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Abstract: The current epitope selection methods for peptide vaccines often rely on epitope binding
affinity predictions, prompting the need for the development of more sophisticated in silico methods
to determine immunologically relevant epitopes. Here, we developed AutoPepVax to expedite
and improve the in silico epitope selection for peptide vaccine design. AutoPepVax is a novel
program that automatically identifies non-toxic and non-allergenic epitopes capable of inducing
tumor-infiltrating lymphocytes by considering various epitope characteristics. AutoPepVax employs
random forest classification and linear regression machine-learning-based models, which are trained
with datasets derived from tumor samples. AutoPepVax, along with documentation on how to run the
program, is freely available on GitHub. We used AutoPepVax to design a pan-cancer peptide vaccine
targeting epidermal growth factor receptor (EGFR) missense mutations commonly found in lung
adenocarcinoma (LUAD), colorectal adenocarcinoma (CRAD), glioblastoma multiforme (GBM), and
head and neck squamous cell carcinoma (HNSCC). These mutations have been previously targeted
in clinical trials for EGFR-specific peptide vaccines in GBM and LUAD, and they show promise but
lack demonstrated clinical efficacy. Using AutoPepVax, our analysis of 96 EGFR mutations identified
368 potential MHC-I-restricted epitope–HLA pairs from 49,113 candidates and 430 potential MHC-
II-restricted pairs from 168,669 candidates. Notably, 19 mutations presented viable epitopes for
MHC I and II restrictions. To evaluate the potential impact of a pan-cancer vaccine composed of
these epitopes, we used our program, PCOptim, to curate a minimal list of epitopes with optimal
population coverage. The world population coverage of our list ranged from 81.8% to 98.5% for
MHC Class II and Class I epitopes, respectively. From our list of epitopes, we constructed 3D
epitope–MHC models for six MHC-I-restricted and four MHC-II-restricted epitopes, demonstrating
their epitope binding potential and interaction with T-cell receptors. AutoPepVax’s comprehensive
approach to in silico epitope selection addresses vaccine safety, efficacy, and broad applicability.
Future studies aim to validate the AutoPepVax-designed vaccines with murine tumor models that
harbor the studied mutations.

Keywords: machine learning for peptide vaccine design; new vaccine design method; pan cancer
vaccine; EGFR vaccine design; epitopes; MHC I and II; T-Cell receptors

1. Introduction

Identifying immunodominant epitopes to elicit clinically significant responses is cru-
cial in developing a successful peptide vaccine. Nevertheless, the selection of epitopes
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in previous in silico studies has typically only relied on predicting the binding affinity of
the epitopes to a patient’s HLA molecules [1,2]. Therefore, there is a need to improve the
epitope selection process for peptide vaccine design. Our previous studies have enhanced
the epitope selection methods by applying exclusion criteria based on several epitope
characteristics [3–5]. These methods required some manual data collection across several
online tools, and they did not utilize experimental data to determine the cutoffs for the
exclusion criteria [3–5]. Another study by Gartner et al. used experimental data to train
a machine-learning-based model that ranks MHC-I-restricted epitopes based on compu-
tational epitope characteristics and transcriptomic data [6,7]. The model developed by
Gartner et al. is based upon tumor neoantigen data. However, this model can only be
used for the design of personalized peptide vaccines, as it requires RNA sequence anal-
ysis data [7]. Additionally, Gartner et al. did not consider MHC-II-restricted epitopes or
safety precautions such as toxicity and allergenicity in their model [7]. While these studies
have improved upon epitope selection efforts, there are no widely accepted methods of
epitope selection that automatically rank epitopes based on the epitope sequence alone.
Such a method would allow preclinical and clinical peptide vaccine trials to efficiently
prioritize the testing of epitopes without requiring tumor samples or RNA sequence analy-
sis data. Here, we applied our AutoPepVax program to select neoantigens derived from
common EGFR missense mutations across four cancers. Then, we assessed the efficacy of a
pan-cancer vaccine targeting the EGFR neoantigens identified by AutoPepVax.

