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Abstract 

Streptococci are common human pathogens, colonizing multiple parts of the 

human body such as the upper respiratory tract, urethra, gastrointestinal tract, 

and oral cavity. Since they cause a variety of serious infections including heart 

diseases, meningitis, and oral diseases, streptococci are considered to play an 

important role in human diseases. Two critical steps in the pathogenesis of 

streptococcal infection are the adhesion to and invasion of host cells. This 

invasion is a strategy of streptococci to evade the host immune response and 

antibiotic therapy, as well as to penetrate to deeper tissues. To establish 

interaction between bacteria and host cells, adhesion is the initial step. To 

effectively adhere to host cells, streptococci express multiple adhesins, and the 

expression of different adhesins may lead to distinct mechanisms of subsequent 

invasion. The binding of streptococcal molecules to host proteins triggers 

downstream signal transduction in the host cells, leading to the uptake of bacteria. 

In this review, we present the adhesion and invasion mechanisms of different 

streptococci and the interaction with host cells leading to internalization.  
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Introduction 

The Streptococcus genus is made up of common gram-positive bacteria, and 

includes two major pathogenic species, Streptococcus pyogenes (also known as 

group A streptococcus, GAS) and Streptococcus pneumoniae, and other invasive 

pathogens such as Streptococcus agalactiae (group B Streptococcus, GBS), 

Streptococcus suis, and Streptococcus mitis. GAS was reported to cause more 

than 500,000 deaths worldwide anually (Carapetis et al. 2005). GAS-induced 

disease involves the invasion of different types of eukaryotic cells via distinct 

mechanisms. M protein and streptococcal fibronectin binding protein I (SfbI) are 

two main virulence factors that are critical to invasion (Cunningham 2000; Molinari 

et al. 2000; Cywes and Wessels 2001; Rohde et al. 2003; Amelung et al. 2011; 

Siemens et al. 2011). Streptococci use these virulence factors to evade antibiotic 

treatment and host immune responses such as phagocytotic clearance (Kwinn 

and Nizet 2007; Nitsche-Schmitz et al. 2007; Nizet 2007; Smeesters et al. 2010; 

Barnett et al. 2013), and can cause a wide spectrum of human infections including 

superficial skin infections and life-threatening diseases (Cunningham 2000; Olsen 

and Musser 2010; Liang et al. 2012). Additionally, GAS infection can lead to post-

infection sequelae, such as post-streptococcal glomerulonephritis, rheumatic 

fever, and rheumatic heart disease (Luca-Harari et al. 2009; Jackson et al. 2011; 

Steer et al. 2012; Walker et al. 2014). The human upper respiratory tract can be 

asymptomatically colonized by the Gram-positive and opportunistic pathogen S. 

pneumoniae. Although colonization by S. pneumoniae can occur at any stage in 

life, infants and elderly are the most vulnerable groups (van der Poll and Opal 

2009; Shak et al. 2013; Valles et al. 2016). The morbidity from S. pneumoniae 

infections remains high worldwide, in spite of the available treatments 
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(Alonsodevelasco et al. 1995; van der Poll and Opal 2009). Many virulence 

factors contribute to its pathogenicity, including: (i) toxins, such as pneumolysin; 

(ii) adhesins, such as pneumococcal surface protein A (PspA), choline-binding 

protein A (CbpA; also known as PspC), and pneumococcal adherence and 

virulence protein A (PavA); (iii) extracellular enzymes, such as surface 

neuraminidase (Nan) A, NanB, NanC, and pneumococcal phospholipase A2 

(PLA2); (iv) the pneumococcal capsule; and (v) pili. (Werdan et al. 2014; Iovino 

et al. 2016; Weiser et al. 2018; Yau et al. 2018). Using these virulence factors, S. 

pneumoniae is able to colonize host cells and translocate to deeper tissues, 

causing human diseases ranging from meningitis and sepsis to otitis media and 

pneumonia, or even invading the heart through the coronary circulation (Tonnaer 

et al. 2006; Brown et al. 2014; Wunderink and Waterer 2014; Gilley et al. 2016; 

Valles et al. 2016). Another Gram-positive and opportunistic pathogen, which can 

colonize the human genitourinary and gastrointestinal tract, is S. agalactiae 

(Verani et al. 2010). Numerous virulence factors of S. agalactiae have been 

identified to date, including pili, fibrinogen binding protein, Alpha C protein (ACP), 

serine rich repeat proteins (Srr), capsular polysaccharides (CPS), factor H-

binding protein, superoxide dismutase (SodA), Streptococcal C5a peptidase of 

GBS (ScpB) and CAMP factor (LaPenta et al. 1997; Schubert et al. 2004; 

Rajagopal 2009; Landwehr-Kenzel and Henneke 2014). S. agalactiae plays an 

important role in the development of neonatal septicemia and meningitis, as well 

as invasive infections in immunocompromised adults and elderly (Verani et al. 

