
 
 

Recent Proceedings on Prevalence and 1 

Pathogenesis of Streptococcus suis 2 

 3 

Chen Tan1,2,3,4,5, Anding Zhang1,2,3,4,5, Huanchun Chen1,2,3,4,5 and Rui Zhou1,2,3,4,5,* 4 

 5 

1 State Key Laboratory of Agricultural Microbiology, College of Veterinary 6 

Medicine, Huazhong Agricultural University, Wuhan 430070, China.  7 

2 Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 8 

430070, China. 9 

3 Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, 10 

China. 11 

4 Key Laboratory of Development of Veterinary Diagnostic Products(MOA), 12 

Wuhan, 430070, China. 13 

5 International Research Center for Animal Disease (MOST), Wuhan, 430070, 14 

China. 15 

 16 

*Correspondence:rzhou@mail.hzau.edu.cn 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

caister.com/cimb 473 Curr. Issues Mol. Biol. (2019) Vol. 32

Curr. Issues Mol. Biol. (2019) 32: 473-520. DOI: https://dx.doi.org/10.21775/cimb.032.473



 
 

Abstract 1 

Streptococcus suis (S. suis) is an important zoonotic pathogen that causes huge 2 

economic losses in the pig industry, as well as severe illness and even death in 3 

humans. The outbreak of human infection of S. suis in China in 2005 led to 4 

significant human morbidity and death, prompting an increase in global studies of 5 

S. suis. In recent years, important advances have been made regarding the 6 

etiology, genomics, excavation of virulence genes, and vaccine research in S. 7 

suis. A number of countries and regions have identified their predominantly 8 

serotypes. The development of genome sequencing technology has laid an 9 

important foundation for the study of pathogenic mechanisms. For example, 89K 10 

PAI was found in representative virulence strains in China, and several studies 11 

have been carried out to confirm multiple genes which carries are closely related 12 

to virulence. Also, the functions of some regulatory genes represented by the 13 

two-component signal transduction system have been analyzed. The 14 

development of inactivated vaccines, natural avirulent vaccines, gene-deletion 15 

attenuated vaccines, subunit vaccines, and glycoconjugate vaccines have 16 

greatly contributed to the prevention and control of the disease in the future. This 17 

article aims to summarize the research progress to provide directions for future 18 

research and the prevention of S. suis. 19 

20 
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Introduction 1 

Streptococcus suis is an important zoonotic pathogen that causes enormous 2 

economic losses in the global swine industry. It is also considered as an 3 

emerging zoonotic pathogen with the potential to cause a wide variety of 4 

diseases including septicemia, meningitis, pneumonia, endocarditis, and arthritis 5 

in both pigs and humans (Segura et al., 2014). A total of 29 serotypes of S. suis 6 

have been identified on the basis of various capsular antigens ( Nomoto et al., 7 

2015; Okura et al., 2016; Oh et al., 2017; Tohya et al., 2017), and some 8 

serotypes such as serotype 1, 2, 5, 9, 14, 16, 28, and 31 can infect humans (Lun 9 

et al., 2007; Gottschalk et al., 2010; Nutravong et al., 2014; Taniyama et al., 10 

2016). Since the first human case of S. suis was reported in Denmark in 1968, 11 

over 1,000 cases have been reported in over 30 countries with intensive pig 12 

production. Most cases were European, Asian, and North American countries 13 

and regions. From the 29 serotypes of S. suis, serotype 2 is the most dominant 14 

serotype infecting humans, causing serious illness and streptococcal toxic shock 15 

syndrome (STSS), which was the main cause of death in the 2005 outbreak in 16 

Sichuan province of China (Feng et al., 2010). 17 

 18 

Epidemiology 19 

Numerous S. suis serotypes are pathogenic, but there are differences in the 20 

major serotypes prevalent in different countries (Oh et al., 2017). For example, in 21 

China, serotype 2 was the prevailing serotype, followed by serotype 1 and 22 

serotype 3 (Wei et al., 2009; Li et al., 2012). In Canada, serotype 3 was the most 23 

common serotype until 2009, but serotype 2 was the most common in 2011 24 

(Gottschalk et al., 2013). In South Korea, serotypes 7 and 21 were most 25 
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commonly isolated from pigs during the 2010-2013 period (Gurung et al., 2015). 1 

