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Abstract: Prostate cancer (PCa) is addressed as the second most common form of onco-threat
worldwide and is usually considered as the major cause of mortality in men. Recent times have
seen a surge in exploration of plant-derived components for alternative therapeutical interventions
against different oncological malignancies. Dammarolic acid or Asiatic acid (AsA) is an aglycone
asiaticoside that has been reported for its efficacy in several ailments including cancer. The current
study aimed to investigate the anti-proliferative potency of AsA against human prostate cancer PC-3
cells. Purified AsA was diluted and PC-3 cells were exposed to 20, 40, and 80 µM concentration and
incubated for 24 h. Post-exposure, PC-3 cells showcased a substantial loss of their viability at 20 µM
(p < 0.05), moreover, this reduction in cell viability escalated proportionally with an increase in AsA
at concentrations of 40 and 80 µM (p < 0.01; p < 0.001) respectively. AsA-impelled loss of cellular
viability was also evident from the acridine orange-stained photomicrographs, which was also used
to quantify the viable and apoptotic cells using Image J software. Additionally, quantification of
ROS within PC-3 cells also exhibited an increase in DCF-DA-mediated fluorescence intensity post-
exposure to AsA in a dose-dependent manner. AsA-induced apoptosis in PC-3 cells was shown to
be associated with augmented activity of caspase-3 proportionally to the AsA concentrations. Thus,
initially, this exploratory study explicated that AsA treatment leads to anti-proliferative effects in PC-3
cells by enhancing oxidative stress and inciting apoptosis en route to onset of nuclear fragmentation.
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1. Introduction

Prostate cancer or PCa represent a common malignant tumor occurring within the gen-
itourinary system in males and was accountable for 1,414,259 or 7.3% of new cancer-related
cases during 2020 [1]. PCa is also known to be the foremost reason behind cancer-related
mortalities among males globally. It has been reported that males having African ancestry
are correlated with higher chances of developing the disease more aggressively than other
ethnic groups, making them vulnerable to high mortality rates [2,3]. Furthermore, the
highest amount of new PCa cases, accounting for 33.5%, were recorded alone in Europe fol-
lowed by Asia (26.2%). Caribbean accounts for the highest amount of cancer-related deaths
after the USA [1]. This debilitating oncological malignancy is associated with a number
of varying risk factors among which the prominent ones include apoptosis modulation,
genetically and epigenetically governed factors involved in the onset, proliferation, and
metastasis [4].

Standard therapeutical management of prostate-related oncological malignancies
relies upon surgical, chemo/radio-therapeutics, and hormonal or immunotherapeutical
interventions. However, these interventions exert their effects synergistically where the
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surgical removal of tumor growth is followed by either radio or chemotherapy or a com-
bination of both. Chemotherapeutics involved in management of these malignancies are
documented for their cytotoxic effects en route to instigation of apoptosis and are also
known to cause arrest of tumor cells in different phases of cell cycle. The current treatment
regime for hormone refractory PCa (HRPC) is docetaxel (DTX), which exerts its effect
by destabilizing the microtubules homeostasis within the cells [5]. However, prolonged
medication with docetaxel is reported to induce drug-specific resistance within individ-
uals suffering from PCa, resulting primarily from mutations within microtubules with
concomitant pump-mediated efflux of drug [6,7].

Nevertheless, the chemotherapeutic-based management of prostate cancer patients
is also followed by destructive side-effects, which commonly have catastrophic effects
on bone-marrow-derived blood cells, hair follicles, and cells within the oral cavity and
digestive tract [7].

In overcoming these debilitating effects, herbal medicines constituted by phytoactive
constituents are postulated to be indispensable and also supposed to cause substantial
reduction in cost associated with chemotherapeutics [8]. Herbal medicines represent
approximately 60% of all the chemotherapeutics that are currently being explored in
developing novel anti-cancer drugs [9,10]. One such important bioactive compound
is Asiatic acid, which belongs to the family of triterpenoids that have received serious
consideration over the past several years. Dammarolic acid or Asiatic acid (AsA) represents
pentacyclic triterpenoids, substituted by ursane at 28 positions, and -OH group at 2, 3,
and 23 positions. AsA is a major constituent of Centella asiatica, Purnella vulgaris, Nepeta
hindostana, Eucalyptus perriniana, and Psidium guajava. [11]. Earlier it was elucidated that
AsA possess intrinsic characteristics that allow it to exert opposing effects on inflammation,
diabetes, and cancer [12]. Anti-cancer efficacy of AsA was earlier reported in vitro in both
the hepatic and breast cancer cells and was recently deduced to be linked with instigation
of apoptosis. Moreover, AsA is further believed to negatively regulate the expression level
of NF-κB, p38, MAPK, and ERKs, along with Bcl-2 and caspase proteins [13,14].