2010; Pimentel et al. 2016). Maternal S. agalactiae infections can lead to neonatal 

diseases, by attaching to maternal vaginal epithelial cells via host extracellular 

matrix (ECM) molecules, then penetrating the uterine compartment and moving 
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to the neonatal lung, followed by its entry into the blood system, and eventually 

causing pneumonia, sepsis, and meningitis in the newborn (Rajagopal 2009). 

Pneumonia and sepsis often occur within the first 7 days after birth while 

meningitis occurs during the period from the 7th day after birth to 2 or 3 months 

of age (Verani et al. 2010; Melin and Efstratiou 2013). Pneumonia developing in 

the first week after birth often leads to respiratory failure and worsens to septic 

shock rapidly. Neonatal meningitis will often result in severe sequelae such as 

deafness, visual impairment, cognitive impairment, and seizures (Schuchat 1998; 

Maisey et al. 2008; Libster et al. 2012; Melin and Efstratiou 2013). Based on its 

capsular polysaccharide immunologic reactivity, GBS has been classified into ten 

serotypes (Ia, Ib, II, III, IV, V, VI, VII, VIII, IX) (Rosa-Fraile et al. 2014). Serotypes 

Ia, Ib, III, and V are estimated to cause 85–90% of all GBS diseases (Hickman et 

al. 1999; Rajagopal 2009), while serotype III is responsible for causing meningitis 

(Edmond et al. 2012). Although it is known that GBS needs to penetrate the blood-

brain barrier (BBB) to cause meningitis, the mechanism behind this is not clearly 

known. S. suis is a major swine pathogen colonizing the digestive and respiratory 

tracts of pigs. It can cause several diseases in pigs including septicemia, arthritis, 

endocarditis, pneumonia, and meningitis (Gottschalk et al. 2010; Goyette-

Desjardins et al. 2014). It is also reported that S. suis can be transmitted from 

pigs to humans via contact, and is associated with streptococcal toxic shock 

syndrome (STSS), septicemia, arthritis, and meningitis (Tang et al. 2006; Feng et 

al. 2010). The virulence factors of S. suis include CPS, muraminidase-released 

protein, extracellular factor, suilysin (SLY), and hyaluronic acid lyase (Vecht et al. 

1991; Okwumabua et al. 1999; Gottschalk and Segura 2000; Haas et al. 2015; 

Segura et al. 2017). At least 35 serotypes of S. suis have been identified based 
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on different CPS antigens (Okura et al. 2016), among which serotype 2 is the 

major serotype isolated from humans infected by S. suis (Gottschalk et al. 2007; 

Mai et al. 2008). This pathogen can cross epithelial barriers and enter the 

bloodstream, causing localized and/or systemic infections, or causing meningitis 

by crossing the BBB (Haas and Grenier 2018; Zheng et al. 2018). S. suis is 

increasingly gaining attention for its prevalence worldwide as an emerging 

zoonotic pathogen. In 1998 and 2005, the epidemics occurring in China caused 

mortality up to 56% and 18.6%, respectively (Tang et al. 2006; Feng et al. 2010). 

In addition, S. suis infections in Northern Vietnam are thought to be a major cause 

of adult bacterial meningitis (Nguyen et al. 2008; Wertheim et al. 2009). In 

Thailand, S. suis is also thought to be an emerging human pathogen (Kerdsin et 

al. 2009), as by the end of 2013, the number of human infection cases of S. suis 

had risen to 1642 (Goyette-Desjardins et al. 2014). Although the high 

pathogenicity of S. suis has resulted in an increasing number of studies about the 

mechanisms by which S. suis causes infection, it is still not fully clear. S. mitis is 

one of the commensal and relatively benign bacteria colonizing the skin, 

genitourinary tract, and gastrointestinal tract, and it can be found on almost all 

surfaces of the oral cavity, such as teeth, tongue, and mucosal surfaces 

(Carrascosa et al. 1994; Pearce et al. 1995; Aas et al. 2005). Although the 

mechanism of pathogenesis is still not fully clear, S. mitis can cause multiple 

human diseases (Doern and Burnham 2010), including vasculitis and endocarditis, 

or even sacroiliitis (Mitchell 2011; Al-Farsi et al. 2018; Basaranoglu et al. 2018). 