A pan-cancer vaccine is a vaccine that aims to target several cancers by introducing
the immune system to epitopes derived from common tumor antigens across several can-
cers. Many clinical trials assessing the efficacy of peptide vaccines for cancer therapy are
underway [1,8,9]. However, no clinical trials are investigating pan-cancer peptide vaccines.
Peptide vaccines targeting tumor-specific antigens (TSAs) often include mutated epitopes
from a common mutant protein. Mutant epidermal growth factor receptor (EGFR) has been
a target for peptide vaccines [1,8–12]. EGFR mutations drive tumorigenesis through the
MAPK and PI3K signaling pathways for many cancers, including lung adenocarcinoma
(LUAD), glioblastoma multiforme (GBM), colorectal adenocarcinoma (CRAD), and head
and neck squamous cell carcinoma (HNSCC) [3–5]. A phase III study (NCT01480479)
of a vaccine containing deletion mutation EGFRvIII-specific peptides concluded that the
vaccine did not improve survival for newly diagnosed GBM patients [9,11]. However, pa-
tients receiving the same vaccine administered concurrently with granulocyte–macrophage
colony-stimulating factor in a phase II study (NCT01498328) showed robust anti-EGFRvIII
antibody titers and potential therapeutic benefits [8,10]. A phase I study (NCT04397962)
of personalized peptide vaccines targeting mutant EGFR in non-small-cell lung cancer
(NSCLC) demonstrated that the L858R and T790M mutations were immunogenic in four
patients [1,12]. Vaccinations in murine models of EGFR mutant NSCLC also demonstrate
immune responses against tumors [13,14]. Evidence of peptide vaccines eliciting anti-
tumor responses in GBM and NSCLC suggests the potential for the development of robust
vaccines for other EGFR-mutant cancers, including LUAD, GBM, CRAD, and HNSCC.

EGFR mutations are present in 38.0% of patients with LUAD. LUAD accounts for
40% of all lung cancer diagnoses. Pembrolizumab and nivolumab can prolong the 5-
year survival rates of patients with LUAD to nearly 25% [15]. Standard interventions
for GBM, such as surgery, radiation, and systemic therapy, can only extend the patient’s
overall survival by several years [16]. GBM accounts for nearly 80% of all brain cancer
cases and has a median survival period of roughly 14–15 months [17]. Among patients
with GBM, the EGFRvIII deletion mutation is the most prevalent [18]. Head and neck
squamous cell carcinoma (HNSCC) has an EGFR mutation frequency of 80–90% [19]; hence,
recent immunotherapeutic treatments have mainly targeted EGFR. Pembrolizumab and
nivolumab improve the prognosis for patients with HNSCC [19]. CRAD is the second
leading cause of cancer death worldwide, with an overall 5-year survival rate of just
over 60% [20]. Current therapies include surgery, chemotherapy, radiation, and EGFR
inhibitors when warranted [21]. Peptide vaccines for CRAD are hindered by adverse
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immunosuppression and intolerance [22]. EGFR is overexpressed in around 70% of cases,
and the mutations may be oncogenic [21]. EGFR mutations are prevalent in each of these
cancers; therefore, patients with these cancers may benefit from a pan-cancer vaccine that
targets common EGFR mutations. However, determining the epitope composition for a
vaccine remains a challenge. In this study, we developed the Python-based AutoPepVax
version 1.0 software program to select and rank candidate epitopes for inclusion in a
peptide vaccine. We applied AutoPepVax to the design of the first pan-cancer vaccine
design to target EGFR, and our results indicate that the EGFR missense mutations for each
cancer contain immunogenic peptides. AutoPepVax could be a starting point for preclinical
vaccine research by automating the prioritization of candidate neoantigens.