In contrast, in Thailand, serotype 23 was the most common, followed by 2 

serotypes 9, 7, and 2 (Thongkamkoon et al., 2017). 3 

 4 

In the last 20 years, S. suis has caused huge losses to the swine industry in 5 

many Asian countries, and is the most frequently isolated pathogenic bacterial 6 

pathogen in most pig farms in China. Two large outbreaks of S. suis in China 7 

have been identified since the 1990s. The first outbreak occurred in 1998 in the 8 

Jiangsu Province, in which 25 humans were infected, 14 died, and approximately 9 

80,000 pigs were infected (Tang et al., 2006). Sick pigs showed a high fever, 10 

shortness of breath, head, neck, and abdominal bleeding. All 25 patients were 11 

adult males who had contact with dead or sick pigs, 16 of whom presented with 12 

STSS and nine presented with meningitis (Zhu et al., 2001). The second 13 

outbreak took place in 2005 in Sichuan Province, resulting in 215 human 14 

infections and 39 deaths (Yu et al., 2006). All infected people were mainly adult 15 

male farmers with recent exposure to carcasses of pigs which died of unknown 16 

causes or sick pigs. Three distinct clinical symptom settings have been observed, 17 

as 61 had STSS and the others were sepsis, meningitis, or both (Yu et al., 2006). 18 

Both outbreaks were caused by the sequence type 7 (ST7), an emerging highly 19 

virulent S. suis clone (Ye et al., 2008). 20 

 21 

In the northern and northeastern regions of Thailand, S. suis is a major pathogen 22 

causing a public health concern (Kerdsin et al., 2011). The transmission of this 23 

pathogen in humans in these areas is due to specific ethnic practices, such as 24 

the consumption of raw pork and meat products (Fongcom et al., 2001). There 25 
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was a serious S. suis outbreak in northern Thailand in 2010, involving 171 1 

human cases (Thongkamkoon et al., 2017). 2 

 3 

In Vietnam, S. suis type 2 is the most commonly detected organism causing 4 

acute bacterial meningitis in adults. Mai et al. studied 450 patients with 5 

suspected bacterial meningitis and showed S. suis was the etiologic pathogen in 6 

151 of the patients (Mai et al., 2008). In 2007, Wertheim et al. identified S. suis 7 

from 43 meningitis patients from a national hospital in Hanoi (Wertheim et al., 8 

2009). The risk factors of S. suis infection in humans were investigated by a 9 

different research group. Nghia et al. conducted a case–control study and 10 

determined that eating “high-risk” dishes popular in parts of Asia, occupational 11 

exposure to pigs and pig products, and preparation of pork in the presence of 12 

skin lesions are the most important risk factors associated with S. suis bacterial 13 

meningitis (Nghia et al., 2011). 14 

Healthy pigs also carry S. suis on their tonsils which significantly impacts swine 15 

productivity, animal welfare, and human health. In collaboration with the 16 

University of Cambridge, we have investigated the prevalence and population 17 

biology of the S. suis isolates from the clinically healthy pig herds of China and 18 

the UK. This S. suis population showed a higher diversity than the 19 

disease-associated isolates on serotypes and sequence types. A significant 20 

effect of temperature is identified on carriage of S. suis on the tonsils of healthy 21 

pigs (Zou et al., 2018). 22 

 23 

Genomics 24 

Genome sequencing is extremely important for understanding the characteristics 25 
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of S. suis. To date, more than 1000 genome sequences of S. suis strains are 1 

available in public databases. For example, whole genomes of the two virulent 2 

serotype 2 strains 98HAH12 and 05ZYH33 were isolated from the outbreaks in 3 

China in 1998 and 2005, respectively, and were sequenced in 2007. By 4 

comparing these genomes, a novel 89-Kbpathogenicity island (PAI) was present 5 

in both strains, but not in P1/7 (Chen et al., 2007). Subsequent studies 6 

demonstrated that some genes in this 89K PAI are strongly associated with 7 

virulence and virulence regulation, such as the two two-component signal 8 

transduction systems (TCSTS) and six stand-alone transcriptional regulators (Li 9 