In the Mitis group of streptococci, S. mitis and S. pneumoniae are closely related, 

and both have evolved to express a similar collection of virulence factors (Kilian 

et al. 2008). Johnston et al. showed that in five S. mitis isolates, 72-83% of the 
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virulence genes of S. pneumoniae are present, among which sodA is present in 

all five strains (Johnston et al. 2010). Though originating from a common ancestor, 

compared to S. pneumoniae, S. mitis is more capable of adapting to a commensal 

lifestyle, which may be explained by a loss of virulence factors in S. mitis (Kilian 

et al. 2008; Rukke et al. 2014). In this review, we focus on the molecules involved 

in host invasion by different streptococcus bacteria strains, the interaction of 

bacterial adhesins or invasins with their respective receptors, and how they 

mediate streptococcal invasion. For host invasion by GAS, the most common 

streptococcus bacteria strain, we discuss the two main invasion pathways, which 

are mediated by SfbI and M protein.  

 

GAS invasion 

It has been demonstrated that highly pathogenic GAS strains can cause invasive 

disease in humans (Watanabe et al. 2016). GAS invasion is highly dependent on 

invasins exposed on the bacterium surface such as M protein and SfbI, which 

trigger two main uptake mechanisms: (i) The binding of M protein to α5β1 

integrins facilitates host cytoskeleton rearrangement to cause membrane ruffling, 

and (ii) the binding of SfbI protein to host cells activates a caveolae-mediated 

internalization process, both of which eventually lead to the uptake of GAS 

(Dombek et al. 1999; Molinari et al. 2000; Rohde et al. 2003) (Figure 1). M protein 

is considered one of the most robust virulence factors of GAS strains 

(Cunningham 2000). It is present in the GAS cell wall, binds to host cell surface 

proteins and contributes to the interaction between the bacterium and host cells 

(Fischetti 2016). Subtyped by the M protein gene (emm), different M strains 

possess different pathogenicity, and M1 and M3 strains are most prevalent in 
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invasive diseases (Bessen et al. 1996; Sellers et al. 1996; Kiska et al. 1997; Ikebe 

et al. 2015; Stevens and Bryant 2016; Watanabe et al. 2016). Another molecule  

Figure 1. Two distinct mechanisms of GAS invasion. M protein and SfbI protein are two major 

invasins of GAS. M1 protein, a subtype of M protein, can bind with fibronectin (Fn). Subsequently, 

Fn binds to α5β1 integrins, which triggers the intracellular signaling. Activated Ras is able to recruit 

and activate phosphatidylinositol 3-kinase (PI 3-K), leading to the cytoskeletal changes. Alternatively, 

integrin-linked kinase (ILK) can bind with β integrin, and transmit signals to paxillin, which provides 

docking sites for actin binding protein. Also, paxillin can be phosphorylated by focal adhesion kinase 

(FAK), leading to more docking sites. Additionally, M1 protein can bind to other molecules to facilitate 

invasion, such as albumin, CD46, C4BP, factor H and fibrinogen (Fg). During SfbI-mediated invasion, 

the binding of SfbI protein to fibronectin leads to the exposure of the RGD region of fibronectin, 

which facilitates the binding of fibronectin to α5β1 integrins. Then, the intracellular signaling leading 

to cytoskeleton rearrangement is inhibited, followed by integrin clustering and caveolae aggregation, 

which contributes to caveolae-mediated invasion.  
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that plays an important role in the adhesion to epithelial cells is SfbI, which is 

known to promote the uptake of streptococci by eukaryotic cells (Hanski and 

Caparon 1992; Molinari et al. 1997). Rohde et al. (Rohde et al. 2003) 

demonstrated that invasion by some GAS strains was dependent on SfbI, a 

fibronectin-binding protein, which was essential in the caveolae-mediated 

endocytic process. Here we review the two invasins involved in the process of 

GAS invasion.  

 

M protein 

M protein is considered the major virulence molecule on the surface of S. 

pyogenes (Maxted 1956). It is of great importance to S. pyogenes as M protein-

knockout mutants with all surface and secretory molecules but lacking M protein 

can not survive in human blood containing phagocytes (Perezcasal et al. 1992). 

The M protein forms a dimeric coiled-coil α-helix, consisting of a highly variable 

terminal region (Brandt et al. 1997; McNamara et al. 2008). It possesses a highly 

conserved C-terminal domain and a hypervariable N-terminal domain. The N-

terminal region extends into the extracellular space and the C-terminal region is 

anchored in the cell surface (Fischetti 1989, 1991). More than 200 different 

serotypes of M protein such as M6, M12, and M18 have been identified, classified 

by distinct N-terminal regions determined by their emm gene. Each host individual 

is likely to be infected by different group A streptococcal types in different stages 

of their lifetime (Lancefield 1962; Beall et al. 1996). Among all serotypes of M 

protein, M1 protein is considered as the primary invasin of the highly invasive 

strain 90-226, as it contributes to about 90% of measured cell invasion by 

streptococci (Cue et al. 1998). Another experiment that supports this view 

Adhesion and Invasion Jiang et al

caister.com/cimb 528 Curr. Issues Mol. Biol. (2019) Vol. 32



 