2. Results
2.1. Workflow of Results

AutoPepVax employs machine-learning-based models for EHLA-I pair selection and
ranking, as described in Figure 1. We trained and assessed the RF classification and linear
regression models incorporated in AutoPepVax with five-fold cross-validation. Other
classification and regression models were similarly validated to compare their performance
to that of the RF and linear regression models. After validating the models, AutoPepVax
was applied to a list of prevalent EGFR missense mutations in four different cancers.
AutoPepVax produced filtered lists of positive EHLA-I and EHLA-II pairs from the EGFR
mutations. From these lists, PCOptim-CD [3] was used to determine the population
coverage of the positive EGFR EHLA pairs. Finally, we constructed 3D models of select
EGFR EHLA complexes and EHLA–TCR complexes.

2.2. Validating AutoPepVax’s MHC-I-Restricted Epitope Assessment Model

The dataset used to train the random forest classification and linear regression models
used in AutoPepVax included 763 EHLA-I pairs. Of these pairs, 109 were labeled as positive
or able to induce tumor-specific CD8+ T cells. The other 654 pairs were negative or unable
to induce tumor-specific CD8+ T cells. RF classification models with different combinations
of input features were assessed via five-fold validation. The average accuracy scores, PPV,
and TPR for each validation can be seen in Supplementary Table S1. The RF classification
model with the input features of antigenicity, hydropathicity, MHCflurry rank, MHCflurry
wild-type rank to mutant rank ratio, and NetMHCstabpan stability prediction offered the
most accurate model (accuracy = 0.96). AutoPepVax used this model to classify the EHLA-I
pairs as positive or negative. The relative importance of each feature in this random forest
model is shown in Figure 2. We used the RF classification model to classify the epitopes
used in peptide vaccine clinical trials. We classified the EHLA-I pairs as positive or negative
for 103 epitopes used in clinical trials. The RF classification model identified 62.1% of the
epitopes as having at least one positive EHLA-I pair.

To compare different classification models, we performed cross-validations for the
SVM, GNB, and MLP classification models with different combinations of input fea-
tures. The MLP classification model with the input features of antigenicity, hydropathicity,
MHCflurry rank, MHCflurry wild-type rank to mutant rank ratio, and NetMHCstabpan
stability prediction offered the second most accurate model (accuracy = 0.967). This model
had the best TPR, with 0.928 of the identified positive EHLA-I pairs being true positives.
The best RF classification model had a TPR of 0.898. The least accurate model was the
SVM classification with the input features of immunogenicity, hydropathicity, NetMHC
rank, MHCflurry wild-type rank to mutant rank ratio, and NetMHCstabpan stability
(accuracy = 0.950). Two GNB classification models had the lowest TPRs (TPR = 0.752).
The average accuracy scores, PPV, and TPR for these cross-validations can be seen in
Supplementary Table S1.
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Figure 1. Workflow of the AutoPepVax design and application of AutoPepVax to pan-cancer vaccine
design targeting EGFR. (1) Develop Python functions to automatically collect characteristics of
mutated epitopes, such as binding affinity to HLA molecules and antigenicity. The characteristics are
calculated by various in silico tools. The outputs of the in silico tools are collected by web scraping or
using an API. (2) Obtain a dataset of MHC-I-restricted epitopes from tumor samples known to induce
TILs or be non-antigens and determine their characteristics. (3) With the dataset, train a random
forest model to classify the epitopes as positive (lymphocyte-inducing) or negative (non-antigen)
epitopes. In addition, train a linear regression model to score the epitopes so that they may be ranked
within their respective groups. (4) Combine the classification and regression model with the exclusion
criteria from our prior studies into one program. (5A) Find EGFR missense mutations commonly
implicated in several cancers. Use AutoPepVax’s data collection capabilities to determine the
values of various epitope characteristics for the mutated epitopes. (5B) AutoPepVax classifies and
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ranks MHC-I-restricted epitopes with our models. (5C) AutoPepVax filters the lists of viable epitopes
via exclusion criteria. The filtered and unfiltered lists are output by AutoPepVax as CSV files to a
folder specified by the user. (6) Use PCOptim to determine the population coverage of a vaccine
with a minimal epitope formulation based on the AutoPepVax output. (7) Using the epitope list
generated by PCOptim and finalize the pan-cancer vaccine composition, which contains mutated
MHC-I- and II-restricted epitopes. (8) Create 3D models of some viable epitopes bound to TCRs and
HLA molecules.
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Figure 2. Here, the feature importances of the random forest model, which classifies EHLA-I pairs,
are displayed in a bar graph. The levels of importance correspond to the relative contributions of
each feature to the classification of EHLA-I pairs.

