo optimization method, each descriptor, both graph-based and SMILES
notation based, is assigned an appropriate numerical value defined as correlation weights
(CW). For each molecule, its correlation weight (DCW) is the sum of each descriptor’s CW
and its calculation is presented in Equation (1).

DCW(T,Nepoch) = ΣCW(Sk) + ΣCW(SSk) + ΣCW(SSSk) + ΣCW(ATOMPAIR) +
ΣCW(NOSP) + ΣCW(BOND) + ΣCW(HALO) + ΣCW(PT2k) + ΣCW(PT3k) +

ΣCW(VS2k) + ΣCW(VS3k) + ΣCW(NNCk)
(1)

A SMILES atom defined as one SMILES notation symbol (or two un-separated symbols)
is represented as Sk, while symbols SSk and SSSk represent the linear combinations of
two and three SMILES atoms, respectively. The global features of the studied molecule,
defined with global SMILES notation, used in this research were: HARD, NOSP, BOND,
HALO, and ATOMPAIR, all calculated according to the published methodology [19,20].
In this research, a hybrid approach was used where the combination of both local graph
invariant descriptors and SMILES notation (both local and global) was used for QSAR
model development.

Apart from the above defined Sk, SSk and SSSk symbols in Equation (1), the following
descriptors were represented with appropriate symbols: EC0k—Morgan connectivity index
of zero order with hydrogen suppressed graph; VS2k and VS3k—valence shell 2 and
3; PT2k and PT3k—paths of length 2 and 3; NNCk—Nearest Neighbors [18]. CORAL
software (CORrelation and Logic) (Milano, Italy). (http://www.insilico.eu/coral (accessed
on 12 February 2022)) was used for QSAR model development based on the Monte Carlo
optimization method and for the calculation of all above−defined molecular descriptors.
Publish methodology [19,20] was used for QSAR development, and a detailed description
of the model development process is given in the Supplementary Materials.

http://www.insilico.eu/coral
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2.3. GA-MLR Method

PaDEL software was used for the calculation of molecular descriptors used for
QSAR modeling based on genetic algorithms coupled with multiple linear regression
(GA-MLR) [21]. Descriptors with low variance were discarded from the initial descriptor
pool. Further descriptors number reduction was achieved by filtering based on high pair-
wise intercorrelation coefficients-descriptors (descriptors with 80% constant value and 95%
correlation were omitted from QSAR model development). After the reduction of descrip-
tor number and their scaling, QSAR models were developed with the application of genetic
algorithm (GA) optimization method coupled with multiple linear regression (MLR). The
QSAR model was established for the split into training and test sets that produced the best
statistical parameters within the Monte Carlo optimization method. For the QSAR model
development based on GA-MLR approach, the QSARINS program (QSAR-INSUBRIA)
(www.qsar.it (accessed on 5 March 2022)) was used. This software was also used for the
reduction of descriptor numbers [22,23]. The following parameters GA-MLR were set in
the QSAR model development: the total number of features in the model (GA optimization
included the number of variables) was 5, the number of GA iterations (generations per
size) was 500, the number of models on which GA evolves (population size) was 10, and
random mutations to generate a pool of variegated descriptors (mutation rate) were 20%.

2.4. QSAR Models Validation and Applicability Domain

The goodness of developed QSAR models, both with the Monte Carlo optimization
and GA-MLR method, was assessed with the application of several validation metrics:
squared correlation coefficient (r2); leave-one-out and leave-many-out cross-validation
coefficients (q2loo , q2); root-mean-squared-error (RMSE), mean absolute error (MAE), F-
value, and y-scrambling. In addition to above stated parameters, correlation coefficient
(CCC), the Index of Ideality of Correlation (IIC), MAE-based metrics and Rm

2 were used
for further developed QSAR models validation [19,20,24–29].

Applicability domain (AD) is considered as a crucial addition to any reliable, relevant,
valid and robust QSAR model, and it is a feature that must be defined before the QSAR
model is developed fully [30,31]. For QSAR models developed with the Monte Carlo opti-
mization method, the approach with the “statistical defects” of conformation-independent
molecular descriptors–d(A) was used for the determination of AD [17]. Williams plot
(standardised residuals versus leverages), a distance−based method, was used for defining
AD of models developed with GA-MLR.

