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Abstract 
Poor immunogenicity remains the single biggest 
obstacle to human DNA vaccines achieving their 
potential. Strategies to improve DNA vaccine 
efficacy include codon optimization, transfection 
reagents, electroporation, vaccine adjuvants or 
combination with a protein or vector boost. 
Increased understanding of molecular events 
driving innate and adaptive immune responses 
has assisted development of molecular adjuv-
ants for DNA vaccine use. Such adjuvants comp-
rise plasmid-encoded signalling molecules 
including cytokines, chemokines, immune co-
stimulatory molecules, toll-like receptor agonists 
or inhibitors of immune suppressive pathways. 
New approaches including gene knockdown, 
epigenetics and systems biology have also 
contributed to an increased range of molecular 
adjuvant options. This review explores current 
and future trends in vaccine design including the 
latest molecular adjuvants for enhanced DNA 
vaccine efficacy. 

Introduction 
Unlike conventional protein-based vaccines, 
DNA vaccines are composed of bacterial or 
synthetic plasmids that encode the vaccine 
antigen together with a strong eukaryotic 
promoter to help drive protein expression 
(Rajcani et al., 2005). DNA vaccines have 
already been approved for use in fish (infectious 
haematopoietic necrosis virus), dogs (melan-
oma), pigs (growth hormone releasing hormone) 

and horses (West Nile virus) (Kutzler and 
Weiner, 2008). More than 150 human clinical 
trials of DNA vaccines have been conducted, 
ranging in scope from prophylactic to therapeutic 
vaccines against infection, cancer, allergy, 
Alzheimer’s and other diseases (refer to Web 
Resources listed at end of this review for more 
information), but this has yet to translate into 
approval of a human DNA vaccine application. 
The single biggest problem for DNA vaccine 
development has been insufficient immuno-
genicity of this approach when applied to 
humans.  

Vaccine adjuvants have long been used in 
conventional protein vaccines to enhance 
vaccine immunogenicity. Adjuvants comprise a 
very broad group of heterologous materials that 
share the common feature that boost vaccine 
responses through a wide variety of different 
mechanisms including enhanced chemotaxis, 
dendritic cell maturation, antigen presentation, T-
cell activation, B-cell receptor affinity maturation, 
and immunoglobulin isotype switching. Adjuvants 
can be used to reduce the dose of antigen 
required to elicit an immune response, which 
they do by antigen depot formation, enhanced 
phagocytosis, enhanced antigen processing and 
presentation or enhanced expression of surface 
expressed, e.g. CD40 or CD86, or secreted, e.g. 
cytokines and chemokines, co-stimulatory 
molecules. Very different substances have been 
shown to work as adjuvants including bacterial 
products, mineral salts, oil emulsions, micropart-
icles, nucleic acids, saponins and liposomes. Not 
surprisingly, many of these compounds, in either 
identical or modified forms, can also be used to 
enhance the immunogenicity of DNA vaccines, 
as discussed in more detail below. 

Mechanism of action of DNA vaccines 
Since the first demonstrations that nucleic acids 
could be used for immunization (Tang et al., 
1992; Ulmer et al., 1993; Wolff et al., 1990), DNA 
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vaccine approaches have become increasingly 
sophisticated and refined. Safety issues have 
been addressed and, for example, the risk of 
DNA integration into human chromosomes, 
thereby activating oncogenes or increasing 
chromosome instability, has been shown to be 
minimal, lower even than spontaneous genomic 
mutations (Faurez et al., 2010). Many human 
clinical trial studies have further confirmed the 
safety and tolerability of DNA vaccines. The 
biggest ongoing issue, therefore, is immuno-
genicity. This largely reflects the fact that plasmid 
injection induces only pico- to nano-gram 
amounts of antigen expression in vivo, in 
contrast to the microgram doses of traditional 
protein vaccines. However, compared to the 
short half-life of injected protein antigens, 
plasmids induce long-lasting antigen expression 
and immune stimulation that may help compen-
sate for the low levels of plasmid protein 
expression. In regards to antigen presentation 
induced by DNA vaccines, various pathways are 
possible including (1) plasmid antigens are 
expressed by transfected somatic cells, e.g. 
myocytes, and presented on MHC class I 
complexes to CD8 T cells; (2) professional 
antigen presenting cells (APC) are transfected 
by the plasmids and expressed antigens 
presented on MHC class II complexes to CD4 
helper T cells; and (3) apoptotic plasmid-
transfected somatic cells are phagocytosed by 
APC and then the antigens presented on MHC 
class I and II to both CD8 and CD4 T cells. 
Because muscle cells are not very efficient in 
antigen presentat ion, direct or indirect 
presentation of DNA-encoded antigens by 
professional APC is likely to be most important 
for DNA vaccines administered by intramuscular 
injection. By contrast, newer approaches such 
as transdermal skin delivery or intrapulmonary 
immunization take advantage of the high 
abundance of APC in both the skin and lung, 
thereby allowing for higher efficiencies of direct 
transfection and antigen expression by APC 
rather than somatic cells.  

Traditional adjuvants for DNA vaccines 
Adjuvants have been in use for almost a 
hundred years to increase the immunogenicity of 
traditional vaccines. These adjuvants function 
through various mechanisms including activation 
of the innate immune system, formation of 
antigen depots, induction of chemotaxis, 
enhanced antigen uptake and presentation by 
professional APC and upregulation of co-