To further sort the positive pairs selected by the RF classification model, we trained
and tested a linear regression model to score the EHLA-I pairs via five-fold validation.
Again, different combinations of input features were tested to determine which input
features provided the best model. The average AUC of ROC for the folds of each validation
can be seen in Supplementary Table S2. Each linear regression model had an AUC greater
than 0.980 regardless of the input features used. Of the tested linear regression models, the
model with the input features of MHCflurry rank, MHCflurry wild-type rank to mutant
rank ratio, and NetMHCstabpan stability had the highest AUC of ROC (AUC = 0.989). This
linear regression model was used to rank the positive EHLA-I pairs for each cancer.

We also validated the RF, GB, and logistic regression models. The logistic regression
model with the input features of MHCflurry rank, MHCflurry wild-type rank to mutant
rank ratio, and NetMHCstabpan stability had the highest AUC of ROC (AUC = 0.992) of all
models. When we attempted to rank the test epitopes by score using this linear regression
model, most epitopes scored exactly 1 or 0. These epitopes could not be ranked because
their scores were too close to compare. The GB regression models had the lowest AUCs,
ranging from 0.953 to 0.976. All other models had AUCs higher than 0.976. The average
AUC of ROC for the folds of these cross-validations can be seen in Supplementary Table S2.

2.3. AutoPepVax Operation

AutoPepVax is run on a Jupyter Notebook. It requires several dependencies. A full
description of how to install and run AutoPepVax is freely available at Https://Github.
Com/Enricobautista/Autopepvax (accessed on 21 March 2024). Once the user has opened
the Jupyter Notebook that runs AutoPepVax and installed the proper dependencies, the
user must specify a cancer name, an unmutated protein sequence, and a list of missense
mutations for AutoPepVax to analyze. The user can do this by altering the variables in
the top cell of the Jupyter Notebook, as shown in Figure 3. After the inputs are defined,
the user can run all of the cells, and AutoPepVax will analyze all possible mutant epitopes

Https://Github.Com/Enricobautista/Autopepvax
Https://Github.Com/Enricobautista/Autopepvax
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as described in the Methods. Each cell will be run sequentially. The cell currently being
executed is indicated by a star in brackets on the left side of the cell, as follows: [*].
Completed cells will be numbered within brackets on their left, as shown in Figure 3. Upon
the execution of all cells, AutoPepVax populates a folder with the cancer name that contains
filtered and unfiltered EHLA pair lists. The output files are described in Table 1. The user
can access this folder via the same folder that AutoPepVax was run from.
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Figure 3. An excerpt of the Jupyter Notebook through which AutoPepVax’s programs can be run to
collect data for CRAD missense mutations. In the first cell, the user alters the variables to specify
the name of the cancer in which the mutations occur, the canonical sequence of the protein, and the
missense mutations to be analyzed. All cells beneath do not need to be adjusted. The user may simply
run all cells to generate the output files.

Table 1. This table includes the names and descriptions of the output files that will populate the
folder named after the cancer being studied.

File Description

CD4 Epitopes.csv A list of all analyzed EHLA-II pairs and their pertinent
characteristics.

CD4 Filtered Epitopes.csv A filtered list of EHLA-II pairs that meet the exclusion criteria.

CD8 Epitopes.csv A list of all analyzed EHLA-I pairs and their pertinent
characteristics, including ID and score.

CD8 Filtered Epitopes.csv A filtered list of EHLA-I pairs that meet the exclusion criteria.

Sequence.txt A list of epitopes for internal use.