2.5. Molecular Docking

As the target for docking studies, human 122 GABAAR (PDB: 6X3X) was selected
and Molegro Virtual Docker (MVD) (Odder, Denmark) was used as the main software.
MVD provides information for both hydrophilic interactions, including the identification of
hydrogen bonds between rigid amino acids from defined active sites and studied ligands,
and hydrophobic (mostly related to steric and Van der Waals interactions), by employing
docking studies between flexible ligands and rigid amino acids within the studied enzyme’s
active site. Calculated numerical values related to relevant binding energies, defined as
“scoring” functions, can be used to quantify the above-stated interactions [32].

The potential inhibition effect of studied ligands could be used to assess obtained
numerical values for “scoring” functions, since, for most enzymes, the higher the interac-
tion between ligand and receptor, the higher is the inhibition observed [20]. The following
“scoring” functions were calculated and used for inhibitory potential estimation: MolDock,
and Rerank Score, Pose energy, VdW, Steric, NoHbond, and Hbond. Published methodol-
ogy was used to validate a complete molecular docking protocol [33,34]. Discovery Studio
Client v20.1.0.19. (Waltham, MA, USA) was used for two−dimensional representations of
the interactions between the amino acids from α1-containing the GABAARs active site and
studied molecules.

www.qsar.it
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3. Results and Discussion
3.1. The Monte Carlo Optimization Method

The assessment of developed QSAR conformation−independent models’ robustness,
predictability, and overall quality several statistical metrics were calculated and their
numerical values are presented in Table 1, including: r2—correlation coefficient, q2—cross-
validated correlation coefficient, s—standard error of estimation, MAE—Mean absolute
error and F—Fischer ratio. Table 1 presents numerical values for CCC—concordance
correlation coefficient are IIC—index of ideality of correlation. Numerical values for all
statistical matrices indicate that QSAR models obtained with the application of the Monte
Carlo optimization method have good reproducibility and high predictability potential.
Applied methodology for AD suggested that no outliers were present, since all molecules
were within the defined AD and all were used for both model development and model
testing. The highest obtained r2 value was used to assess the best developed QSAR
model, regarding the best Monte Carlo optimization run, and a graphical representation
of these QSAR models for all three splits, is presented in Figure 2. Further, the difference
between calculated values and experimental values for studied activity, for both molecules
in the training and test set, is presented in Figure 2. For further validation of developed
QSAR models, especially determination of their reproducibility, concordance correlation
coefficients (CCC) were calculated and according to the obtained numerical values for
CCC suggest that all developed QSAR models possess high reproducibility. The developed
QSAR models were finally validated with the calculation of an MAE—based metric and
the obtained results indicated models as GOOD. Y—randomization was used to determine
developed QSAR models’ sturdiness, and according to the obtained results, presented
in Table S2 (Supplementary Material), calculated QSAR models are free from correlation
by chance. Finally, the predictive potential of calculated QSAR models was assessed
with the index of ideality of correlation (IIC); high numerical values calculated for IIC
indicate that QSAR models developed with the Monte Carlo optimization method have
high predictive potential.

Table 1. The statistical quality of QSAR models developed with the Monte Carlo optimization method
for selective positive allosteric modulation of α1-containing GABAARs.

Run
Training Set Test Set

r2 CCC IIC q2 s MAE F r2 CCC IIC q2 s MAE F

Sp
lit

1

1 0.8553 0.922 0.7267 0.8288 0.166 0.116 136 0.8468 0.9192 0.9202 0.7767 0.207 0.163 33

2 0.8302 0.9073 0.7159 0.8059 0.180 0.127 112 0.8586 0.9164 0.9266 0.7872 0.194 0.152 36

3 0.8413 0.9138 0.8467 0.8104 0.174 0.118 122 0.8355 0.9141 0.9140 0.7468 0.209 0.163 30