NF-κB is an important transcription factor playing prominent roles during inflamma-
tion and carcinogenesis and, therefore, is regarded as a plausible novel target for thera-
peutical intervention against cancer [15–17]. Chronic activation of NF-κB in cancer assists
in the onset; progression of tumor; metastasis; and resistance towards chemotherapeutics
by augmenting the expression of various growth factors, pro-inflammatory cytokines,
chemokines, and anti-apoptotic factors [17–20]. To the best of our knowledge, there ap-
pears to be a paucity of scientific literature exploring the potency of AsA in modulating
NF-κB expression within human prostate cancer PC-3 cells. Therefore, this preliminary
investigation tries to revisit the anti-proliferative characteristics of AsA on PC-3 cells. It was
hypothesized during this investigation that exposure of PC-3 cells with AsA would play a
substantial role in restraining the proliferation of human-derived androgen-independent
PC-3 cells by escalating ROS, which would further instigate apoptosis via modulation of
caspase activity and NF-κB expression.

2. Materials and Methods
2.1. Materials

Asiatic acid (AsA), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT), N-Acetyl cysteine (NAC), 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA),
Acridine orange, ethidium bromide (EtBr) solution, Trypan blue, and capase-3 inhibitors
(Z-DEVD-FMK) were obtained from Sigma, St. Louis, MO, USA. Roswell Park Memorial
Institute (RPMI 1640) and antibiotic-antimycotic solution were purchased from Himedia,
Pune, India, whereas fetal bovine serum (FBS) used during in vitro culture was obtained
from Gibco, West Chester, PA, USA. All the real-time primers employed in the study were
synthesized and procured from Integrated DNA Technologies (IDT), Coralville, IA, USA.
Verso cDNA synthesis kit and DyNAmoColorFlash SYBR Green qPCR Kit were obtained
from Thermo-Scientific, Waltham, MA, USA.
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2.2. Methods
2.2.1. Cell Culture and Its Maintenance

Androgen-independent human prostate cancer PC-3 cells were obtained from the
cell repository of National Centre for Cell Sciences (NCCS), Pune, India. The PC-3 cells
were maintained in Roswell Park Memorial Institute (RPMI 1640) during the entire course
of experimentation. The mediums were also supplemented with 10% FBS (v/v) and 1%
antibiotic-antimycotic solution (v/v). Cells were incubated under optimum cell culture
conditions constituted by 5% CO2 at 37 ◦C. Cells were routinely observed and passaged
after attaining ~90% confluency within T-25 flask. Cells were used in pre-determined
numbers in accordance with the assay after ascertaining the count of live cells through
0.4% trypan blue dye solution aided by hemocytometer, Sigma, St. Louis, MO, USA.

2.2.2. Assessment of AsA Mediated Toxicity

To explore AsA-induced cytotoxicity (if any) on PC-3 cells, tetrazolium-based MTT
assay was undertaken as described previously [21]. PC-3 cells were seeded at a density
of 5 × 103 cell/well in a 96-well format and allowed to adhere under optimum culture
conditions as stated. After adherence, the cells were exposed to varying concentrations of
AsA viz. 20, 40, and 80 µM, and were again subjected to optimum culture conditions for
24 h. Post-incubation, media containing AsA in each well were exchanged with 10 µL of
MTT dye (5 mg/mL) and the plate was left for another incubation of 4 h under standard
culture conditions. Thereafter, 100 µL of DMSO was included in each well and the plate
was vortexed gently at room temperature for nearly 30 min. Finally, the absorbance of
solubilized formazan crystals was recorded at 490 nm using a spectrophotometer (Bio-Rad,
Hercules, CA, USA). The cytotoxicity of AsA PC-3 cell line was annotated as cell viability
percent (%) in comparison with untreated control cells and estimated as Atest × 100/Acontrol,
where Atest = absorbance of treated groups and Acontrol = absorbance of control.

2.2.3. Evaluation of AsA Effects on Alteration of ROS Levels within PC-3 Cells

ROS generation within human prostate cancer PC-3 cells after treatment with AsA was
analyzed using quantitative method based on DCFH-DA-mediated fluorescence intensity
as described earlier [22]. Initially, 2 × 104 C-3 cells/well were placed in a black bottom
96-well format and left overnight to facilitate their adherence under culture conditions.
Post adherence, PC-3 cells were exposed to varying concentrations of AsA (20–80 µM)
and were incubated for the next 12 h in optimum culture conditions. Thereafter, media
in each well was eliminated and wells were reinstated with 10 µM DCFH-DA followed
by another incubation of 30 min in dark. Eventually, the cells were analyzed for their
DCF-DA-mediated fluorescence intensity through Synergy H1 Hybrid Reader, BioTek,
Winooski, VT, USA fluorescent microplate reader at an excitation/emission wavelength of
485/528 nm. The fluorescent intensity was expressed as average fluorescence percent (%)
in comparison with untreated control.