confirmed that human endothelial cells can phagocytose M1 wild-type GAS but 

not an M1 knockout mutant (Ochel et al. 2014). M1 protein is involved in cellular 

invasion by S. pyogenes, and a highly invasive M1 strain was reported to rely 

heavily on the expression of M1 (Cue and Cleary 1997; Jadoun et al. 1997). M1 

protein is able to interact with several cellular receptors, including membrane 

cofactor protein (CD46), a molecule on the surface of most human cells 

(Liszewski et al. 1991). CD46 was demonstrated to effectively promote epithelial 

cell invasion by M1 and M3 strains (Rezcallah et al. 2005). In their study, deletion 

of the CD46 cytoplasmic domain significantly reduced the ability to invade 

epithelial cells by streptococci (Rezcallah et al. 2005). A recent study showed that 

CD46 was able to allow GGS_124 penetrate into deep tissues of mice, causing a 

higher mortality rate (Yoshida et al. 2016). These results suggest that CD46 plays 

an important role in streptococcal invasion. Other types of cell surface receptors 

involved in bacterial invasion, are integrins. This was shown by the fact that 

uptake of the M1 90-226 strain by epithelial cells can be blocked by antibodies 

against α5β1 integrin (Cue et al. 1998; Dombek et al. 1999). M1 protein is unable 

to bind to integrins directly, but can bind to the ECM protein fibronectin (Fn), and 

Fn possesses the ability to bind to integrins (Hynes 1992; Cue et al. 1998). After 

binding to integrins, M1 protein interacts with Ras, a small G protein, to activate 

and recruit phosphatidylinositol 3-kinase (PI3K), which in turn induces 

cytoskeletal changes that are required for GAS invasion (Cantrell 2001; Chan et 

al. 2002; Purushothaman et al. 2003). This pathway also involves integrin-linked 

kinase (ILK), paxillin, and focal adhesion kinase (FAK). By providing several 

docking sites for actin binding protein and signaling molecules, paxillin forms an 

essential adaptor (Turner 2000). ILK is able to interact with paxillin via a paxillin 
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binding subdomain and can bind to the cytoplasmic region of β integrins by its C-

terminus (Nikolopoulos and Turner 2001). FAK can phosphorylate paxillin and 

creates additional docking sites for cytoskeleton rearrangement (Vindis et al. 

2004). The binding of M1 protein to Fn initiates FAK-induced phosphorylation 

(Wang et al. 2007) and eventually triggered the formation of membrane 

protrusions involved in phagocytosis of the streptococcal chain, leading to a 

zipper-like invasion by GAS (Ochel et al. 2014). M protein also binds to other host 

proteins to mediate the interaction between GAS and host cells, including C4b 

binding protein (C4BP), factor H, fibrinogen (Fg), and albumin (Ryc et al. 1989; 

Akesson et al. 1994; Johnsson et al. 1996). Thus, M protein significantly 

enhances the virulence of GAS by binding or recruiting host proteins.  

 

M3 strains of GAS have been isolated from invasive streptococcal disease 

patients and also contribute to invasive streptococcal disease (Terao et al. 2002; 

Sumby et al. 2006). M3 strains have a weak ability to invade HEp-2 cells, which 

could be explained by their lack M1 protein and SfbI. In contrast to this, M3 strains 

express the Fn-binding protein of group A streptococci type B (fbaB) gene (Terao 

et al. 2002), which encodes FbaB protein that was demonstrated to facilitate 

invasion of endothelial cells (Nerlich et al. 2009). The FbaB-mediated invasion 

consists of four steps: (i) membrane protrusions form at the invasion site; (ii) F-

actin accumulates in the vicinity of invading streptococci and Ras-related C3 

botulinum toxin substrate 1 (Rac1), a small GTPase, accumulates and becomes 

activated; (iii) the phagosomal membrane acquires endosomal marker proteins; 

and (iv) the bacteria are transported to the terminal lysosomal compartment 

(Nerlich et al. 2009; Amelung et al. 2011). 
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SfbI invasion 

Fibronectin (Fn) possesses a string of five Fn type I (F1) modules within the N-

terminal domain (Desimone et al. 1992), which are functionally recognized by SfbI 

protein. SfbI consists of three major regions: (i) a C-terminal region that contains 

several fibronectin-binding repeats (FBR region), (ii) a region containing a number 

of proline-rich repeats (PRR region), and (iii) an N-terminal region with several 

aromatic amino acid residues (AroD region) (Talay et al. 1994; Towers et al. 2003; 