Av 0.8423 0.9144 0.7631 0.8150 0.173 0.120 123 0.8470 0.9166 0.9203 0.7702 0.203 0.159 33

Sp
lit

2

1 0.8518 0.9200 0.7252 0.8296 0.179 0.139 132 0.8523 0.9086 0.9225 0.6671 0.181 0.138 35

2 0.8219 0.9023 0.8369 0.7888 0.196 0.159 106 0.8419 0.9123 0.9175 0.6644 0.164 0.114 32

3 0.8483 0.9179 0.6140 0.8223 0.181 0.147 129 0.8371 0.9118 0.9145 0.6309 0.171 0.117 31

Av 0.8407 0.9134 0.7254 0.8136 0.185 0.148 122 0.8438 0.9109 0.9182 0.6541 0.172 0.123 33

Sp
lit

3

1 0.8411 0.9137 0.6114 0.8178 0.182 0.143 122 0.9479 0.9678 0.9735 0.8732 0.103 0.070 109

2 0.8528 0.9205 0.6157 0.8283 0.175 0.132 133 0.9164 0.9456 0.9573 0.7794 0.145 0.121 66

3 0.8557 0.9223 0.8539 0.8365 0.174 0.140 136 0.9121 0.9530 0.9540 0.8476 0.131 0.104 62

Av 0.8499 0.9880 0.6937 0.8275 0.177 0.138 130 0.9255 9.5555 0.9616 0.8334 0.126 0.098 79

r2—Correlation coefficient; CCC—concordance correlation coefficient; IIC—index of ideality of correlation;
q2—Cross−validated correlation coefficient; s—Standard error of estimation; MAE—Mean absolute error;
F—Fischer ratio; Av—Average value for statistical parameters obtained from three independent Monte Carlo
optimization runs.
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Figure 2. (Above): graphical representation of the best Monte Carlo optimization runs (the highest
value for the r2) for the developed QSAR models; (Below): difference between experimental and
calculated values for pKi.

Mathematical representation of the best QSAR models developed with Monte Carlo
optimization according to obtained test set r2 for all splits are given in Equations (2)–(4).

Split 1: pKi = −1.0585(±0.1320) + 0.0612(±0.0010) × DCW(2,11) (2)

Split 2: pKi = 0.7626(±0.0977) + 0.0414(±0.0006) × DCW(3,12) (3)

Split 3: pKi = −3.2411(±0.1623) + 0.0948(±0.0015) × DCW(3,7) (4)

According to Equations (2)–(4), preferable values for T and Nepoch are 2 and 11 for
split 1, respectively; preferable values for T and Nepoch for split 2 are 3 and 12, respectively;
and preferable values for T and Nepoch for split 3 are 3 and 7, respectively.

3.2. GA-MLR Modeling

Equation (5) presents mathematical equations for the QSAR model obtained from
GA−MLR modeling and in Supplementary Material its graphical representation is given
(Figure S1). The Supplementary Material (Table S3) also presents numerical values for
metrics used for the developed QSAR model validation, and according to the obtained
results the developed QSAR model has satisfactory prediction potential and its prediction
can be considered as robust.

pKi = 6.4712 − 0.2443 × ATSC4p − 0.0345 × AATSC8m − 5.1954 ×
SpMin7_Bhp + 7.0601 × SpMin8_Bhi + 1.2733 × topoShape

(5)

According to presented Equation (5), molecular descriptors that have importance for
model development are the following: ATSC4p—centered Broto−Moreau autocorrelation—
lag 4/weighted by polarizabilities; AATSC8c—Average centered Broto−Moreau autocorrelation—
lag 8/weighted by charges; SpMin7_Bhp—Smallest absolute eigenvalue of Burden mod-
ified matrix—n 7/weighted by relative polarizabilities; SpMin8_Bhi—Smallest absolute
eigenvalue of Burden modified matrix—n 8/weighted by relative first ionization potential
and topoShapePetitjean topological shape index.
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3.3. Comparison to the Other QSAR Models