et al., 2008; Xu et al., 2018). Also, SalK/SalR and NisK/NisR of TCSTS have 10 

been confirmed to be related to virulence, resistance to PMN-mediated killing, 11 

and phagocytosis by macrophages (Li et al., 2008; Xu et al., 2014). Among the 12 

six stand-alone transcriptional regulators, TstS was obviously upregulated in vivo 13 

which promotes STSLS (Xu et al., 2018). In addition, a Type-IVC secretion 14 

system consisting of four genes has been identified, which can transfer secretion 15 

of plasmid type 89K to other bacteria. It is also related to the virulence, and 16 

knockout studies of the genes impaired its ability to trigger host immune 17 

response  (Zhang et al., 2012b; Li et al., 2011c; Zhao et al., 2011; Yin et al., 18 

2016). 19 

 20 

In 2009, Holden et al. analyzed the whole-genome sequences of three S. suis 21 

strains, European P1/7 from pigs, and two strains from human cases: SC84 from 22 

China and BM407 from Vietnam (Holden et al., 2009). The P1/7 and SC84 23 

chromosomes have a conserved structure, while the BM407 chromosome has a 24 

large inversion. Three 90-Kb regions that carry some drug resistance genes 25 
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were found in the two isolates from humans. Upon comparing the P1/7 1 

chromosome with those of other Streptococcus species, S. suis was 2 

phylogenetically distinct, although many housekeeping genes, such as fatty acid 3 

metabolism genes, nucleotide biosynthesis genes, and macromolecule 4 

biosynthesis genes display the highest levels of conservation. In contrast, some 5 

mobile genetic elements in the P1/7 genome have the lowest conservation 6 

compared with those in other Streptococcus species. 7 

 8 

In addition to serotype 2, the genomes of several other serotype strains were 9 

also resolved, which indicated that there is significant genomic diversity among 10 

the different strains of S. suis (Zhang et al., 2011b). What important information 11 

can we glean from the genomic differences among various types of S. suis? 12 

Weinert et al.studied the genetic differences among the systemic, respiratory, 13 

and non-clinical S. suis isolates from pigs and humans using high-quality clinical 14 

data and genome sequences, and found that the clinical S. suis isolates have a 15 

smaller genome size than the non-clinical ones, but are more likely to encode 16 

virulence factors. Human disease isolates are limited to a single-virulent 17 

population, originating in the 1920s when pig production was intensified. No 18 

consistent genomic differences are observed between pig and human isolates. 19 

High rates of recombination occur in the genomes of this bacterium, suggesting 20 

that virulence of S. suis may increase anywhere in the world  (Weinert et al., 21 

2015). 22 

 23 

Virulence factors and pathogenesis 24 

Virulence-associated factors have been identified, and they provide a likely 25 

Streptococcus suis Tan et al

caister.com/cimb 479 Curr. Issues Mol. Biol. (2019) Vol. 32



 
 

explanation as to why the strain is so highly virulent since the outbreak of S. suis 1 

serotype 2 in China in 2005 (Chen et al., 2007). Although some comprehensive 2 

studies have been performed, some results were contradictory due to 3 

differences in strain backgrounds and different animal models of infectious 4 

disease in the evaluation of virulence (Auger et al., 2017; Segura et al., 2017). 5 

 6 

The polysaccharide capsule (CPS) is considered to be essential for bacterial 7 

virulence by inhibiting the signaling pathways involved in phagocytosis (Smith et 8 

al., 1999; Segura et al., 2004; Chabot-Roy et al., 2006; Lecours et al., 2011) and 9 

by the evasion of neutrophil extracellular traps (NETs) (Zhao et al., 2015). 10 

However, a few avirulent S. suis strains also contain CPS (Berthelot-Herault et 11 

al., 2001; Berthelot-Herault et al., 2005), indicating that the virulence is 12 

multifactorial and does not exclusively rely on CPS structure. Furthermore, CPS 13 

structure may interfere with some important virulence properties, such as the 14 

inhibition of bacterial adherence, invasion of host cells (Benga et al., 2004; 15 