Towers et al. 2004). Molinari et al. (Molinari et al. 1997) demonstrated that the 

fibronectin-binding domains of SfbI protein play a role in mediation of eukaryotic 

cell invasion by S. pyogenes. SfbI-dependent invasion involves the use of host 

cell caveolae (Rohde et al. 2003). With shapes ranging from almost flat to cup-

like depressed, to flask-like in some cases (Schlormann et al. 2010), caveolae 

are invaginations that are present in eukaryotic plasma membranes. They are 

defined as 60-80nm wide pits that exert several biological functions, including 

mediating the uptake of bacteria (Parton and del Pozo 2013). One caveola 

consists of many caveolin 1 (CAV1) proteins, which form the primary structure of 

caveolae (Pelkmans and Zerial 2005; Parton and del Pozo 2013). SfbI protein 

binds to a fibrin-binding fragment of fibronectin by two distinct domains, and 

eukaryotic cell invasion by streptococci is effectively increased by the cooperation 

of these two regions (Talay et al. 2000). The SfbI protein binds to fibronectin via 

a tandem β-zipper cooperation, in which the fibronectin-binding region (FnBR) 

forms a sequence that is anti-parallel to the C-terminal sequence of each F1 

module (Schwarz-Linek et al. 2003; Bingham et al. 2008). The binding of SfbI 

protein to fibronectin involves opening of the RGD region via changes in the 
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fibronectin quaternary structure. This facilitates the binding of the RGD region to 

α5β1 integrins on the surface of host cells and inhibits intracellular signaling by 

rearranging the cytoskeleton. Both competitive RGD peptides and antibodies 

against the β-subunit of the integrin can block the interaction between the RGD-

region of fibronectin and integrins on host cell surfaces, inhibiting the invasion of 

streptococci significantly (Jadoun et al. 1998; Ozeri et al. 1998; Molinari et al. 

2000; Ozeri et al. 2001). The tripeptide RGD region in fibronectin and other 

extracellular ligands, which enables recognition by integins, is not found in SfbI, 

so the binding of SfbI protein to fibronectin plays an important role in the process 

of streptococcal invasion. Binding of SfbI to fibronectin leads to subsequent 

integrin clustering and caveolae aggregation, formation of large encapsulating 

invaginations, and eventually promotes the uptake of streptococci. Once inside 

the host cells, the streptococci stay in a membrane-bound compartment in the 

cytoplasm, termed caveosomes. Contributing to its survival in cytoplasm, these 

SfbI-expressing streptococci possess a unique ability to bypass the lysosomal 

degradation machinery of the host cells (Rohde et al. 2003). It was also 

demonstrated that the uptake efficiency is affected by the amount of bound 

fibronectin on the bacterial surface (Ozeri et al. 1998). This led to the hypothesis 

that a threshold of fibronectin bound to integrins is necessary to trigger signaling. 

Schwarz-Linek et al. discovered that one SfbI protein can bind up to five 

fibronectin molecules (Schwarz-Linek et al. 2003), which means one 

streptococcus can bind to a great number of integrins on a host cell, which 

benefits its invasion. Ezrin, another host protein involved in SfbI-mediated 

invasion (Tsukita et al. 1997; Rox et al. 2017), consists of a C-terminal domain, 

an N-terminal domain, a poly-proline region, and an α-helical domain (Tsukita et 
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al. 1997). During the uptake process of bacteria, Ezrin plays an effective role in 

the signal transduction of host protein kinases and cell receptors, such as PI3K, 

which acts as an important factor in the invasion pathway (Hirao et al. 1996; 

Schoenwaelder and Burridge 1999; Bretscher et al. 2002).  

 

S. pneumoniae invasion 

In most cases, S. pneumoniae primarily adheres to and invades upper respiratory 

tract cells and subsequently spreads to other tissues through the bloodstream, 

which can be promoted by sialic acid (Kadioglu et al. 2008; Henriques-Normark 

and Tuomanen 2013; Iovino et al. 2013; Hatcher et al. 2016). Murine lung invasion 

by S. pneumoniae has been shown to be enhanced by administering sialic acid 

(Trappetti et al. 2009). After initial adhesion, S. pneumoniae can invade cells of 

the respiratory tract via at least two pathways: (i) S. pneumoniae binds to platelet-

activating factor receptor (PAFR) on the surface of respiratory epithelial activated 

by cytokines through phosphorylcholine (ChoP) moieties, and is subsequently 

engulfed by host cells via the PAFR recycling pathway (Cundell et al. 1995). (ii) 

Another pathway similar to this is triggered by the binding of the polymeric 

immunoglobulin receptor (PIGR) to CbpA, followed by pneumococcal 

translocation through epithelium (Zhang et al. 2000). Binding of platelet-activating 

factor (PAF) to PAFR facilitates the signal transduction of host cells (Shukla 1992), 

and binding of S. pneumoniae to PAFR promotes the adhesion to and 

internalization by host endothelial cells (Cundell et al. 1995; Ring et al. 1998; 