Zheng et al. (2021) investigated novel selective positive allosteric modulators (PAMs)
of 1-containing GABAARs with an imidazo [1,2-a]-pyridine heterocyclic system [16]. The
research authors developed three−dimensional quantitative structure-activity relationships
(3D-QSAR) and performed pharmacophore modelling as well as molecular docking and
molecular dynamics studies for 33 imidazo [1,2-a]-pyridines in the search for novel antipsy-
chotic drugs and to obtain better understanding of their pharmacological characteristics.
The constructed 3D-QSAR models showed good predictive potential, and the obtained
results could provide a significant basis for new potent antipsychotics. In comparison to
the QSAR models presented in research performed by Zheng et al., the presented QSAR
models have similar predictability according to comparison of numerical values of the
used statistical metrices. However, QSAR models presented in this research have some
advantages mostly related to calculation time and computational resources, since develop-
ment of 3D QSAR models is both time-consuming and requires advanced computational
resources. One of the key steps in the development of 3D based QSAR models is obtaining
an appropriate molecule’s geometry and further alignment; both of these steps are skipped
in conformational-independent QSAR modelling. Further Monte Carlo optimization meth-
ods can be used for the defining of SMILES notation optimal descriptors that could be
associated with appropriate molecular fragments, with effect on the studied activity, and
this cannot be done with 3D QSAR modelling [19,20].

3.4. Computer-Aided Design of Novel Inhibitors

The calculation example of a molecule’s summarized correlation weight (DCW) related
to appropriate molecular fragment contribution on pKi is presented in Table 2. In Table 2
molecular graph-based descriptors were omitted to achieve an easier interpretation, while
the full list of molecular descriptors, both based on the molecular graph and the SMILES
notation is shown in Table S4 (Supplementary Material).

In the process of computer−aided design (CAD), the results from conformational−in
dependent studies, mostly related to defined molecular fragments, were used for the design
of nine novel potential inhibitors, whose structures are presented in Figure 3. Figure 3 also
presents simplified schematics related to CAD.
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was focused on the addition of simple aliphatic groups in ortho, meta, and para positions. 

Figure 3. Schematics for computer—aided drug design.

As a template molecule (A), one of the least chemically exploited molecules from the
original dataset (molecule 3) was chosen. After examination of the molecules dataset, the
observation was made that the phenyl group is the least chemically modified, so CAD
was focused on the addition of simple aliphatic groups in ortho, meta, and para positions.
Only molecular fragments with a positive impact on pKi were selected. Results for CAD
molecules with calculated pKi are presented in Table 3.
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Table 2. The example of DCW(3,7) calculation.
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Table 3. The list of all designed molecules with their SMILES notation and calculated activities.