2.2.4. Assessment of AsA Induced Apoptosis Using Acridine Orange (AO) Staining

Initiation of apoptosis within PC-3 cells exposed to AsA was estimated with AO and
EtBr double staining. The apoptotic PC-3 cells were visualized using a green filter of Floid
Imaging station as per the adopted protocol with subtle modifications [23]. Briefly, 1 × 105

PC-3 cells were exposed to the above-stated concentrations of AsA in a 6-well plate for
24 h under standard culture conditions. Cells were subsequently detached through gentle
scarping and centrifuged (1500 rpm; 2 min at 4 ◦C), and the pellet was subjected to gentle
washing using cold PBS. Thereafter, a 10 µL of AO was used to treat the pellets for 15 min.
The suspension was then visualized on a glass slide.

2.2.5. Evaluating Caspase-3 Activity within AsA Exposed PC-3 Cells

Caspase-3 activity was assessed colorimetrically through commercially available kit
within AsA-treated human prostate cancer PC-3 cells by adhering to the manufacturer’s
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instruction. Briefly, 3 × 106 PC-3 cells ensuing AsA treatment at stated concentrations were
lysed for 10 min using 50 µL of ice cold lysis buffer placed on ice. The suspension obtained
thereafter was subjected to centrifugation for 1 min at 10,000 rpm and 4 ◦C after which
the supernatant was extracted and placed again on ice. Subsequently, 50 µL of lysate was
placed in each well of a 96-well format and mixed with equi-volume of 10 mm DTT. Finally,
4 mM DEVD-pNA was supplemented further to each well and allowed to react for 10 min
at RT. The plate was then assessed for the absorbance of each well at 405 nm through a
microplate reader Bio-Rad, Hercules, CA, USA. Alteration within caspase activity was
substantiated in percent (%) in correlation with untreated PC-3 control cells.

2.2.6. Assessment of Caspase-3 Inhibitor Mediated Effects on Human Prostate Cancer
PC-3 Cells

AsA-induced toxic effects on human prostate cancer PC-3 cells was further delineated
through capase-3 inhibitor Z-DEVD-FMK. Primarily, PC-3 cells were pretreated using Z-
DEVD-FMK (50 µM; 2 h). Subsequently, cells were exposed to AsA (stated concentrations)
and left undisturbed for 24 h under standard culture conditions. Eventually, the viability
of AsA-treated PC-3 cells was assessed through standard MTT as outlined in Section 2.2.2.

2.3. Statistical Analysis

Experimental data reported here are mean ± SEM of three discrete experiments
performed thrice. Statistical analysis was determined using GraphPad Prism Ver.5.0, San
Diego, CA, USA to ascertain significance levels when the value of probability was <0.05
between different groups through student paired t-test, one way-Anova, subsequently
followed by Dunnett post-hoc test. * p < 0.05, ** p < 0.01 and *** p < 0.001.

3. Results
3.1. AsA Reduced the Cell Viability of PC-3 Cells N

To investigate the inhibitory effects of AsA on PCa cells, MTT assay was performed.
The cells were treated with different concentrations of AsA (0–80 µM) for 24 h. As shown
in Figure 1A, it was found that AsA substantially inhibited the growth of PC-3 cells by
77.96 ± 2.98% (20 µM; p < 0.05), 58.71 ± 4.83% (40 µM; p < 0.01), and 26.85 ± 5.10% (80 µM;
p < 0.001) in a dose-dependent manner.

3.2. AsA Instigated Apoptotic Cell Death within PC-3 Cells

To investigate the apoptotic cell death in AsA-treated PC-3 cells, cells were counted to
investigate the number of viable cells (VI) and apoptotic cells (AO) by using fluorescence
microscope. As observed in phase contrast micrographs in Figure 1B, apoptotic cells
emitted diffuse green fluorescence by using AO within the fragmented DNA of AsA-
treated PC-3 cells. Moreover, untreated control cells were distinguished by the presence
of bright green fluorescence due to the presence of intact nuclei within the cells. At the
highest dose (80 µM) of AsA, nuclear chromatin condensation and blebbing were observed,
which are considered to be peculiar attributes of apoptosis. The results showed that AsA
induced morphological aberrations in the nucleus following a dose-dependent trend, which
ultimately was associated with apoptosis.