Radin et al. 2005). S. pneumoniae has been shown bind to PIGR present on host 

nasopharyngeal epithelial cells, which enhanced the translocation through 

epithelium. As antibody against PIGR effectively inhibits the adherence, PIGR is 

Adhesion and Invasion Jiang et al

caister.com/cimb 533 Curr. Issues Mol. Biol. (2019) Vol. 32



 

thought to participate in the adhesion process, (Zhang et al. 2000). The two 

pathways both lead to the release of pneumococci into the interstitium. Consistent 

with the experiments of Iovino et al., neither of these two pathways involves the 

disruption of tight junctions between host cells (Iovino et al. 2013). PIGR and 

CbpA are also involved in brain invasion. A recent study demonstrated that brain 

invasion by S. pneumoniae can be mediated by a pilus-related adhesin (RrgA) 

that is able to interact with PIGR and platelet endothelial cell adhesion molecule 

(PECAM-1). Pneumococcal entry into the brain of mice was significantly blocked 

by antibodies against these two proteins (Iovino et al. 2017). In addition, CbpA 

can bind to the laminin receptor (LR), which facilitates streptococci crossing the 

BBB, eventually leading to meningitis (Orihuela et al. 2009). Agarwal et al. 

(Agarwal et al. 2013) identified another invasion pathway mediated by the host 

complement protein C1q. C1q acts as a bridge molecule between pneumococci 

and host cells, by binding to pneumococcal exposed surface proteins via its 

globular heads and by binding host cell receptors via its N-terminal stalk region, 

thereby significantly promoting the uptake of S. pneumoniae by host epithelial and 

endothelial cells. Additionally, van Ginkel et al. (van Ginkel et al. 2003) showed 

that S. pneumoniae is able to spread to olfactory nerves from nasopharyngeal 

epithelium, providing a novel mechanism for S. pneumonia invasion of the brain 

via a non-hematologic route. Streptococcal invasion of the heart also involves the 

binding of LR and PAFR with their ligands, as demonstrated by the reduction of 

microlesion formation in PAFR-/- mice or by using antibody against LR. (Brown et 

al. 2014) (Figure 2) 
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To activate downstream signaling and eventually invade host cells, S. agalactiae 

interacts with proteins on the host cell surface (Beckmann et al. 2002; Cheng et 

al. 2002; Bolduc and Madoff 2007; De Gaetano et al. 2018). S. agalactiae can 

bind to vitronectin (Vtn), an ECM protein, via its plasminogen binding surface 

Protein (PbsP) present in the cell wall, and Vtn acts as a bridge molecule between 

S. agalactiae and host cells (De Gaetano et al. 2018). Vtn plays a role in the 

invasion process of invasive pathogens, and Vtn-mediated binding can initiate 

integrin-dependent internalization of bacteria (Grashoff et al. 2004; Singh et al. 

2010). Vtn is present in extracellular fluids and endogenous secretions, is 

expressed on the surface of different cell types, and can be upregulated upon 

injury and inflammation (Hallstrom et al. 2016; Aulakh 2018). PbsP, which is 

anchored in the cell wall, possesses a plasminogen-binding region and one or 

two streptococcal surface repeat regions, which contribute to GBS virulence and  

Figure 2. Different molecular mechanisms by which S. pneumoniae invades host cells. The 

invasion of S. pneumoniae is dependent on the binding of bacterial surface proteins with host 

receptors. Different ligand-receptor interactions are involved in different host cell types.  

 

To activate downstream signaling and eventually invade host cells, S. agalactiae 

interacts with proteins on the host cell surface (Beckmann et al. 2002; Cheng et 

al. 2002; Bolduc and Madoff 2007; De Gaetano et al. 2018). S. agalactiae can 

bind to vitronectin (Vtn), an ECM protein, via its plasminogen binding surface 

Protein (PbsP) present in the cell wall, and Vtn acts as a bridge molecule between 

S. agalactiae and host cells (De Gaetano et al. 2018). Vtn plays a role in the 

invasion process of invasive pathogens, and Vtn-mediated binding can initiate 

integrin-dependent internalization of bacteria (Grashoff et al. 2004; Singh et al. 

2010). Vtn is present in extracellular fluids and endogenous secretions, is 

expressed on the surface of different cell types, and can be upregulated upon 

injury and inflammation (Hallstrom et al. 2016; Aulakh 2018). PbsP, which is 

anchored in the cell wall, possesses a plasminogen-binding region and one or 

two streptococcal surface repeat regions, which contribute to GBS virulence and  

Figure 2. Different molecular mechanisms by which S. pneumoniae invades host cells. The 

invasion of S. pneumoniae is dependent on the binding of bacterial surface proteins with host 

receptors. Different ligand-receptor interactions are involved in different host cell types.  