Molecule SMILES Notation pKi

A Fc1ccc2n(c1)c(CC(=O)N(C)C)c(n2)c1ccccc1 6.7559

A1 Fc1ccc2n(c1)c(CC(=O)N(C)C)c(n2)c1ccccc1C 7.4613

A2 Fc1ccc2n(c1)c(CC(=O)N(C)C)c(n2)c1cccc(c1)C 7.1357

A3 Cc1ccc(cc1)c1nc2n(c1CC(=O)N(C)C)cc(cc2)F 7.5160

A4 CCc1ccccc1c1nc2n(c1CC(=O)N(C)C)cc(cc2)F 7.1291

A5 CCc1cccc(c1)c1nc2n(c1CC(=O)N(C)C)cc(cc2)F 7.3736

A6 CCc1ccc(cc1)c1nc2n(c1CC(=O)N(C)C)cc(cc2)F 7.3465

A7 CCN(C(=O)Cc1c(nc2n1cc(F)cc2)c1ccccc1C(C)C)C 8.0238

A8 Fc1ccc2n(c1)c(CC(=O)N(C)C)c(n2)c1cccc(c1)C(C)C 7.7217

A9 Fc1ccc2n(c1)c(CC(=O)N(C)C)c(n2)c1ccc(cc1)C(C)C 7.6353

In the three positions, molecular fragments that have a positive impact on pKi have
been added and lead to an increase in pKi: “C..........”—a methyl group or simple carbon
atom; “c...(...1...”; “c...(...C...”; These SMILES notation descriptors are associated with a
molecule’s branching resulting from the addition of at least one methyl group to benzene.
All designed molecules had a higher pKi in comparison to the molecule’s average pKi.
Between molecules A1–A9, a difference in calculated pKi can be observed, where the
highest pKi was obtained for molecule A7 while the lowest was obtained for molecule
A2. The possible explanation for this observation can be associated with the number of
molecular fragments−SMILES notation descriptors. Molecule A7 has the highest number
of molecular fragments with a positive impact. Molecular fragment “c...” has a negative
impact on pKi, reducing its numerical value. Molecule A2 has that fragment, while it is
absent in molecule A7. If calculated values for molecule A7, A8 and A9 are compared, both
A8 and A9 have lower values and both have “c...” (..c...” fragment.

3.5. Molecular Docking

One of the hypotheses given in this research is that the stronger the binding of ligand
with amino-acid from the receptor’s active site is (quantified as binding energy, which can
be correlated with “score” functions), the more active the ligand is (quantified as pKi). To
assess this hypothesis and to evaluate developed QSAR models’ predictability and validate
them further, molecule A and all designed molecules were subjected to molecular docking
studies with α1-containing GABAAR. It has to be noted that the docking protocol used in
this research was validated with an appropriate protocol. This protocol was RMSD based
and for all molecules, where RMSD values for all studied molecules were compared to
co−crystallized ligand (diazepam) and the obtained results were lower than 1.5, validating
all docking poses. In Table 4, numerical values for all calculated “scoring” functions are pre-
sented. To assess the possible inhibitory potency of a ligand, different physical−chemical
interactions between the ligand and amino acids should be taken into consideration. The
potential for the highest inhibitory activity can be associated with the highest MolDock
and ReRank “score” functions values, calculated for molecule A7. This observation is in
good correlation with the results obtained from QSAR modelling and CAD, where the
highest pKi was calculated for molecule A7 also. Further, the highest energy related to hy-
drogen bond interaction was observed for molecule A7, while the lowest was observed for
molecule A8. The impact of other “scoring” functions on potential inhibitory activity could
be determined in similar manner as for MolDock and ReRank “score” functions according
to [20]. Performed molecular docking studies identified hydrophobic, hydrophilic interac-
tions as well as hydrogen bonds, between designed molecules and amino acids inside the
binding pocket of α1-containing GABAAR, and they are presented in Figure 4 as the most
preferable geometric orientation (molecular pose) inside the active site. 2D representations
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of these interactions are presented in the Figures S2–S11 in the Supplementary Materials.
Molecular docking studies identified the following amino acids as important: TYR160—all
molecules interacted with it via-alkil and/or -stacking interactions; TYR210 and SER205
formed hydrogen bonds.

Table 4. Score values (kcal/mol) for all computer−aided designed compounds.

Molecule Steric VdW HBond NoHBond90 Energy MolDock
Score

Rerank
Score

A −140.362 −46.2960 −6.23697 −6.65395 −141.363 −139.441 −117.842

A1 −145.212 −12.2465 −3.76233 −4.03557 −145.993 −137.563 −86.1434

A2 −145.305 −44.9493 −6.96824 −7.94622 −148.877 −146.146 −121.477

A3 −140.519 −42.7464 −6.89116 −7.66588 −143.953 −140.793 −117.046

A4 −151.161 −42.7453 −2.49702 −2.50000 −145.106 −143.846 −115.584

A5 −151.189 −46.0394 −3.74132 −4.28093 −152.537 −151.130 −120.893

A6 −150.538 −21.8530 −4.48654 −6.94755 −146.135 −146.097 −108.561

A7 −148.919 −26.6788 −7.14605 −7.95491 −152.918 −153.347 −117.813

A8 −157.365 −39.4826 −2.50000 −2.50000 −154.518 −150.102 −110.772

A9 −151.100 −17.1298 −4.53151 −7.03151 −146.090 −148.784 −105.663
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3.6. ADME Determination