stimulatory surface molecules on immune cells. 
Alum is the most widely used vaccine adjuvant 
with its action being mediated by cell death and 
subsequent release of host cell DNA that 
provides an endogenous innate immune signal 
(Marichal et al., 2011). Addition of alum to DNA 
vaccines has been shown to increase antibody 
responses in mice, guinea pigs and nonhuman 
primates (Ulmer et al., 1999). For example, a 
DNA vaccine against Toxoplasma gondii, when 
formulated with alum, provided increased 
survival (Khosroshahi et al., 2012). However, 
alum activates the inflammasome and favours a 
Th2-type immune responses (Awate et al., 2013) 
and hence may not be suited to DNA vaccines 
where a cellular immune response is desired. 
Polysaccharides are polymeric carbohydrate 
molecules expressed by plants and microorgan-
isms, e.g., fungi and bacteria. Delta-inulin 
polysaccharide adjuvant (Advax™, Vaxine Pty 
Ltd, Adelaide, Australia) has shown promise as 
an adjuvant in traditional protein vaccines 
(Bielefeldt-Ohmann et al., 2014; Gordon et al., 
2014; Honda-Okubo et al., 2014) (Petrovsky, 
2011) and in a DNA prime-protein boost HIV 
vaccine study, significantly increased humoral 
and cellular immune responses when given with 
an intramuscular or intranasal gp120 protein 
boost following a DNA env prime (Cristillo et al., 
2011). Zymosan has similarly been successfully 
used as an DNA vaccine adjuvant (Ara et al., 
2001). Another traditional adjuvant class is oil 
emulsions, e.g. MF59. Oil emulsion adjuvants 
are thought to act via activation of local 
inflammation together with creation of a tissue 
antigen depot. Injection of MF59 emulsion 
activates monocytes, neutrophils and eosino-
phils and when mixed with plasmids, modestly 
improved the immunogenicity of a HIV-1 DNA 
vaccine (O'Hagan et al., 2012). Hence, 
traditional adjuvants may be beneficial to 
enhance the efficacy of otherwise poorly 
immunogenic DNA vaccines.  

Liposomal and nanoparticle adjuvants 
Liposomes are spherical vesicles composed of a 
lipid bilayer made up of phospholipids and 
cholesterol that can be used to deliver traditional 
or plasmid-encoded antigens. Liposomes entrap 
or bind plasmid DNA and facilitate DNA entry 
into cells by penetrating the lipid bilayer of the 
cel l membrane (Karkada et al. , 2010). 
Liposomes also help protect DNA from 
degradation by serum and cytosolic enzymes 
(Nakanishi and Noguchi, 2001). Plasmid 
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formulation into liposomes has been shown to 
enhance cellular and humoral immunity 
(Schwendener et al., 2010; Wang et al., 2007). 
This can be further enhanced by targeting 
liposomes directly to APCs using scavenger or 
other receptors (Foged et al., 2004; van 
Broekhoven et al., 2004). Liposomes have the 
drawback that they increase the reactogenicity of 
intramuscular DNA injections, but are particularly 
promising for mucosal immunisation. In a recent 
study, mice immunized orally with cationic 
liposome-encapsulated influenza vaccine 
showed enhanced humoral and cellular immunity 
and influenza protection (Liu et al., 2014b). 
Liposomes are similarly effective with intranasal 
DNA vaccines (Xu et al., 2014).  

Nanoparticles made of biodegradable and 
biocompatible synthetic polymers such as 
polyvinylpyridine, polylactide-co-glycolides (PLG) 
and polylactide-co-glycolide acid (PLGA) have 
been extensively used for vaccine delivery and 
as adjuvants. Like liposomes, nanoparticles 
protect plasmids from degradation and increase 
cellular uptake (Xiang et al., 2010). For example, 
in a rabbit study, a Treponema pallidum DNA 
vaccine formulated with chitosan nanoparticles 
showed enhanced immune responses and 
protective efficacy (Zhao et al., 2011). Similarly, a 
peptide-based gene delivery system called MPG 
that forms stable non-covalent nanoparticles with 
DNA was shown to enhance Th1 cellular 
immune responses in mouse tumour model 
(Saleh et al., 2015). Furthermore, a multifunct-
ional envelope-type nanoparticle modified with 
KALA, a peptide that forms an α-helical structure 
at physiological pH, induced robust cytotoxic T 
lymphocyte activity (Miura et al., 2015). Hence, 
liposomes and other polymer nanoparticles show 
considerable promise as DNA vaccine adjuvants. 

Molecular adjuvants for DNA vaccines 
Molecular adjuvants differ from traditional 
adjuvants or liposomes and nanoparticles in that 
they are plasmid-encoded proteins that act as 
adjuvants by targeting innate immune receptors 
or regulating molecular signalling events. 
Molecular adjuvants include pathogen-recog-
nition receptor (PRR) agonists, cytokines, 
chemokines and immune-targeting genes. 
Compared to traditional adjuvants, more is 
known about the mechanism of action of these 
molecular adjuvants, thanks to extensive studies 
on PRR activation pathways. Molecular 
adjuvants take advantage of recombinant DNA 

technology and are compatible with all nucleic 
acid-based vaccines. 

PRR agonist-based molecular adjuvants 

Toll-like receptor (TLR) ligands 
TLRs play a key role in innate immune system 
activation. They are usually expressed by 
sentinel immune cells including macrophages 
and dendritic cells and recognize structurally 
conserved molecules derived from microbes. 
Once microbes breach physical barriers such as 
the skin or intestinal tract mucosa they are 
recognized by TLRs, resulting in innate immune 
activation as a first line of defence. To date, 13 
related TLR genes (TLR1–TLR13) have been 
identified (Oldenburg et al., 2012). Among them, 
TLR3 and TLR9 can recognize dsRNA and 
ssDNA, respectively, thus these ligands can be 
used as molecular adjuvants. A mucosal vaccine 
formulated with the TLR3 agonist, poly(I:C), 
enhanced protection against influenza infection 
(Ichinohe et al., 2005). CD8+ T cells responses 
were also improved when a DNA vaccine was 
adjuvanted with poly(I:C) (Grossmann et al., 
2009). Poly(I:C) also enhanced CTL immunity 
and tumour destruction by a DNA cancer vaccine 
in mice (Hansen et al., 2012), enhanced immune 
responses to a HPV-16 E7 DNA vaccine 
(Sajadian et al., 2014) and when combined with 
the TLR9 agonist, CpG oligonucleotide, 
enhanced the immunogenicity of a DNA vaccine 
against eastern equine encephalitis virus (Ma et 
al., 2014). CpG oligonucleotides have similarly 
been used to increase the immunogenicity of a 
broad range of DNA vaccines (Jiang et al., 2014; 
Lu et al., 2013b; Ma et al., 2014; Yu et al., 2014). 