 

To activate downstream signaling and eventually invade host cells, S. agalactiae 

interacts with proteins on the host cell surface (Beckmann et al. 2002; Cheng et 

al. 2002; Bolduc and Madoff 2007; De Gaetano et al. 2018). S. agalactiae can 

bind to vitronectin (Vtn), an ECM protein, via its plasminogen binding surface 

Protein (PbsP) present in the cell wall, and Vtn acts as a bridge molecule between 

S. agalactiae and host cells (De Gaetano et al. 2018). Vtn plays a role in the 

invasion process of invasive pathogens, and Vtn-mediated binding can initiate 

integrin-dependent internalization of bacteria (Grashoff et al. 2004; Singh et al. 

2010). Vtn is present in extracellular fluids and endogenous secretions, is 

expressed on the surface of different cell types, and can be upregulated upon 

injury and inflammation (Hallstrom et al. 2016; Aulakh 2018). PbsP, which is 

anchored in the cell wall, possesses a plasminogen-binding region and one or 

two streptococcal surface repeat regions, which contribute to GBS virulence and  

Figure 2. Different molecular mechanisms by which S. pneumoniae invades host cells. The 

invasion of S. pneumoniae is dependent on the binding of bacterial surface proteins with host 

receptors. Different ligand-receptor interactions are involved in different host cell types.  

S. agalactiae invasion
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are essential in plasmin-dependent invasion (Bumbaca et al. 2004; Buscetta et al. 

2016). Binding of ligands to host-cell receptors also activates Ras, which 

subsequently triggers the recruitment of PI3K to the membrane of host cells 

(Reuther and Der 2000). Activated PI3K interacts with GTPases, both of which 

can be activated by the binding of S. agalactiae directly, and are responsible for 

actin rearrangement (Burnham et al. 2007a; Burnham et al. 2007b). Akt, a serine 

kinase that can modulate downstream effector molecules is also modulated by 

PI3K, which eventually affects actin rearrangement (Stokoe 2005; Burnham et al. 

2007a); an indispensable step in cell invasion by GBS (Boone and Tyrrell 2012).  

 

ACP, a cell wall anchored protein, is also involved in GBS invasion. The N-

terminal domain of ACP has been classified into two structural regions (D1 and 

D2). D1 includes a β sandwich while D2 consists of 3 antiparallel α helix coils 

(Auperin et al. 2005). An important function in cell invasion is exerted by the N-

terminal domain of ACP, since the soluble form of the N-terminal domain 

significantly inhibits GBS internalization (Bolduc et al. 2002). Subsequent studies 

revealed that both D1 and D2 are involved in the invasion process. GBS affinity 

to α1β1 integrin and its ability to invade cervical epithelial cells was decreased by 

converting a KTD motif within D1 to KTA (Bolduc and Madoff 2007). Moreover, 

when a mutation was induced in a glycosaminoglycan-binding site within D2, 

invasion was blocked (Baron et al. 2007). These results suggest both D1 and D2 

can mediate GBS entry, but the mechanisms may be distinct.  

 

Additional studies have shown that fibrinogen-binding proteins (Fbs) were 

relevant to cell invasion by GBS, including FbsB (Schubert et al. 2004), the Srr 
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that can mediate the uptake of GAS by microvascular endothelial cells (Seo et al. 

2012; Seo et al. 2013), and FbsC (Buscetta et al. 2014). A novel molecule named 

fibronectin-binding protein A (SfbA) has been identified as well, which contributes 

to GBS invasion of brain endothelial cells and meningitis (Mu et al. 2014). This 

view is supported by a subsequent study that demonstrated that the ability to 

breach the BBB and to cause meningitis was reduced when sfbA mutant strains 

were used to infect mice (Stoner et al. 2015).  

 

A significant number of studies report that β-hemolysin/cytolysin (β-H/C) triggers 

cytolysis of host cells, thereby promoting GBS invasion of epithelial and 

endothelial barriers, including the BBB, as well as endothelial and epithelial cells 

of the host lung (Nizet et al. 1996; Nizet et al. 1997; Gibson et al. 1999; Doran et 

al. 2002; Doran et al. 2003; Liu et al. 2004). β-H/C-deficient GBS mutants showed 

attenuated virulence to cause infections such as meningitis, sepsis, and 

pneumonia (Doran et al. 2002; Doran et al. 2003; Hensler et al. 2005). Additionally, 

several other life-threatening diseases can be induced by β-H/C, including cardiac 

impairment and liver failure (Ring et al. 2002; Hensler et al. 2008), underscoring 

the importance of β-H/C in GBS-mediated disease  

 