Tenenbaum et al., 2009; Segura et al., 2016), and biofilm formation (Tanabe et 16 

al., 2010). Interestingly, the CPS structure could be retrieved after in vivo 17 

passage of a non-encapsulated S. suis (Auger et al., 2016), indicating that CPS 18 

structure could be regulated in vivo, and that its contribution to virulence is 19 

complicated. In fact, CPS structure could be regulated by several factors, such 20 

as the availability of glucose or other carbohydrates, pH, and temperature (Smith 21 

et al., 2001; Wu et al., 2011). In particular, glucose availability could also regulate 22 

CPS gene expression through catabolite control protein A (CcpA) (Willenborg et 23 

al., 2011), which is also why virulence-associated factor HP0197 contributed to 24 

the virulence through the regulation of CCPA activity (Zhang et al., 2012a; Yuan 25 
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et al., 2013). Together, these studies indicate that CPS is an important virulence 1 

factor in the behavior of S. suis. 2 

 3 

Suilysin (SLY) is a member of the pore-forming cholesterol-dependent cytolysin 4 

family of toxins (Palmer, 2001; Xu et al., 2010). Examination of the crystal 5 

structure further confirmed the cytotoxic properties of SLY (Xu et al., 2010). For a 6 

long time, SLY was thought to contribute to meningitis (Takeuchi et al., 2014), 7 

supported by the fact that SLY can remodel the cytoskeleton of human brain 8 

microvascular endothelial cells by activating RhoA and Rac1 GTPase (Lv et al., 9 

2014) and can increase vascular permeability through the blood-brain barrier 10 

(Chen et al., 2016; Liu et al., 2017). The toxic effect of SLY benefits the 11 

adherence of the pathogen to airway cells, which subsequently causes loss and 12 

apoptosis of ciliated cells for invasion (Meng et al., 2016). Therefore, SLY plays 13 

an important role in the invasion of host cells and induction of cell death (Allen et 14 

al., 2001; Lun et al., 2003; Vanier et al., 2004; Ferrando et al., 2015; Meng et al., 15 

2016). In addition, SLY is involved in inflammatory responses through TLR4 16 

(Lecours et al., 2011; Bi et al., 2015; Zhang et al., 2016a; Zhang et al., 2016b), 17 

and SLY induced platelet aggregation and also platelet-neutrophil complexes 18 

formation through the pore-dependent Ca2+ influx (Zhang et al., 2016a; Zhang 19 

et al., 2016b). It has been reported that SLY is partially involved in cytokine 20 

release and also contributes to bacterial escape of opsonophagocytosis 21 

(Lecours et al., 2011). Therefore, SLY is also an important virulence factor (Allen 22 

et al., 2001), which has been the target of drugs in previous studies (Li et al., 23 

2017a; Zhang et al., 2018b). Notably, the expression level of SLY seems to be 24 

associated with the virulence of S. suis strains (He et al., 2014; Takeuchi et al., 25 
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2014). Nonetheless, many virulent strains, especially those from North America, 1 

do not produce SLY, which suggests that SLY is not a requirement for the 2 

virulence of S. suis (Berthelot-Herault et al., 2000; Fittipaldi et al., 2011). 3 

 4 

Muramidase-released protein (MRP) and extracellular factor protein were 5 

originally identified to be associated with the virulence of S. suis (Vecht et al., 6 

1991). Previous work has shown that MRP binds to fibrinogen and facilitates 7 

attachment to and traversal of human brain microvascular endothelial cells by 8 

increasing transendothelial cell permeability, thereby promoting the development 9 

of Streptococcus suis meningitis (Wang et al., 2015). However, a subsequent 10 

study indicated that the virulence of MRP-deficient mutant was not decreased in 11 

comparison with that of the parental strain (Baums and Valentin-Weigand, 2009), 12 

suggesting that MRP is required for the virulence of some strains. 13 

 14 

Factor H (FH) is an important negative regulator of the alternative complement 15 

pathway. S. suis can secrete FH-binding protein (FHBP) to bind the host 16 

complement component C3 and FH that reduces opsonophagocytosis. FHBP 17 

can also enhance the adherence to and invasion of host cells (Li et al., 2016), 18 

thereby contributing to the virulence (Pian et al., 2012). In addition, 19 

globotriaosylceramide (Gb3) has been identified as the receptor of FHBP, which 20 

contributes to S. suis infection-induced activation of myosin light chain 2 through 21 