Other PRR ligands 
The discovery of TLRs and their roles in innate 
immune signalling has led to their being 
exploited as vaccine adjuvants (Dempsey and 
Bowie, 2015). RIG-I and MDA5 are receptors for 
viral RNA, replication intermediates and/or 
transcription products. Therefore, RIG-I agonists 
have been tested as potential molecular 
adjuvants. A RIG-I agonist, eRNA41H, was 
shown to enhance humoral immunity induced by 
a DNA vaccine against influenza (Luke et al., 
2011a). Similarly, a Sendai virus-derived 546 
nucleotide-long RNA agonist of RIG-I enhanced 
influenza vaccine immunogenicity (Martinez-Gil 
et al., 2013). Another cytosolic dsDNA sensor, 
DAI, was shown to be an efficient molecular 
adjuvant for a DNA cancer vaccine, boosting 
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CTL antitumor immunity (Lladser et al., 2011). 
TLRs, RIG-I-like receptors (RLRs), inflamma-
somes and STING-dependent cytosolic DNA 
sensors in T cells can all initiate Th2 T-cell 
differentiation (Imanishi et al., 2014), indicating 
the possibility of using the corresponding ligands 
to boost DNA vaccine antibody responses. 
Hence inclusion of innate immune receptor 
ligands in vaccine plasmids offers a promising 
direction for enhancing DNA vaccine activity. 

Plasmid-encoded genetic adjuvants 

Genetic adjuvants based on cytokines 
Cytokines are small regulatory proteins secreted 
by leukocytes and other cell types, which 
mediate immune signalling. Type I interferons 
produced in response to TLR signalling activate 
innate immunity, while other cytokines produced 
by antigen-specific T cells enhance adaptive 
immune responses. Given their fast and efficient 
action, plasmid-encoded cytokines provide the 
opportunity to boost DNA vaccine immuno-
genicity. Cytokine-encoding plasmids can be 
designed and prepared along with antigen-
expressing plasmid, which has the advantage of 
simplicity and low cost. Cytokines are not 
typically stored as pre-synthesized proteins, and 
their mRNAs turnover time is very short, 
providing tight control over their actions. 
Furthermore, the local expression of cytokines at 
the DNA vaccine injection site may help avoid 
the side effects of systematically administered 
cytokines, such as the fever, myalgia and acute 
phase responses resulting from actions of 
circulating cytokines on organs such as the brain 
and liver.  

Interleukin (IL)-2 is produced by T cells and in 
addition to being a major autologous growth 
factor for T cells, IL-2 promotes B-cell 
proliferation and activates NK cells and 
monocytes. Plasmids expressing IL-2 have been 
shown to enhance immune responses against 
viral antigens including hepatitis C core antigen 
(Geissler et al., 1997), glycoprotein E2 of bovine 
diarrheal virus (Nobiron et al., 2000), and the S 
glycoprotein and nucleocapsid of SARS-
coronavirus (Hu et al., 2009; Nobiron et al., 
2000). IL-2 expression vectors also increased 
the immunogenicity of two different HIV DNA 
vaccines expressing Nef or gp120 (Kim et al., 
1998; Kim et al., 1999; Moore et al., 2002). 
Bicistronic plasmids sequentially expressing IL-2, 
and influenza hemagglutinin and neuraminidase 

genes provided better protection against 
influenza than immunization with DNA encoding 
either IL-2 or GM-CSF in trans (Henke et al., 
2006). Furthermore, the adjuvant effects were 
much greater for a DNA HIV vaccine when IL-2 
was expressed as a fusion protein with a IgFc 
fragment (Barouch et al., 1998) (Barouch et al., 
2004). Fusion of IL-2 to a Mycoplasma 
pneumoniae p1 gene region enhanced DNA 
vaccine effectiveness (Zhu et al., 2013). IL-2 
plasmids similarly increased immunogenicity and 
protection of DNA vaccines encoding Tp92 DNA 
vaccine for Treponema pallidum (Zhao et al., 
2011), an alphavirus replicon-based DNA 
vaccine pSFV1CS-E2 against classical swine 
fever in a pig model (Tian et al., 2012), a 
Haemonchus contortus H11 DNA vaccine in a 
goat model (Zhao et al., 2012), and a therapeutic 
vaccine against chronic myeloid leukaemia 
expressing BCR/ABL-pIRES-hIL-2 (Qin et al., 
2013). 

IL-12 is a pro-inflammatory cytokine secreted by 
DCs and monocytes that induces Th1 responses 
by stimulating IFN-γ production (O'Hagan et al., 
2001). IL-12’s ability to enhance cellular 
immunity makes it a good candidate as a genetic 
adjuvant. Plasmid encoding IL-12 enhanced the 
ability of a DNA vaccine encoding influenza 
hemagglutinin to induce a Th1 response 
(Bhaumik et al., 2009). Bicistronic plasmids 
expressing IL-12 with Yersinia pestis epitopes 
increased mucosal IgA and serum IgG and 
protected mice against challenge (Yamanaka et 
al., 2008). IL-12 expression plasmids were also 
used in an early human clinical trial of a hepatitis 
B DNA vaccine (Yang et al., 2006). IL-12 plasmid 
enhanced immunogenicity of hepatitis C virus 
DNA vaccine, increasing both IL-4 and IFN-γ 
production (Naderi et al., 2013). A Toxoplasma 
gondii DNA vaccine with IL-12 plasmid enhanced 
survival (Zhao et al., 2013). IL-12 plasmid also 
successfully enhanced a HIV DNA prime/protein 
boost vaccine (Li et al., 2013a). A mixture of 
three expression plasmids encoding HIV-1 Clade 
B Env, Gag, and Pol, adjuvanted by a plasmid 
expressing human IL-12 p35 and p40 when 
administered with electroporation had a 
significant dose-sparing effect with 88.9% of 
immunized individuals developing either a CD4+ 
or CD8+ T-cell response after the third 
vaccination (Kalams et al., 2013).  

Granulocyte-macrophage colony stimulatory 
factor (GM-CSF) is a major growth factor 
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cytokine produced by CD4 T cells and other 
immune cells that stimulates DC maturation and 
recruits APCs to the vaccination site thereby 
promoting antigen presentation. GM-CSF has 
been extensively studied for its adjuvant 
potential. A gB-encoding DNA vaccine against 
pseudorabies virus when adjuvanted by GM-
CSF expression plasmids created a Th1-type 
bias and provided enhanced protection against 
virus challenge (Yoon et al., 2006). Increased 
humoral and cellular responses against SIV 
were observed in Rhesus macaques co-
immunized with plasmids for SIV and GM-CSF 
(Lena et al., 2002; O'Neill et al., 2002). In 
another Rhesus macaque study, co-immuniz-
ation with plasmids for influenza hemagglutinin 
and GM-CSF enhanced both systematic and 
mucosal immunogenicity (Loudon et al., 2010). 
DNA vaccine encoding dengue serotype 2 
(DENV-2) premembrane and envelope proteins 
and non-structural 1 protein with GM-CSF 
enhanced protection in mice (Lu et al., 2013a). 
Co-immunization with plasmids for GM-CSF and 
HER2 induced protective immunity against 
HER2-positive tumours (Lindencrona et al., 
2004). Similarly, breast cancer patients co-
immunized with HER2, GM-CSF and IL-2 
plasmids exhibited long-term immune responses 
against HER2 (Norell et al., 2010) and the 
combination of gp100, tyrosinase and GM-CSF 
plasmids induced memory CD8+ T cells in 42% 
of stage III/IV melanoma patients (Perales et al., 
2008). 

