Next Issue
Volume 6, July
Previous Issue
Volume 6, May
 
 

Pharmaceuticals, Volume 6, Issue 6 (June 2013) – 6 articles , Pages 689-787

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
208 KiB  
Brief Report
Phorbol Ester Modulation of Ca2+ Channels Mediates Nociceptive Transmission in Dorsal Horn Neurones
by Li Yang, Iqbal Topia, Toni Schneider and Gary J. Stephens
Pharmaceuticals 2013, 6(6), 777-787; https://doi.org/10.3390/ph6060777 - 29 May 2013
Cited by 2 | Viewed by 6224
Abstract
Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC). Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ [...] Read more.
Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC). Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ channels (VDCCs). In this brief report, we investigate the potential involvement of CaV2 VDCC subtypes in functional effects of the phorbol ester, phorbol 12-myristate 13-acetate (PMA) on nociceptive transmission in the spinal cord. Effects of PMA and of selective pharmacological blockers of CaV2 VDCC subtypes on nociceptive transmission at laminae II dorsal horn neurones were examined in mouse spinal cord slices. Experiments were extended to CaV2.3(−/−) mice to complement pharmacological studies. PMA increased the mean frequency of spontaneous postsynaptic currents (sPSCs) in dorsal horn neurones, without an effect on event amplitude or half-width. sPSC frequency was reduced by selective VDCC blockers, w-agatoxin-IVA (AgTX; CaV2.1), w-conotoxin-GVIA (CTX; CaV2.2) or SNX-482 (CaV2.3). PMA effects were attenuated in the presence of each VDCC blocker and, also, in CaV2.3(−/−) mice. These initial data demonstrate that PMA increases nociceptive transmission at dorsal horn neurones via actions on different CaV2 subtypes suggesting potential anti-nociceptive targets in this system. Full article
(This article belongs to the Special Issue Calcium Antagonists)
Show Figures

Figure 1

160 KiB  
Review
How “Pharmacoresistant” is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels?
by Toni Schneider, Maxine Dibué and Jürgen Hescheler
Pharmaceuticals 2013, 6(6), 759-776; https://doi.org/10.3390/ph6060759 - 27 May 2013
Cited by 12 | Viewed by 6783
Abstract
Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific signaling complexes, which regulate important processes like gene expression, neurotransmitter release and neuronal excitability. It is becoming increasingly evident that the so called “resistant” (R-type) VGCC Cav2.3 is critical in several [...] Read more.
Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific signaling complexes, which regulate important processes like gene expression, neurotransmitter release and neuronal excitability. It is becoming increasingly evident that the so called “resistant” (R-type) VGCC Cav2.3 is critical in several physiologic and pathophysiologic processes in the central nervous system, vascular system and in endocrine systems. However its eponymous attribute of pharmacologic inertness initially made in depth investigation of the channel difficult. Although the identification of SNX-482 as a fairly specific inhibitor of Cav2.3 in the nanomolar range has enabled insights into the channels properties, availability of other pharmacologic modulators of Cav2.3 with different chemical, physical and biological properties are of great importance for future investigations. Therefore the literature was screened systematically for molecules that modulate Cav2.3 VGCCs. Full article
Show Figures

Figure 1

636 KiB  
Review
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs
by Guangshun Wang
Pharmaceuticals 2013, 6(6), 728-758; https://doi.org/10.3390/ph6060728 - 27 May 2013
Cited by 86 | Viewed by 15267
Abstract
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, [...] Read more.
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells. Full article
(This article belongs to the Special Issue Peptide Drug Discovery and Development)
Show Figures