Rho/ROCK signaling in hCMEC/D3 cells. This also contributes to the traversal of 22 

S. suis across the human blood-brain barrier. However, more comprehensive 23 

studies are required to determine the role of FHBP in unlocking the blood-brain 24 

barrier (Kong et al., 2017) and accessing the central nervous system (Auger and 25 
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Gottschalk, 2017). Nonetheless, a double mutant-lacking FHBP and FHBP was 1 

similarly phagocytosed by human macrophages and killed by pig blood when 2 

compared to the wild-type strain. This suggests that the recruitment of factor H to 3 

the S. suis cell surface is multifactorial and redundant (Roy et al., 2016). In fact, 4 

more factor H-binding proteins were identified to be required for the virulence of 5 

the bacteria (Li et al., 2017c). 6 

 7 

Oxidative stress is an ubiquitous challenge faced by pathogens, and stress 8 

response systems can play an important role in the virulence of pathogenic 9 

bacteria (Requena, 2012). S. suis has evolved certain strategies to tolerate 10 

oxidative stress, which in turn contributes to its virulence. For example, S. suis 11 

can express NADH oxidase (Zheng et al., 2017) and superoxide dismutase 12 

(Fang et al., 2015) to scavenge reactive oxygen species. The improved 13 

resistance to reactive oxygen species is also a factor through which hsdS (Xu et 14 

al., 2017a), a serine/threonine phosphatase 1 (Fang et al., 2017), heme-binding 15 

protein SntA (Wan et al., 2017), FNR-like protein (Willenborg et al., 2016), and 16 

PnuC (Li et al., 2018a) contribute to S. suis virulence. 17 

 18 

In addition to receptor-mediated capture and phagocytosis, neutrophils can also 19 

attack pathogens by an antimicrobial mechanism called NET-mediated bacterial 20 

killing, which plays an important role in the clearance of S. suis in vivo (Zhao et 21 

al., 2016). S. suis can induce the formation of NETs both in vitro and in vivo (de 22 

Buhr et al., 2014; de Buhr et al., 2017). Interestingly, the bacterium has evolved 23 

certain strategies to evade this killing, and specifically can inhibit the formation of 24 

NETs through biofilms (Ma et al., 2017), resist the NET-mediated trapping 25 
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through CPS structure (Zhao et al., 2015), and degrade the NET structure to 1 

resist killing through the secretion of DNase SsnA (de Buhr et al., 2014; de Buhr 2 

et al., 2015). 3 

 4 

Interestingly, the S. suis ST7 strain contains an 89-Kb genomic island, which 5 

includes genes encoding the components of a type IV secretion system involved 6 

in the pathogenesis of S. suis (Li et al., 2011c; Zhao et al., 2011). Subtilisin-like 7 

protease-1 secreted through the type IV secretion system contributes to the high 8 

virulence of Streptococcus suis 2 (Yin et al., 2016), and a novel PPIase molecule, 9 

SP1, has been shown to interact with a component of innate immunity, 10 

peptidoglycan recognition protein (PGLYRP-1), and to perturb the 11 

PGLYRP-1-mediated bacteriostatic effect by interacting with the protein 12 

PGLYRP-1 (Wang et al., 2017b). 13 

 14 

 15 
 16 

Figure 1. The structure schematic model of 89K PAI . Important elements are presented in 17 

different colors. 18 

 19 
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In addition to the identification of these novel virulence-associated factors, 1 

characterization of the pathogenic roles of virulence factor proteins of other 2 

pathogenic bacteria homologous to those in S. suis was also performed. 3 

Immunoglobulin A protease (IgAP) was identified and confirmed to be involved in 4 