IL-15 induces proliferation of NK and T cells 
(Bergamaschi et al., 2014). IL-15 expressing 
plasmids were shown to enhance immuno-
genicity of DNA vaccines against HIV-1 Gag and 
gp120 (Li et al., 2008), Trypanosoma cruzi 
(Eickhoff et al., 2011), Eimeria acevulina (Ma et 
al., 2011), hepatitis B (Kwissa et al., 2003) 
(Zhang et al., 2006), influenza (Kutzler et al., 
2005) and foot and mouth disease virus (Wang 
et al., 2008). Studies using IL-15 of other 
species, for example chicken, also achieved 
increased immune responses (Lim et al., 2012; 
Ma et al., 2012). Recent studies showed a 
synergistic effect of murine IL-21 and IL-15 in 
enhancing efficacy of a DNA vaccine against 
Toxoplasma gondii (Chen et al., 2014b; Li et al., 
2014). Furthermore, sequential administration of 
IL-6, IL-7 and IL-15 plasmids enhanced cellular 
immune responses and CD4 T memory cells to 
DNA vaccination with a foot and mouth disease 
VP1 capsid protein (Su et al., 2012).  

Plasmid-encoded cytokines provide long-term 
protein expression thereby avoiding the problem 
of very short half-lives of many cytokines. In 
addition, the low level of plasmid-expressed 
cytokines helps avoid potential cytokine toxicity. 
Cytokines exhibit redundancy and synergism 
and several cytokines may synergistically 
modulate immune responses. It is easy to 
incorporate multiple cytokines into a DNA 
vaccine and combinations of multiple cytokines 
may provide stronger adjuvant effects. In 
particular, the combination of IL-15 and IL-21 
showed significant synergy (Chen et al., 2014b; 
Li et al., 2014). Based on current knowledge, 
there is no one cytokine that stands out as the 
top DNA vaccine adjuvant, as this is likely to be 
vaccine dependent. For instance, a study of GM-
CSF adjuvant found enhancement of immune 
responses to hepatitis virus C vaccine, but 
significant suppression of a dengue virus DNA 
vaccine (Chen et al., 2014a). Therefore, 
selection of candidate cytokine adjuvants for 
each antigen should be based on careful 
evaluation. 

Genetic chemokine adjuvants  
Chemokines are a structurally-related family of 
polypeptides that bind to G-protein coupled 
surface receptors and regulate leukocyte 
trafficking. Transfection of chemokine expression 
vectors along with DNA vaccines helps recruit 
APCs to the injection site where they uptake 
expressed antigen and enhance T-cell activation. 
Macrophage inflammatory protein (MIP)-1 alpha, 
MIP-3 alpha, and MIP-3beta plasmids when co-
formulated with HIV Gag DNA vaccine all 
increased inflammatory cells infiltration, activated 
DCs and induced a Th1 response (Song et al., 
2007). 

RANTES is an inflammatory chemokine that 
promotes the accumulation and activation of 
CD4 and CD8 T cells, and DCs (Kim et al., 2003; 
Ma et al., 2007). Co-immunization of hepatitis B 
vaccine with RANTES plasmid enhanced Th1 
responses (Kim et al., 2003), with the Th1 effect 
only seen when RANTES was expressed as a 
fusion protein (Williman et al., 2008).  

IP-10, another Th1-polarizing chemokine, has 
been used as an adjuvant for vaccines against 
cancer (Kang et al., 2011; Lu et al., 2008) and 
autoimmune disease (Salomon et al., 2002; 
Wildbaum et al., 2002). HPV E7 cancer vaccine, 
when fused with IP-10 and administered by 
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intradermal vaccination, induced a higher 
survival rate (Kang et al., 2011). 

CCR7 is the receptor for CCL19 and CCL21 and 
is able to facilitate interactions between mature 
DC and T cells. CCR7 ligand encoding plasmids 
were shown to improve DNA vaccine protection 
(Han et al., 2009). Plasmids encoding CCL19 
(Westermann et al., 2007) and CCL21 (Yamano 
et al., 2006) also increased immune responses 
including in a prime–boost study targeting 
herpes simplex virus gB protein (Toka et al., 
2003). CCR7 expression plasmids also 
increased the generation of antigen-specific 
CD4+ T cells in response to DNA vaccination 
(Han et al., 2009).  

Overall, different chemokines can be easily 
engineered into DNA vaccine constructs, or 
administered as separate plasmids and thereby 
used to help shape the desired direction of the 
immune response. Compared to cytokines, 
chemokines are more stable and have less 
potential for inflammatory toxicity and may 
therefore serve as better DNA vaccine adjuvant 
candidates.  

Genetic adjuvants based on co-stimulatory 
molecules  
Co-stimulatory molecules on APCs stimulate T-
cell activation and thereby have the potential to 
be used as genetic adjuvants. CD28 is a ligand 
for CD80 and CD86 and induces T-cell 
proliferation and IL-2 secretion. CD80 and CD86, 
which belong to the TNF ligand/receptor 
superfamily, have been studied as DNA vaccine 
adjuvants. Co-aadministration of CD86 plasmid 
with DNA vaccines enhanced both CD4 T-cell 
and CTL responses, while CD80 was less 
effective (Flo et al., 2000; Kim et al., 1997; Kim 
et al., 1998). Studies using bone marrow 
chimeras showed that CD86 co-transfection 
allowed non-immune cell types, e.g. muscle 
cells, to behave as APC (Agadjanyan et al., 
1999). CD80 co-transfection with HSV plasmid 
enhanced T-cell responses only when injected 
intradermally indicating that the delivery route is 
critical for adjuvant effect (Flo et al., 2000). This 
may be because of the higher density of APC in 
the dermis, with CD80 transfection of dermal 
dendritic cells being expected to generate more 
co-stimulation of T cells than myocyte CD80 
expression. A prime–boost vaccine study using 
CD80 and CD86 co-transfection enhanced CD4 
T-cell activation and suppressed Visna/Maevi 

virus infection (de Andres et al., 2009). CD86 co-
expression also enhanced a therapeutic vaccine 
against rheumatoid arthritis (Xue et al., 2011). 
The extracellular domain of CTLA-4 when used 
to target antigen B7 on APCs increased antibody 
responses (Boyle et al., 1998; Deliyannis et al., 
2000). CTLA-4 expression plasmids also 
increased immunity of a HER2-based breast 
cancer vaccine (Sloots et al., 2008). CTLA-4 
fusion constructs with Streptococcus mutans 
antigen similarly promoted antibody responses in 
rabbit and monkey studies (Jia et al., 2006). 