The determination of physicochemical characteristics of studied molecules is one of
the first steps in the early stages of drug development preferably done with the application
of computational methods and for the purpose of determining whether new compounds
have features that will classify them as potential therapeutics. To classify a molecule as
drug-like, it has to possess the efficacy of binding to receptors/channels, oral bioavail-
ability, gastrointestinal absorption, optimal bioavailability, good absorption/permeation,
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and brain penetration. All of these features could be predicted by knowing the molecule
structure, so the molecule can be discarded from further development before it is syn-
thesized. The computation of physicochemical descriptors as well as the prediction of
medicinal chemistry friendliness, druglike nature, pharmacokinetic properties, and ADME
parameters of designed molecules were computed with the SwissADME web service for
the purpose of drug-likeness evaluation [35], and the obtained results are presented in
Table S5 (Supplementary Material). All designed molecules possess high drug-likeness
according to obtained results, which can also be observed in graphical representations of
designed molecules’ important physicochemical features named as Bioavailability Radars,
that are presented in the Supplementary Material (Figures S12–S21). Gastro-interstitial
absorption and brain access are two pharmacokinetic behaviors crucial to estimating favor-
able profiles for studied molecules. In this research, a predictive accurate model based on
computing the lipophilicity and polarity of small molecules named the Brain Or IntestinaL
EstimateD permeation method (BOILED-Egg) [36] is applied and the obtained results are
presented in Figure 5. As presented in Figure 5 all designed molecules have favorable
gastrointestinal absorption and brain access profiles since they are located in the egg yolk,
part of BOILED-Egg.
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4. Conclusions

The main aim of this research was to develop robust QSAR models with good pre-
dictability, determined using numerous statistical parameters, for a selective positive
allosteric modulation of 1-containing GABAARs. The Monte Carlo optimization method
was used to calculate conformation-independent models, developed based on optimal
descriptors derived both from a local graph and the SMILES notation invariants. A genetic
algorithm coupled with multiple linear regression was used to obtain a QSAR model from
the pool of vast 0D, 1D, and 2D molecule descriptors. The evaluation of the developed
QSAR models’ robustness and predictive potential was executed by applying a range
of statistical parameters, and their numerical values indicate that all developed QSAR
models possess high predictability. The SMILES notation descriptors, defined as molecular
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fragments, with their influence on selective positive allosteric modulation of 1-containing
GABAARs, were defined with the application of the Monte Carlo optimization method and
are used for computer-aided design of novel compounds that have higher pKi values in
comparison to starting template molecules. The binding preferences of designed molecules
with amino acids from the active sites of 1-containing GABAARs were determined with
the application of molecular docking studies. Molecular docking studies were used to
calculate “scoring functions” related to binding energies that were used further to assess
the effects on 1-containing GABAARs in regards to potential selective positive allosteric
modulation. According to the obtained results, good inter-correlation can be observed
between molecular docking studies and developed QSAR models regarding their potential
selective positive allosteric modulation. Designed molecules’ physicochemical descriptors
were computed to predict medicinal chemistry friendliness, pharmacokinetic properties,
druglike nature, and ADME parameters, and according to the obtained results, all designed
molecules possess high drug-likeness. Further, high bioavailability, including gastrointesti-
nal absorption and brain access, of designed molecules was determined. Results presented
in this research could be used in the search for novel antipsychotic agents for schizophre-
nia treatment whose main target activity is selective positive allosteric modulation of
1-containing GABAARs.