Furthermore, apoptotic cell death was quantitatively assessed in AsA-treated PC-3
cells. As shown in Figure 1C, dose-related decrease of viable cells (VI) with diffused green
fluorescence was 45.61 ± 4.97% (20 µM), 28.92 ± 4.83% (40 µM), and 11.56 ± 5.10% (80 µM)
as compared to control, where the number of VI was 75.31 ± 4.87. Contrary to this, AO
cells increased to 15.69 ± 0.39% (20 µM), 19.33 ± 0.48% (40 µM), and 33.65 ± 0.45% (80 µM)
as compared to the control (8.56 ± 0.59%). Thus, our results signified that AsA significantly
induced apoptotic cell death in PC-3 cells.
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orange, indicating the viable (VI) and apoptotic (AO) PC-3 cells post treatment with AsA (as indi-
cated by the arrows; scale bar = 100 µm); and (C) quantification of both the VI and AO PC-3 cells. 
Experimental data reported here are mean ± SEM of three discrete experiments performed thrice. 
Statistical significance between control and treated groups was analyzed using student paired 
t-test, one-way Anova, and Dunnett post-hoc test as per the applicability where significance was 
illustrated when * p < 0.05; ** p < 0.01; and *** p < 0.001. 
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Anova, and Dunnett post-hoc test as per the applicability where significance was illustrated when
* p < 0.05; ** p < 0.01; and *** p < 0.001.

3.3. AsA Augmented the Levels of ROS in PC-3 Cells

ROS generation was found to be associated with the apoptosis induction in cancer
cells [24]. Therefore, it is necessary to determine the level of ROS in PC-3 PCa cells
after treatment with various doses (20–80 µM) of AsA for 24 h. As shown in Figure 2A,
substantial increase in the intracellular level of ROS was enhanced by 56.71 ± 3.04%
(p < 0.001) compared to untreated cells, following treatment with the 20 µM dose of AsA.
Indeed, ROS generation was further enhanced to 116.01 ± 4.18% and 191.75 ± 4.55%
(p < 0.001) in PC-3 cells at the concentrations of 40 µM and 80 µM AsA, respectively. These
results suggested that the treatment of AsA augments the ROS generation in PCa cells.

3.4. Assessment of Caspase-3 Activity in AsA-Treated PC-3 Cells

To investigate the mechanism underlying AsA-mediated apoptosis in PC-3 cells, we
inspected the intracellular caspases-3 activity in AsA-treated PC-3 cells. As observed
in Figure 2B, our findings suggested a substantial increase in the caspase-3 activity to
26.72 ± 3.94%, 59.05 ± 4.51%, and 124.18 ± 4.95% (p < 0.05, p < 0.001) as compared to
control, at the indicated doses of 20, 40, and 80 µM of AsA, respectively. Thus, our
results further confirm that the antiproliferative efficacy of AsA was mediated by inducing
apoptosis in PC-3 cells.

3.5. Attenuation of AsA-Mediated Apoptosis in PC-3 PCa Cells by Caspase Inhibitors

To characterize whether the caspases are involved in the AsA-mediated cytotoxicity in
PCa cells, PC-3 cells were initially treated with 50 mm caspase-3 inhibitor (Z-DEVD-FMK)
for 2 h and then subsequently treated with AsA at the indicated doses for 24 h. Further,
MTT assay was used to determine the cell viability as described above. Pretreatment with
capase-3 inhibitor substantially decreased the amount of cytotoxicity in PCa cells caused by
the treatment of AsA Figure 2C. These findings suggested that the induction of caspase-3
activity played a critical role in AsA-mediated apoptosis.
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3.6. AsA Inhibits the Activation of NF-κB in PC-3 Cells

The NF-κB signaling pathway plays a critical role in the survival of cancer cells and is
widely known for regulating the expression of Bcl-2 proteins [25]. Thus, we assessed the
NF-κB activity in PC-3 cells to investigate the efficacy of AsA on NF-κB activity. AsA treat-
ment led to a dose-dependent decrease in NF-κB activity to 76.53 ± 3.37%, 57.20 ± 3.78%
(p < 0.01) and 35.42± 3.37% (p < 0.001) as shown in Figure 2D, indicating that AsA mediated
the inhibition of NF-κB in PCa cells.