CD40, a TNF superfamily member expressed on 
B cells and DC, is involved in B and T cell 
activation, differentiation and proliferation. CD40 
interacts with CD40 ligand (CD40L) expressed 
on the T-cell surface. CD40 is critical for 
maturation of B cells, driving them to differentiate 
into plasma cells. Furthermore, CD40-CD40L 
interactions stimulate DC maturation, enabling 
them to then prime CD8 memory T cells. Co-
transfection of CD40L increased antibody 
responses and imparted a Th1 bias (Gurunathan 
et al., 1998; Mendoza et al., 1997). Co-
transfection of CD40 plasmid with foot and 
mouth disease antigens enhanced antibody 
responses (Xu et al., 2010) and soluble CD40L 
multimers increased cellular responses to HIV 
plasmids (Gomez et al., 2009; Stone et al., 
2006a), with multimers more efficient than 
monomers (Stone et al., 2006b). Other studies 
have also tested RANK/RANKL or 4-1BBL co-
stimulatory molecules with DNA cancer vaccine 
but failed to show an increase in antigen-specific 
CTL responses or cancer protection (Herd et al., 
2007).  

Overall, because co-stimulatory molecules play a 
key role in the interactions between innate and 
adaptive immune cells they represent highly 
promising DNA vaccine adjuvants. These 
molecules are usually membrane bound and this 
helps ensure that their adjuvant activity is 
restricted to the site of injection, thereby helping 
reduce any potential for toxicity due to excess 
systemic immune activation. 

Genetic adjuvants based on immune-signalling 
molecules 
As discussed above, different PRR ligands 
induce innate immune responses followed by 
signal transduction through TRIF or MyD88 
dependent pathways. This leads to activation of 
critical transcription factors that then initiate 
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transcription of target immune genes, for 
example, IRF3 and IRF7 that drive the 
expression of type I interferon genes, NF-κB 
which induces IL-6, TNF expression, and MAPKs 
which activate CD80 and CD86 expression 
(Gilliet et al., 2008). In fact, these downstream 
signalling molecules can also be used as genetic 
adjuvants (Table 1). For example, a plasmid 
encoding TRIF enhanced immunogenicity of a 
DNA vaccine encoding classical swine fever 
virus E2 protein (Wan et al., 2010). TRIF 
plasmids have also been shown to be effective 
adjuvants for DNA vaccines encoding influenza 
hemagglutinin or HPV E7 (Takeshita et al., 

2006). A dual-promoter construct expressing 
LacZ followed by TRIF or MyD88 showed that 
the MyD88–LacZ construct induced higher 
antibody responses while the TRIF–LacZ 
construct favoured cellular immune responses 
(Takeshita et al., 2006). This bias may be 
because MyD88 promotes DC maturation and 
increases antigen presentation, while TRIF 
promotes CTL activity.  

HMGB1 is an important chromatin protein that 
binds and bends DNA that is secreted by 
immune cells as an inflammatory mediator. Co-
transfection of HMGB1 plasmids along with 
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Table 1. Comparison of signalling molecules as DNA vaccine adjuvants.

Class Name Protein	
  func2on Adjuvant	
  effect

Pa#ern	
  Recogni-on	
  
Receptors

MDA5	
  and	
  RIG-­‐I
Recognise	
  viral	
  RNA	
  genome;	
  
replica-on	
  intermediates	
  and	
  
transcrip-on	
  products

Enhanced	
  an-gen-­‐spe-­‐
cific	
  an-body	
  responses

Adaptor	
  proteins

MyD88 Adaptor	
  protein	
  for	
  most	
  TLRs
Enhanced	
  humoral	
  im-­‐
mune	
  responses

TRIF Adaptor	
  protein	
  for	
  TLR3
Enhanced	
  cellular	
  im-­‐
mune	
  responses

Inflamma-on	
  sig-­‐
nalling	
  protein

HMGB1 Inflammatory	
  mediator

Enhanced	
  IFN-­‐γ	
  and	
  
an-body	
  response;	
  en-­‐
hanced	
  CD8+	
  T	
  cell	
  re-­‐
sponse

HSP70 An--­‐inflammatory	
  protein Enhanced	
  CTL	
  ac-vity

Transcrip-on	
  factor

NF-­‐κB
Induce	
  type	
  I	
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HIV-1 Gag and Env DNA vaccine increased IFN-
γ and antibody responses (Muthumani et al., 
2009). Likewise, co-transfection of HMGB1 
plasmids along with an influenza antigen 
increased CD8+ T cell responses and survival of 
mice against lethal challenge (Fagone et al., 
2011). Co-transfection of HSP70 also induced 
better CTL responses to DNA vaccines (Chu et 
al., 2014). PD-1 based plasmids have also been 
shown to enhance CD8+ T cell responses 
against HIV DNA vaccination (Zhou et al., 2013). 
Some PRR may be used as genetic adjuvants 
as well. A recent study showed that MDA5, a 
RIG-I like dsRNA receptor, can be used as a 
genetic adjuvant for a DNA vaccine against 
H5N1 influenza in chickens (Liniger et al., 2012). 