Supplementary Materials: The following supporting information can be downloaded at: https:
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with the application of CORAL software—calc, the difference between expr and calc—diff for the built
QSPR model; Table S2. Y-randomization of the best QSAR model (best optimization run) for three
independent splits; Table S3. The statistical quality of QSAR models developed with the GA-MLR
method for selective positive allosteric modulation of α1-containing GABAARs; Table S4. The list
of SAks together with their correlation weights for the three runs of the Monte Carlo optimization;
Table S5. Calculated physical-chemical parameters for drug-likeness evaluation; Figure S1. (Above
left) Graphical representation of developed QSAR model with GA-MLR method for split 3; (Above
right) Difference between experimental and calculated pKi values; (Bellow) Graphical representation
of applicability domain established for split 3; Figure S2. Two-dimensional representation of the
interaction between molecule A and amino acids inside ionotropic GABAA receptor; Figure S3. Two-
dimensional representation of the interaction between molecule A1 and amino acids inside ionotropic
GABAA receptor; Figure S4. Two-dimensional representation of the interaction between molecule A2
and amino acids inside ionotropic GABAA receptor; Figure S5. Two-dimensional representation of the
interaction between molecule A3 and amino acids inside ionotropic GABAA receptor; Figure S6. Two-
dimensional representation of the interaction between molecule A4 and amino acids inside ionotropic
GABAA receptor; Figure S7. Two-dimensional representation of the interaction between molecule A5
and amino acids inside ionotropic GABAA receptor; Figure S8. Two-dimensional representation of the
interaction between molecule A6 and amino acids inside ionotropic GABAA receptor; Figure S9. Two-
dimensional representation of the interaction between molecule A7 and amino acids inside ionotropic
GABAA receptor; Figure S10. Two-dimensional representation of the interaction between molecule A8
and amino acids inside ionotropic GABAA receptor; Figure S11. Two-dimensional representation of
the interaction between molecule A9 and amino acids inside ionotropic GABAA receptor; Figure S12.
Graphical representations of molecule A important physico-chemical features—Bioavailability Radar.
The pink area represents the optimal range for each properties (lipophilicity: XLOGP3 between
−0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2,
solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 hybridization not less
than 0.25, and flexibility: no more than 9 rotatable bonds; Figure S13. Graphical representations of
molecule A1 important physico-chemical features—Bioavailability Radar. The pink area represents
the optimal range for each properties (lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW
between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log S not higher than 6,
saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and flexibility: no more than
9 rotatable bonds; Figure S14. Graphical representations of molecule A2 important physico-chemical
features—Bioavailability Radar. The pink area represents the optimal range for each properties
(lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity:
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TPSA between 20 and 130 Å2, solubility: log S not higher than 6, saturation: fraction of carbons in
the sp3 hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds; Figure S15.
Graphical representations of molecule A3 important physico-chemical features—Bioavailability
Radar. The pink area represents the optimal range for each properties (lipophilicity: XLOGP3
between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2,
solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 hybridization not less
than 0.25, and flexibility: no more than 9 rotatable bonds; Figure S16. Graphical representations of
molecule A4 important physico-chemical features—Bioavailability Radar. The pink area represents
the optimal range for each properties (lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW
between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log S not higher than 6,
saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and flexibility: no more than
9 rotatable bonds; Figure S17. Graphical representations of molecule A5 important physico-chemical
features—Bioavailability Radar. The pink area represents the optimal range for each properties
(lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity:
TPSA between 20 and 130 Å2, solubility: log S not higher than 6, saturation: fraction of carbons in
the sp3 hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds; Figure S18.
Graphical representations of molecule A6 important physico-chemical features—Bioavailability
Radar. The pink area represents the optimal range for each properties (lipophilicity: XLOGP3
between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2,
solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 hybridization not less
than 0.25, and flexibility: no more than 9 rotatable bonds; Figure S19. Graphical representations of
molecule A7 important physico-chemical features—Bioavailability Radar. The pink area represents
the optimal range for each properties (lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW
between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log S not higher than 6,
saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and flexibility: no more than
9 rotatable bonds; Figure S20. Graphical representations of molecule A8 important physico-chemical
features—Bioavailability Radar. The pink area represents the optimal range for each properties
(lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity: TPSA
between 20 and 130 Å2, solubility: log S not higher than 6, saturation: fraction of carbons in the sp3
hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds; Figure S21. Graphical
representations of molecule A9 important physico-chemical features—Bioavailability Radar. The
pink area represents the optimal range for each properties (lipophilicity: XLOGP3 between −0.7 and
+5.0, size: MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log
S not higher than 6, saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and
flexibility: no more than 9 rotatable bonds.
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