the virulence of S. suis (Zhang et al., 2010; Zhang et al., 2011a), although the 5 

identified IgA protease is part of the zinc metalloprotease family and may have 6 

other functions besides this (Bek-Thomsen et al., 2012). Interestingly, the 7 

findings also showed that Mac is an important marker of virulence for other 8 

Streptococcus strains but is not essential for S. suis virulence in strain P1/7 in 9 

natural, healthy hosts without specific IgM. Moreover, the immunogenicity of Mac 10 

does not appear to correlate with its significance for virulence (Xiao et al., 2017a). 11 

The IgM degrading enzyme could reduce the amount of IgM bound to the 12 

bacterial surface, which is a novel complement evasion mechanism (Rungelrath 13 

et al., 2018). 14 

 15 

A few regulators were confirmed to be involved in the virulence of S. suis in 16 

addition to these virulence-associated factors. Fifteen groups of two-component 17 

systems including one orphan response regulator were predicted in two virulent 18 

S. suis 2 strains (98HAH12 and 05ZYH33), and nine of them have been 19 

confirmed to regulate the virulence (Li et al., 2008; Li et al., 2011a; Xu et al., 20 

2014; Yuan et al., 2017; Chang et al., 2018; Velikova, 2018; Zhong et al., 2018; 21 

Zheng et al., 2018a). In addition to the two-component system, there are other 22 

Stand-Alone Transcriptional Regulator that regulate the virulence of S. suis. For 23 

example, the Rgg regulator regulates genes associated with non-glucose 24 

carbohydrate metabolism, DNA recombination, protein biosynthesis, and others 25 
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affecting S. suis 2 metabolism and virulence (Zheng et al., 2011). Two Spx 1 

ortholog regulators, SpxA1 and SpxA2, have been associated with multiple 2 

stress tolerance and virulence of S. suis 2 (Zheng et al., 2014). Also, TstS 3 

regulator located at 89K PAI has been identified to regulate the virulence of S. 4 

suis 2 and to stimulate the release of cytokines (Xu et al., 2018). 5 

 6 

In addition to the regulation of CPS synthesis by CcpA, S. suis can also control 7 

manganese homeostasis by MntE, which explains why MntE is involved in the 8 

virulence of S. suis (Xu et al., 2017b). Also, (p)ppGpp synthetases can regulate 9 

the expression of virulence-related genes involved in morphology and virulence 10 

(Zhu et al., 2016). In addition, MsmK is an ATPase that contributes to the 11 

utilization of multiple carbohydrates and host colonization of S. suis. Additionally, 12 

STK and CodY have been confirmed to be central regulators of its virulence (Tan 13 

et al., 2015; Tan et al., 2017), and GidA, a tRNA modification enzyme, was 14 

confirmed to contribute to its growth and virulence (Gao et al., 2016). In addition 15 

to these regulators, small RNA rss04 was also reported to regulate virulence by 16 

regulating capsule synthesis and inducing biofilm formation, as determined in a 17 

mouse infection model (Xiao et al., 2017b). 18 

 19 

It has been recognized that the identification and characterization of novel 20 

virulence-associated factors are effective ways of understanding the 21 

pathogenesis of S. suis. Additional studies have also identified several other 22 

virulence-associated factors, such as Formate-tetrahydrofolate ligase (Zheng et 23 

al., 2016), HP1330 (Zhang et al., 2017b), SadP (Ferrando et al., 2017), SBP2 24 

(Yu et al., 2016), vapE (Ji et al., 2016), oligopeptide-binding protein (OppA) 25 
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(Zheng et al., 2018b), SssP1 (Zhang et al., 2018a), lysM (Wu et al., 2016), and 1 

Dnase (Haas et al., 2014). However, in line with the concern of Segura et al. 2 

(YEAR) that the identified factors might be strain-specific (Segura et al., 2017), 3 

the identification of critical virulent factors requires more comprehensive studies. 4 