Plasmids encoding transcription factors can 
potentially be used as DNA vaccine adjuvants. 
An DNA vaccine against ovalbumin when co-
expressed with IRF3 and IRF7 significantly 
enhanced antigen-specific antibody response 
and CTL activity (Bramson et al., 2003). 
Conversely, IRF1 but not IRF3 or IRF7 plasmids 
enhanced CTL responses and IFN-γ responses 
induced by a HIV-1 DNA vaccine (Castaldello et 
al., 2010). This suggests that different IRF 
proteins may have different adjuvant effects. Te 
transcription factor, NFκB, is another master 
regulator of innate immune responses. Co-
administration of plasmid encoding the NFκB 
subunit p65/RelA enhanced vaccine immunity 
(Shedlock et al., 2014). Similarly, a plasmid 
expressing another key T-cell transcription factor, 
T-bet, was shown to enhance Th1 immunity 
against a tuberculosis DNA vaccine encoding 
Ag85B (Chen et al., 2012; Hu et al., 2012). 
Hence, use of signalling molecules as genetic 
adjuvants has promise, but more studies are 
required to make sure such approaches do not 
lead to any excess toxicity that may limit their 
use.  

RNA knockdown for molecular adjuvant action 
RNA interference (RNAi) is a post-transcriptional 
gene silencing process triggered by double-
stranded short hairpin RNA (shRNA) structures. 
RNAi is mainly used as a research tool for loss-
of-function studies of target genes (Lares et al., 
2010). RNAi can be used to down-regulate anti-
inflammatory genes that suppress DNA vaccine 
action. For example, use of shRNA to knock 
down caspase 12 (Casp12), a cell death 
mediator that is upregulated after DNA vaccinat-
ion resulted in increased plasmid luciferase and 

HIV Env protein expression, and higher T cell 
and antibody responses (Geiben-Lynn et al., 
2011). Depletion of Foxo3, a critical inhibitor of T-
cell proliferation, by RNAi increased the efficacy 
of a HER-2/neu DNA cancer vaccine (Wang et 
al., 2011a). Similarly, knockdown of the IL10 
receptor enhanced the potency of a DC vaccine 
(Kim et al., 2011) and blockade of programmed 
cell death-1 ligand (PD-L1) by RNAi augmented 
DC-mediated T cell responses and antiviral 
immunity in hepatitis B transgenic mice (Jiang, 
2012). Furthermore, increased protective 
immunity against B cell lymphoma was obtained 
by a DNA vaccine combined with IL10 siRNA 
plus CpG oligonucleotide (Pradhan et al., 2014). 
shRNA against furin plus GM-CSF enhanced the 
efficacy of a cancer DNA vaccine (Nemunaitis et 
al., 2014). Hence, use of RNAi to know down 
target genes that inhibit DNA vaccine expression 
represents a powerful new adjuvant strategy, 
especially for cancer vaccines, although the 
safety issues with blocking important anti-
inflammatory pathways and thereby triggering 
autoimmune and other inflammatory diseases 
could be a major concern. 

Targeting technologies as molecular adjuvants 
Parenteral DNA vaccines mainly transfect 
muscle cells and result in poor antigen 
presentation. Therefore, technologies have been 
developed to better target DNA gene expression 
to professional APC, as discussed extensively 
elsewhere in this book. Targeting antigen 
expression to lymph nodes enhances immuno-
genicity of DNA vaccines (Chen et al., 2013; Liu 
et al., 2014a; Toke et al., 2014) and other 
targeting methods have used FIRE (F4/80-like 
receptor) or CIRE (C-type lectin receptor), 
Cle9A, Flt3, DEC205, xrc1, or MHC class II-
targeting peptides or DC specific promoters (Cao 
et al., 2013; Chen et al., 2013; Corbett et al., 
2005; Daftarian et al., 2011; Fossum et al., 2014; 
Kataoka et al., 2011; Lahoud et al., 2011; Moulin 
et al., 2012; Njongmeta et al., 2012; Toke et al., 
2014). Subcellular targeting is another strategy 
for enhancing plasmid-encoded antigen proc-
essing and/or presentation. The endoplasmic 
reticulum can be targeted using E1A or 
lysosomes using LAMP (Freitas et al., 2014; 
Godinho et al., 2014), and autophagy pathways 
can also be targeted (Hu et al., 2014; Meerak et 
al., 2013; Saiga et al., 2014) with, for example, a 
short polypeptide from the herpes simplex virus 
ICP10 gene that induced antigen aggregation 
and autophagosomal degradation enhancing T-
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cell responses when co-expressed with chicken 
ovalbumin (Fu et al., 2010). Similarly a plasmid, 
pATRex, expressing the aggregation domain of 
TEM8 induced autophagy and caspase 
activation and increased IgG1 responses against 
a malaria DNA vaccine (Capitani et al., 2014). 
Thus, targeting DNA vaccines to specific cells or 
subcellular compartments can greatly increase 
antigen processing and presentation and 
promote desired immune responses, making this 
a promising field for molecular adjuvants. 

High-throughput methods for identification of 
new molecular adjuvants  
Development of next-generation sequencing, 
microarrays, and high throughput proteomics 
approaches, provides the opportunity to apply 
these new techniques to identification of new 
molecular adjuvants for DNA vaccines. A recent 
proteomics study screened proteins for 
interaction with plasmid DNA and found that 
human serum amyloid P (SAP) inhibited plasmid 
transfection and enhanced plasmid clearance, 
contributing to the low efficacy of DNA vaccines 
in humans (Wang et al., 2011b). Thus, for 
example, it might be possible to target SAP 
us ing s iRNA to improve DNA vacc ine 
effectiveness in humans. Systems biology 
approaches have also been used to analyse the 
molecular signatures that correlate with a 
positive immunization response. For example, 
expression levels of CaMKIV kinase at day 3 
were negatively correlated with subsequent 
influenza antibody titres (Nakaya et al., 2011). 
This provides a successful example of the 
application of systems biology to identify 
biomarkers that predict vaccine effectiveness 
(Trautmann and Sekaly, 2011), and the identified 
molecules may in turn warrant testing as 
potential new molecular adjuvants. Thus the 
development of new molecular adjuvants will in 
future be facilitated by next generation 
sequencing, advanced bioinformatics analysis 
and other cutting-edge “omics” technologies 
(Kennedy and Poland, 2011; Li et al., 2013c; 
Poland et al., 2011) as discussed more 
extensively in other chapters of this book. 