S. suis invasion 

S. suis is able to interact with epidermal cells in wounded skin or intestinal 

epithelial cells (Gottschalk et al. 2010; Segura et al. 2016), and the 

gastrointestinal tract is a common entry site both in humans and pigs (Ferrando 

et al. 2015). Ferrando et al. (Ferrando et al. 2015) demonstrated that S. suis was 

able to cause the disruption of intercellular tight junctions and subsequently cross 
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the intestinal epithelial barrier in humans through a paracellular route. S. suis can 

eventually cause meningitis, after reaching the bloodstream and crossing the BBB, 

(Fulde and Valentin-Weigand 2013; Haas and Grenier 2018). To cause meningitis, 

crossing the BBB is a critical step for bacteria, but the mechanism is not clearly 

known. Several mechanisms by which S. suis penetrates the BBB have been 

shown, such as invasion of the cells making up the BBB via the endocytic pathway 

and disruption of intercellular tight junctions (Gottschalk et al. 2010; Fittipaldi et 

al. 2012; Fulde and Valentin-Weigand 2013). Kong et al. (Kong et al. 2017) 

recently demonstrated that S. suis translocation across the BBB was significantly 

promoted by the interaction of factor H-binding protein of S. suis with 

globotriaosylceramide of host cells (Kong et al. 2017). Another virulence factor of 

S. suis named SLY can trigger pore-formation in host cell membranes and also 

contributes to the invasion of S. suis (Seitz et al. 2013). Norton et al. showed that 

the invasion of epithelial cells by SLY-negative strains was inhibited (Norton et al. 

1999). SLY is thought to contribute to the formation of membrane ruffles, thereby 

facilitating the invasion into epithelial cells by S. suis (Benga et al. 2004; Seitz et 

al. 2013). In addition to epithelial cells, SLY also plays a role in the invasion of 

human brain microvascular endothelial cells (HBMEC). Lv et al. (Lv et al. 2014) 

demonstrated that S. suis invasion into HBMEC can be facilitated by SLY, which 

can activate GTPase Ras homolog gene family member A (RhoA) and Rac1 to 

remodel the actin cytoskeleton. Nevertheless, since a SLY knockout mutant also 

disseminates in the host, SLY is not indispensable in S. suis infections (Lun et al. 

2003). Additionally, by translocation through the blood-cerebrospinal fluid barrier, 

S. suis can invade the host brain, and this process is associated with its 

adherence to and entry into the choroid plexus epithelial cells and transportation 
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by endocytic vacuoles (Haas and Grenier 2018).  

 

S. mitis invasion 

S. mitis can interact with human gingival fibroblasts (HGFs), and its entry into 

HGFs is associated with both bacterial virulence factors and host proteins (Rukke 

et al. 2012; Di Giacomo et al. 2013; Cataldi et al. 2016; Di Giulio et al. 2018). The 

invasion of HGFs by S. mitis is mediated by Focal Adhesion Kinase (FAK), integrin 

β1, and the two cytoskeleton proteins vinculin and F-actin (Cataldi et al. 2016; Di 

Giulio et al. 2018). Chitlac-nAg silver nanoparticles can enhance the 

internalization of S. mitis, which is thought to be a strategy of bacteria to evade 

the toxicity of silver. Nevertheless, the effects of Chitlac-nAg on the invasion of S. 

mitis can be inhibited by saliva, and it is hypothesized that proteins within the 

saliva play a role in inhibiting the uptake of S. mitis (Di Giulio et al. 2018). Similar 

to S. pneumoniae, to which it is closely related, S. mitis was shown to possess a 

capsule, which is an important virulence factor (Kilian et al. 2008). The capsule of 

S. pneumoniae has been well studied, and is associated with numerous functions 

such as evasion of mucus-mediated clearance, and modulation of inflammatory 

responses (Bootsma et al. 2007; Nelson et al. 2007). Although it was shown that 

the capsule of S. mitis inhibits its adherence to oral epithelial cells (Rukke et al. 

2016), the underlying mechanism remains unknown. 

 

Conclusion 

Streptococci can form a severe threat to human health, and novel members of 

streptococci are constantly isolated, such as Streptococcus tigurinus, causing 

infective endocarditis (Zbinden et al. 2012). Recent years, great progress has 
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been made in uncovering the molecular mechanisms of streptococcal adhesion 

and invasion. Streptococci are difficult to eradicate due to their ability of 

adherence to and invasion of eukaryotic cells. By expressing distinct adhesins 

and invasins in different environments, streptococcal infections can be difficult to 

treat. Both extracellular and intracellular molecules are involved in the adhesion 

and invasion, and there is a demand for a better understanding of these 

associated molecules. In spite of the advances in antimicrobial therapy based on 

the current molecular research, streptococcal infections still cause a high 

morbidity and mortality from diseases such as meningitis. Thus, identification and 

targeting of molecular patterns involved in invasive bacterial infections, and 

pathways by which streptococci adhere to and invade host cells, are crucial in 

developing novel effective therapeutic strategies.  
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