 5 

These identified novel factors strengthen our understanding about pathogenesis, 6 

but the studies that mainly focused on these virulent factors could not fully 7 

elucidate the primary pathogenic mechanism of S. suis. As any infectious 8 

disease is the result of the interaction of pathogen and host, more concern 9 

should be focused on the host response to infections in further studies. 10 

 11 

Vaccine development 12 

The development of vaccines against S. suis is an optimal approach to 13 

controlling its infection. The first vaccine developed for this purpose was based 14 

on all of its bacterins. An early experimental study reported that formalin-killed 15 

pathogenic SS2 could stimulate a complete protective response against 16 

homologous challenge in piglets (Holt et al., 1990). However, a field study 17 

reported that the immunization of pigs with a commercial bacterin vaccine failed 18 

to protect against nursery mortality (Torremorell et al., 1997). Aside from the use 19 

of whole S. suis inactivated vaccine, the inactive method (Holt et al., 1990; 20 

Pallares et al., 2004), very high doses of bacterin (Holt et al., 1990), and the 21 

adjuvant used in the formulation (Pallares et al., 2004) are important for the 22 

protective efficacy of the vaccine. In fact, Chinese swine farms began to use SS2 23 

whole bacterins vaccine, which was prepared using high doses of bacterin in oil 24 

adjuvant and conferred a detectable level of CPS2 antibodies, as determined 25 
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using ELISA (Jin et al., 2006). Subsequently, the prevalence of serotype 2 has 1 

decreased significantly, although it is still quite prevalent in China. However, the 2 

protection conferred by all bacterins is either serotype or strain-dependent 3 

(Pallares et al., 2004). There are several serotypes that are prevalent in swine 4 

farms in different countries, including China (Wei et al., 2009), for which the 5 

development of novel vaccines is required. 6 

 7 

The development of a live avirulent vaccine may provide better protective 8 

efficacy, as strong humoral immunity is induced following challenges with live 9 

bacteria (Buttner et al., 2012). Temperature-sensitive mutants of S. suis were 10 

tested as vaccines and conferred protection only against homologous challenge 11 

in mice (Kebede et al., 1990). Developed non-encapsulated isogenic mutants 12 

would be avirulent and may provide better cross-protection because CPS is 13 

serotype-specific. A live vaccine was developed based on a non-encapsulated 14 

serotype 2 mutant; it induced partial protection only against mortality and failed 15 

to prevent the development of clinical signs in pigs challenged with the wild-type 16 

strain (Wisselink et al., 2002). However, another study indicated that pigs 17 

vaccinated with a non-encapsulated mutant exhibited a survival rate of 100% 18 

and presented only minor clinical signs after challenge in the wild-type strain 19 

(Fittipaldi et al., 2007). The protection against different serotypes should be 20 

confirmed by further studies. Besides disruption of the CPS gene, disruption of 21 

other virulence-associated genes would also be promising for the development 22 

of an attenuated vaccine. For example, a double-deletion mutant 23 

(SsPep/SsPspC−/−) (Hu et al., 2015), a five-deletion mutant (sly, scpA, ssnA, 24 

FHBP, and ssads) (Li et al., 2018b), and a mutant with ssnA deletion (Li et al., 25 
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2017b) have offered good protection. In contrast, the isogenic OFS mutant failed 1 

to induce opsonizing antibodies and protection (Kock et al., 2009). In addition to 2 

the constructed isogenic mutants, isolated native avirulent strains could also be 3 

used as strains for vaccines (Quessy et al., 1994; Quessy et al., 1995; Busque et 4 

al., 1997). For example, Yao et al used an avirulent strain from healthy pigs for a 5 

vaccine, which induced complete protection against SS2 infection (Yao et al., 6 

2015; Wang et al., 2017a). 7 

 8 

Another strategy to develop a universal vaccine is based on immunogenic 9 

proteins, which could confer cross-protection. For example, subunit vaccines 10 

using suilysin (Jacobs et al., 1996; Du et al., 2013) or MRP and extracellular 11 

protein factors (Wisselink et al., 2001) have been shown to protect pigs against 12 

homologous and heterologous strains. However, in some geographical regions, 13 

their application is hindered by the presence of a substantial number of virulent 14 

strains that do not express these proteins. 15 

 16 

SAO (Li et al., 2006; Li et al., 2007; Hsueh et al., 2017) and the 38-kDa protein 17 