Optimal design of DNA vaccines 
The immunogenicity of DNA vaccines has been 
helped by use of traditional or molecular 
adjuvants. However, DNA vaccine design is 
equally important to maximization of DNA 
vaccine efficacy. For example, intrinsic elements 
of plasmid DNA can also be used to activate the 

innate immune system, thereby contributing to 
the enhancement of adaptive immune responses 
to DNA-expressed antigens. The innate immune 
system uses pattern-recognition receptors (PRR) 
to sense invasion of pathogens and induce 
downstream signalling pathways including type I 
interferon and other pro-inflammatory cytokine 
production. In both mice and humans, toll-like 
receptor (TLR)-9 is a cytosolic PRR that binds 
unmethylated CpG DNA leading to activation of 
MyD88-dependent signalling pathways (Hemmi 
et al., 2000). In mammalian genomes, CpG 
dinucleotide motifs have a very low frequency 
and most of them are methylated, while in 
bacteria such CpG motifs are common. Hence, 
built-in CpG motifs in the backbone of plasmid 
DNA could be used to activate TLR9 after 
transfection. A study showed that TLR9 was 
important in plasmid DNA prime but not prime-
boost vaccines to activate dendritic cells and 
enhance vaccine protection (Rottembourg et al., 
2010). In addition, TLR9 is important for dendritic 
cells to prime CD8 T cells although gene 
knockout studies suggest TLR9 is not essential 
for DNA vaccines action (Babiuk et al., 2004; 
Tudor et al., 2005).  

Thus a multiplicity of redundant cytosolic DNA 
sensors likely contribute to DNA vaccine 
immunogenicity. One such PRR is cyclic-GMP-
AMP (cGAMP) synthase (cGAS) that, after 
recognition of dsDNA induces the production of 
cGAMP to activate the stimulator of interferon 
genes (STING) (Gao et al., 2013; Sun et al., 
2013; Zhang et al., 2014). Yet another PRR that 
recognises dsDNA is DAI (DLM-1/ZBP1), which 
also activates STING and induces type I 
interferon expression (Takaoka et al., 2007). 
Indeed, TBK1, the common downstream of 
cGAS and DAI, was shown to contribute to the 
adjuvant effect of DNA vaccines (Ishii et al., 
2008).  

Another cytosolic DNA sensor AIM2 induces pro-
inflammatory cytokine production through 
inflammasome activation and may thereby 
enhance DNA vacc ine immunogenic i ty 
(Fernandes-Alnemri et al., 2010; Schroder et al., 
2009). The helicase proteins DHX29 and RIG-I 
both sense cytosolic nucleic acids in the human 
airway system (Sugimoto et al., 2014) and may 
contribute to the immunogenicity of mucosally-
delivered DNA vaccines. There are many other 
DNA sensors, for example DDX41, IFI16, DNA-
PK and MRE11 (Ferguson et al., 2012; Jakobsen 
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and Paludan, 2014; Kondo et al., 2013; 
Parvatiyar et al., 2012; Unterholzner et al., 2010; 
Zhang et al., 2011), that may similarly act as 
potential DNA vaccine adjuvants. Studies on 
these PRR and downstream signalling pathways 
will not only help researchers understand the 
mechanisms of action of DNA vaccines but also 
provide valuable information for design of more 
immunogenic DNA vaccines. 

Codon optimization for enhanced DNA vaccine 
immunogenicity 
Codon usage of pathogens is often very different 
to that of mammalian species. Thus codon 
optimization is required when using human DNA 
vaccines to express pathogen antigens. Codon 
optimization enhanced CD8 T-cell responses 
against a Listeria monocytogenes DNA vaccine 
encoding an epitope of listeriolysin O protein 
(Uchijima et al., 1998). Codon optimization 
enhanced immunogenicity of a DNA vaccine 
encoding bacterial botulinum neurotoxins (Trollet 
et al., 2009), and similarly for other DNA 
vaccines (Li et al., 2013b; Seo et al., 2013; 
Spatz et al., 2013; Williams, 2014; Zhu et al., 
2010). Various algorithms for codon optimization 
are available to assist DNA vaccine development 
(Jacobs et al., 2014; Liu et al., 2014c). Although 
codon optimization increases protein expression, 
it does not always correlate positively with DNA 
vaccine efficacy. For example, a study on a 
malaria DNA vaccine showed that the native 
nucleic acid sequence provided more robust 
CD4+ and CD8+ T cell responses and protection 
against Plasmodium yoelii sporozoite challenge 
(Dobano et al., 2009). Another study using 
codon-optimized plasmids expressing Sm14 
from Schistosoma mansoni showed no increase 
in immunity or protection against S. mansoni 
challenge in mice (Varaldo et al., 2006). Hence, 
while it can be helpful, codon optimisation is not 
guaranteed to enhance DNA vaccine immuno-
genicity. 

Promoter design for enhanced DNA vaccine 
immunogenicity 
DNA vaccine expression is normally driven by a 
polymerase II type promoter. The endogenous 
mammalian Pol II promoters are not as strong as 
promoters derived from virus origin, such as 
cytomegalovirus (CMV) or SV40 promoters 
(vectors include pcDNA3.1, pVAX1, pVIVO2, 
pCI, pCMV and pSV2). The CMV immediate 
early enhancer/promoter has the strongest 
activity in most cell types and thus was widely 

used for DNA vaccine constructs (Cheng et al., 
1993; Manthorpe et al., 1993). Studies using 
HIV-1 Env DNA vaccines have shown that use of 
a strong promoter resulted in higher expression 
levels and higher immune responses (Wang et 
al., 2006). But in some cases, strong promoters 
may result in inferior immune responses. For 
example, hepatitis C virus core protein when 
driven by the strong CMV promoter showed 
immuno-suppressive effects (Cao et al., 2011). 
To address this problem, a new construct was 
designed to express the core protein from an in 
vivo inducible Salmonella promoter while 
keeping expression of envelope protein 2 driven 
from a CMV promoter, and this resulted in higher 
immune responses to both HCV core and E2 
proteins (Cao et al., 2011). Furthermore, some 
viral promoters that drive high antigen express-
ion may result in activation of cytokines, for 
example TNFα or IFN-γ by the viral element, 
which in return may suppress the viral promoter. 
To overcome this kind of problem, some non-
viral promoters such as the MHC class II 
promoter have been tested as alternative DNA 
vaccine promoters (Vanniasinkam et al., 2006). 
Hence while the CMV promoter remains the 
most commonly used, other promoters including 
non-viral medium level promoters may ultimately 
represent better choices for human DNA 
vaccines. 