Graphical abstract

182 KiB  
Review
Dysregulation of the Mammalian Target of Rapamycin and p27Kip1 Promotes Intimal Hyperplasia in Diabetes Mellitus
by Thomas Cooper Woods
Pharmaceuticals 2013, 6(6), 716-727; https://doi.org/10.3390/ph6060716 - 27 May 2013
Cited by 20 | Viewed by 7152
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) in the intima of an artery, known as intimal hyperplasia, is an important component of cardiovascular diseases. This is seen most clearly in the case of in-stent restenosis, where drug eluting stents are [...] Read more.
The proliferation and migration of vascular smooth muscle cells (VSMCs) in the intima of an artery, known as intimal hyperplasia, is an important component of cardiovascular diseases. This is seen most clearly in the case of in-stent restenosis, where drug eluting stents are used to deliver agents that prevent VSMC proliferation and migration. One class of agents that are highly effective in the prevention of in-stent restenosis is the mammalian Target of Rapamycin (mTOR) inhibitors. Inhibition of mTOR blocks protein synthesis, cell cycle progression, and cell migration. Key to the effects on cell cycle progression and cell migration is the inhibition of mTOR-mediated degradation of p27Kip1 protein. p27Kip1 is a cyclin dependent kinase inhibitor that is elevated in quiescent VSMCs and inhibits the G1 to S phase transition and cell migration. Under normal conditions, vascular injury promotes degradation of p27Kip1 protein in an mTOR dependent manner. Recent reports from our lab suggest that in the presence of diabetes mellitus, elevation of extracellular signal response kinase activity may promote decreased p27Kip1 mRNA and produce a relative resistance to mTOR inhibition. Here we review these findings and their relevance to designing treatments for cardiovascular disease in the presence of diabetes mellitus. Full article
(This article belongs to the Special Issue Protein Kinase Inhibitors)
Show Figures

Figure 1

735 KiB  
Article
Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques
by Qosay A. Al-Balas, Haneen A. Amawi, Mohammad A. Hassan, Amjad M. Qandil, Ammar M. Almaaytah and Nizar M. Mhaidat
Pharmaceuticals 2013, 6(6), 700-715; https://doi.org/10.3390/ph6060700 - 27 May 2013
Cited by 16 | Viewed by 8120
Abstract
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses [...] Read more.
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection. Full article
Show Figures

Figure 1

129 KiB  
Review
Calcium Channel Blockers as Tocolytics: Principles of Their Actions, Adverse Effects and Therapeutic Combinations
by Róbert Gáspár and Judit Hajagos-Tóth
Pharmaceuticals 2013, 6(6), 689-699; https://doi.org/10.3390/ph6060689 - 23 May 2013
Cited by 29 | Viewed by 8708
Abstract
Dihydropyridine Ca2+ channel blockers (CCBs) are widely accepted in the treatment of premature labour. Their mechanism of action in tocolysis involves the blockade of L-type Ca2+ channels, influenced by the Ca2+-activated K+ channels, beta-adrenergic receptors (β-ARs) and sexual [...] Read more.
Dihydropyridine Ca2+ channel blockers (CCBs) are widely accepted in the treatment of premature labour. Their mechanism of action in tocolysis involves the blockade of L-type Ca2+ channels, influenced by the Ca2+-activated K+ channels, beta-adrenergic receptors (β-ARs) and sexual hormones. In clinical practice, most experience has been gained with the use of nifedipine, whose efficacy is superior or comparable to those of β-agonists and oxytocin antagonists. Additionally, it has a favourable adverse effect profile as compared with the majority of other tocolytics. The most frequent and well-tolerated side-effects of CCBs are tachycardia, headache and hypotension. In tocolytic therapy efforts are currently being made to find combinations of tocolytic agents that yield better therapeutic action. The available human and animal studies suggest that the combination of CCBs with β-AR agonists is beneficial, although such combinations can pose risk of pulmonary oedema in multiple pregnancies and maternal cardiovascular diseases. Preclinical data indicate the potential benefit of combinations of CCBs and oxytocin antagonists. However, the combinations of CCBs with progesterone or cyclooxygenase inhibitors may decrease their efficacy. The CCBs are likely to remain one of the most important groups of drugs for the rapid inhibition of premature uterine contractions. Their significance may be magnified by further clinical studies on their combined use for tocolysis. Full article
(This article belongs to the Special Issue Calcium Antagonists)
Previous Issue
Next Issue
Back to TopTop