(Okwumabua and Chinnapapakkagari, 2005) were identified as vaccine 18 

candidate antigens. However, it is necessary to identify more immunogenic 19 

proteins based on the strategy of developing a universal vaccine. To date, 20 

several technologies have been applied to identify novel immunogenic proteins 21 

(Zhang and Lu, 2007a; b; Jing et al., 2008; Zhang et al., 2008; Gu et al., 2009; 22 

Liu et al., 2009; Mandanici et al., 2010; Gomez-Gascon et al., 2012) such as 23 

enolase (Esgleas et al., 2008; Esgleas et al., 2009; Feng et al., 2009; Zhang et 24 

al., 2009b), 6-phosphogluconatedehydrogenase (Tan et al., 2008; Tan et al., 25 
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2009), SsuiDRAFT 0103 (Aranda et al., 2008), cation-regulated proteins (Aranda 1 

et al., 2009), HP0197 (Zhang et al., 2009a), RTX family exoprotein A, epidermal 2 

surface antigen, immunoglobulin G-binding protein (Liu et al., 2009), 3 

SAT/HP0272 (Chen et al., 2010; Mandanici et al., 2010), pilus subunit (Garibaldi 4 

et al., 2010), SsPepO (Li et al., 2011b), HP0245 (Li et al., 2011d), SsnA 5 

(Gomez-Gascon et al., 2014; Gomez-Gascon et al., 2016), Lmb (Zhang et al., 6 

2014), AbpB (Huang et al., 2015), IdeSsuis (Seele et al., 2015), Sbp (Zhou et al., 7 

2015), the type II histidine triad protein HtpsC (Li et al., 2015), and IgA protease 8 

(Fu et al., 2016). However, it should be noted that there are contradictory results 9 

about the protective efficacy of some antigens. For example, enolase was 10 

confirmed to be both protective (Feng et al., 2009; Zhang et al., 2009b) and 11 

nonprotective (Esgleas et al., 2009). This may have been due to different 12 

adjuvants used in the formation of the vaccine. Therefore, the development of 13 

technology for evaluating the protection conferred by a subunit vaccine is 14 

important, and an assay based on porcine dendritic cells has been developed to 15 

assess the immunological behavior of vaccines and the polarizing effect of 16 

adjuvants (Martelet et al., 2017). 17 

 18 

CPS is the most external bacterial layer in contact with the host, and the 19 

antibodies are highly opsonizing and protective (Charland et al., 1997; Calzas et 20 

al., 2017). However, free CPS is nonimmunogenic, and carbohydrate-based 21 

vaccines (glycoconjugate vaccines) were successfully discovered for many 22 

encapsulated pathogens, such as Haemophilus influenzae (Hiberix), Neisseria 23 

meningitidis (MenACWY), and Streptococcus pneumoniae (PCV13) (Roy and 24 

Shiao, 2011; Bottomley et al., 2012). The structure and method of biosynthesis 25 
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of capsular polysaccharides of serotypes 2 and 1/2 have now been characterized 1 

(Van Calsteren et al., 2016), and a serotype 2 capsular polysaccharide 2 

glycoconjugate vaccine was confirmed to induce potent IgM and 3 

isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and 4 

protection against lethal challenge in vivo. These are all features of a 5 

T-dependent response (Goyette-Desjardins et al., 2016), which suggests the 6 

possibility of developing polyvalent glycoconjugate vaccines against S. suis 7 

infection. 8 

 9 

Conclusions and future perspectives 10 

With the rapid development of genome sequencing technology and the progress 11 

of molecular biology technology, important progress has been made in the 12 

understanding of the pathogenesis of S. suis. Despite these advances, there are 13 

still many limitations. Future studies on S. suis should include the following 14 

aspects: continue etiology work to elucidate changes in prevalent serotypes, 15 

focus on pathogen-environment-host interactions, and develop novel multivalent 16 

vaccines and diagnostic reagents. 17 

 18 
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