Optimization of the DNA backbone  
Plasmid vectors used for DNA vaccine usually 
contain some bacterial elements, such as 
replication signals and selection markers for 
propagation in E. coli. However, these elements 
may pose safety issues and reduce expression 
of DNA vaccines. An example is expression 
vector pcDNA3.1, which needed to be modified 
by replacing the Ampicillin selection marker that 
was reported to cause autoimmunity with a 
Kanamycin selection marker (Zhou et al., 2011). 
Removal of redundant vector sequences also 
makes it possible to clone larger DNA vaccine 
fragments. Traditional selection markers can also 
be replaced using the sucrose selection system. 
Translation efficiency and immunogenicity of a 
HIV-1 gp120 DNA vaccine was increased using 
a sucrose selection plasmid combined with a 72 
base pair SV40 enhancer at the 5’ of CMV 
promoter to increase the extra-chromosomal 
transgene expression (Luke et al., 2011b). To 
completely remove bacterial elements, minicircle 
DNA (mcDNA) technology uses site-specific 
recombination based on the ParA resolvase to 
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generate mcDNA (Jechlinger et al., 2004). 
Alternatively, this can be done using inducible 
minicircle-assembly enzymes, PhiC31 integrase 
and I-SceI homing endonuclease (Kay et al., 
2010). mcDNA technology has been successfully 
used in gene therapy experiments in mouse 
models (Osborn et al., 2011; Zuo et al., 2011). A 
recent study showed minicircle DNA is superior 
to plasmid DNA in eliciting antigen-specific CD8+ 
T-cell responses (Dietz et al., 2013). A modified 
mini-intronic plasmid system was used to 
express a transgene in vivo and in vitro for use 
as a more optimal DNA vaccine backbone (Lu et 
al., 2013c). Minicircle DNA technology can also 
be combined with electroporation delivery, with 
enhanced immunogenicity seen with an 
electroporated HIV-1 gag minicircle DNA vaccine 
in mice (Wang et al., 2014).  

Prime-boost strategies for optimal DNA 
vaccine efficacy 
With the help of the above-described vaccine 
design strategies, the immunogenicity of DNA 
vaccines has been greatly enhanced. However, 
human efficacy remains suboptimal. Prime-boost 
approaches such as DNA prime/protein boost, 
DNA prime/viral vector boost (e.g. using 
adenovirus(Ad)) or even protein prime/DNA 
boost regimens can dramatically improve 
immunogenicity without losing the benefits of a 
DNA vaccine approach. Much effort has gone 
into DNA prime /Ad-vector boost approaches for 
HIV vaccination, where these studies have 
shown good tolerance and safety in human 
clinical trials. The DNA priming in a prime/boost 
regimen results in enhanced T-cell and antibody 
responses when compared to boost vaccine 
alone, even when the DNA prime does not 
induce detectab le ant ibody responses 
(Churchyard et al., 2011; De Rosa et al., 2011; 
Jaoko et al., 2010; Koblin et al., 2011). A DNA 
prime/protein boost study showed that influenza 
H5 DNA priming followed by inactivated H5N1 
virus boost enhanced vaccine eff icacy 
(Ledgerwood et al., 2011). A heterologous prime/
boost therapeutic hepatitis C virus vaccine 
strategy similarly showed enhanced immuno-
genicity and improved survival in a challenge 
model (Fournillier et al., 2013). A DNA prime/
adenovirus boost malaria vaccine induced cell-
mediated immunity and complete malaria 
protection (Chuang et al., 2013). Similarly, 
peptide prime/DNA boost or live Bacillus 
Calmette-Guérin (BCG) prime/DNA boost, 
delivered enhanced immunogenicity (Cervantes-

Villagrana et al., 2013; Lambracht-Washington et 
al., 2013). The DNA prime/alternative boost 
strategy takes advantage of the efficient DNA 
priming effect on memory B cells and T cells that 
may be undetectable unt i l af ter boost 
immunization, so normally adjuvant has not been 
formulated with the DNA prime. Recent studies 
on prime/boost strategies showed that the 
interval between prime and boost may be critical 
to optimal vaccine efficacy (Khurana et al., 2013; 
Ledgerwood et al., 2013). Hence currently 
prime-boost strategies are the most promising in 
terms of optimization of DNA vaccine efficacy, 
but come at the price of requiring two separate 
vaccine formulations thereby increasing the cost 
of vaccine development and manufacture. The 
underlying mechanisms to explain the increased 
effectiveness of prime-boost strategies remain 
poorly understood, but the lower protein 
expression from DNA immunization may 
preferentially prime T-helper cell responses, with 
the humoral response subsequently being 
stimulated by the high dose protein or viral 
vector boost in combination with this pre-existing 
T-cell help. 

Concluding remarks and future trends 
The immunogenicity of DNA vaccines in humans 
remains limited by their low level of antigen 
expression compared to protein vaccines. To 
overcome this, various physical or molecular 
adjuvants can be incorporated into DNA vaccine 
design. Advances in related research areas 
including genomics and systems biology have 
increased the number of immune genes that 
could be used as potential genetic adjuvants. 
Additional strategies include optimization of DNA 
construct design to maximize protein expression, 
targeting of expressed antigens to professional 
APC thereby ensuring efficient MHC-I and MHC-
II compartment loading, use of electroporation or 
other transfection tools and use of DNA prime/
protein or vector boost approaches. The most 
likely scenario for a successful human DNA 
vaccine is as part of a DNA prime/protein boost 
strategy where the DNA prime is used to ensure 
efficient CD8 and CD4 T-cell priming and the 
protein boost is used to maximize antibody 
production. Not to be forgotten, recent years 
have witnessed very fast development in the 
area of RNA vaccines with the potential to 
overcome problems of low antigen expression. 
Most molecular adjuvants discussed above in 
the context of DNA vaccines can equally be 
applied to RNA vaccines. It remains likely that 
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the first human DNA vaccines will be in the area 
of therapeutic vaccines against cancer given the 
large number of trials being conducted in this 
area, but infectious disease applications such as 
in the area of HIV also look promising.  

Web resources 
Refer to the following websites for more 
information about DNA vaccine clinical trials.  
• http://www.cancer.gov/clinicaltrials  
• http://clinicaltrials.gov 
• http://clinicaltrialsfeeds.org/  
• http://www.dnavaccine.com/;  
• http://www.niaid.nih.gov/volunteer/vrc/Pages/

default.aspx  
• http://www.clinicaltrials.gov/ct2/show/NCT0000 

5916  
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