4. Discussion

Despite the escalation within incidences and mortality rates of PCa, available ther-
apeutic modalities are not substantially effective in prolonging the mean survival time
period of patients. Therefore, there is a quest for exploration and development of novel
therapeutic agents that could exhibit enhanced therapeutical efficacy with concomitantly
reduced side-effects against PCa patients. Occurrence of tumors involves the evasion
of apoptosis, resulting in an uncontrolled proliferation of tumor cells. Thus, an efficient
cancer therapy may focus towards utilizing the cytotoxic potential of natural compounds
in destroying the malignant cells by triggering the apoptotic pathways with least side
effects [26]. The results from our investigation revealed that AsA may exert chemopre-
ventive potential against PCa by modulating certain key cell signaling molecule. It was
found that the triterpenoids (AsA) exerted substantial anti-proliferative effects on PC-3
cells via inducing caspase-mediated apoptosis along with suppressing the stimulation of
proinflammatory transcription factor NF-κB, which is chiefly involved in tumor survival
and proliferation.

Apoptosis or programmed cell death is an extremely controlled process that plays an
imperative role in cell death and is also indispensable in several cellular functions from
fetal development to adult tissue homeostasis [27]. Available literature clearly outlines
that apoptosis results due to multiple biochemical changes in cells, which primarily in-
cludes nuclear condensation and fragmentation, alteration in the mitochondrial membrane
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potential, and regulation of caspases [28]. In our present investigation, we explored the
cytotoxic potential of AsA on androgen-independent PC-3 cell line. The cell viability
analysis suggested that AsA significantly suppressed the proliferation of these cells. The
results substantiated that the exposure of AsA strongly curtailed the viability of PC-3,
where the reduced viability was directly correlated with the concentration of AsA. Since
the exposure of AsA exhibited a strong cytotoxic potential on PC-3 cells, we performed AO
fluorescent dye staining to explore the cells undergoing apoptosis and formation of apop-
totic bodies within the PCa cells. Although AO photomicrographs clearly demonstrated
the morphological alterations associated with apoptosis, we also quantified the population
of apoptotic cells by using Image J software (Ver. 1.46r). The observations compelled us to
conclude that AsA instigated a substantial dose-dependent increase in apoptosis in PCa.

Previously reports have documented that oxidative stress serves to be a crucial impetus
for altering mitochondrial membrane potential and apoptosis [29]. We measured the
levels of ROS upon AsA treatment on PC-3 cells to inspect the involvement of ROS in
the apoptotic pathways. The observations conclusively made it evident that there was a
substantial dose-dependent augmentation within intracellular ROS within AsA-treated
PC-3 cells. Caspases are considered to be paramount regulators of apoptosis [30]. Caspase-
3 being a chief executioner of apoptosis is partially or completely accountable towards
proteolytic cleavage of cellular proteins [31]. Therefore, we inspected the caspase activity
in AsA-treated PC-3 cells in juxtaposition with the control and observed that AsA induced
caspase- 3 activation, leading to apoptosis. Further, pretreatment with capase-3 inhibitor
(Z-DEVD-FMK) significantly reduced AsA-induced cytotoxicity in PC-3 cells, implicating
that stimulation of caspase-3 post-AsA exposure induced apoptosis.

Convincing evidence suggested that constitutive activation of NF-κB is a trademark
of multiple human carcinomas [16,32]. Earlier researches have elucidated that NF-κB is
constitutively over-expressed in androgen-independent DU145 and PC-3 PCa cells [33].
NF-κB is a protein complex involved in adjusting DNA transcription and is considered
an apoptosis inhibitor [34]. Therefore, suppressing the functionality of NF-κB can induce
apoptosis. During this investigation, we demonstrated that AsA portrayed its relevance
in inhibiting the activation NF-κB in PC-3 cells. In line with these findings, we conclude
that the apoptosis induced by AsA on PC-3 cells could plausibly be correlated with sup-
pressed NF-κB activity. Conclusively, AsA could be a plausible therapeutic modality in the
treatment of PCa.

5. Conclusions

On the basis of inferences drawn from this initial investigative study, AsA is competent
in inducing apoptosis in PC-3 cells. The evidences presented herewith provide a connective
link between anti-proliferation and apoptotic induction, and the cell death in PCa cells
was a result of caspase activation. These findings implicated that apoptosis occurs through
intrinsic apoptotic signaling pathways with regulation of NF-κB protein modulation. Thus,
our results affirmed the potency of AsA as a chemotherapeutic agent in human PCa cells,
and therefore, may be worthy for application in the optimization and development of
novel therapeutical-based interventions against PCa. However, subsequent researches are
further warranted to elucidate the molecular mechanics involved in efficacy of AsA as an
anticancer agent against PCa cells.
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