2.4. EGFR-Mutated Epitopes Identified by AutoPepVax

Across GBM, CAC, LUAD, and HNSCC, 96 missense mutations were analyzed.
Among EHLA-I pairs, 49,113 were analyzed, yielding 368 positive pairs after filtration.
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Among EHLA-II pairs, 168,669 were analyzed, yielding 430 positive pairs after filtration.
The mutations studied for each cancer and the total number of EHLA pairs before and
after filtering are shown in Supplementary Table S3. Supplementary Tables S4–S19 include
the complete lists of EHLA pairs and their characteristics. Table 2 lists the mutations that
had positive EHLA-I and EHLA-II pairs. Of the 96 missense mutations assessed, only 19
had positive EHLA-I and EHLA-II pairs. The G598V mutation is the only one of these
19 mutations to be prevalent in multiple cancers.

Table 2. Table of mutations with positive EHLA-I and EHLA-II pairs after filtration for each cancer.
Overlapping epitopes imply that some patients harboring these mutations may have a CD4+ and
CD8+ T-cell response induced by vaccination.

Cancer
Number of Mutations with

Positive EHLA-I and
EHLA-II Pairs

Total Mutations Mutations with Overlapping Epitopes

Glioblastoma Multiforme 1 8 G598V

Colorectal Adenocarcinoma 12 62
R958H, G857R, L707S, E711V, P753L,
S442R, G131R, L140V, E709K, R451C,

S768G, T710A

Lung Adenocarcinoma 5 11 L861Q, E709K, L858R, G598V, S768I

Head and Neck Squamous
Cell Carcinoma 1 15 E967A

2.5. Pan-Cancer Vaccine Population Coverage

For all positive EHLA pairs of each cancer, the world and regional population coverage
was determined. The population coverage calculations of EHLA-I pairs and EHLA-II pairs
for each region are shown in Supplementary Tables S20–S23. The optimized epitope lists
used to find the population coverages are included in Supplementary Tables S24 and S25.

2.6. Population Coverage

The combined dataset of CRAD, LUAD, HNSCC, and GBM EHLA-I pairs had optimal
world population coverage of 98.55%. EHLA-I pairs had average regional coverage of
89.03%. Europe had the highest regional coverage at 99.68%, and Central America had
the lowest coverage at 7.76%. The world and regional coverages for EHLA-I are shown in
Supplementary Tables S20 and S21. The average number of epitopes in the EHLA lists that
were recognized by people around the world, or the average epitope/HLA combination
hits, was calculated. The minimum epitope/HLA combination hits recognized by 90% of
the world was also calculated. The filtered set of EHLA-I pairs have an average of 22.66 epi-
tope/HLA combination hits recognized by the population. Of these, 5.32 epitope/HLA
combination hits are recognized by a minimum of 90% of the population per region.

The filtered EHLA-II pairs resulted in the total world coverage of 81.81% with an
overall 37.84 average hits. EHLA-II pairs had average regional coverage of 64.55%. North
America had the highest regional coverage at 87.89% and South Africa had the lowest
coverage at 32.10%. Due to the limitations of the IEDB database, not all EHLA-II pairs
could be assessed for population coverage. A list of all of the EHLA-II pairs that were
not accepted through IEDB and, therefore, were excluded from the population coverage
results is listed in Supplementary Table S26. The world and regional coverages between the
optimized and filtered sets were equal for the pan-cancer dataset. Therefore, no exclusion
criteria from AutoPepVax hinder the population coverage. The world population coverage
data for each list of epitopes can be seen in Table 3.
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Table 3. Population coverage results of all epitopes obtained from IEDB.org. (a) Projected world
population coverage percentage. (b) Average epitope/HLA allele hit indicates the average number of
epitopes recognized by the population. (c) The PC90 is the minimum number of epitopes that are
recognized by at least 90% of the population.

Class EHLA-I Optimized EHLA-I Filtered EHLA-II Optimized EHLA-II Filtered

World Coverage a 98.55% 98.55% 81.81% 81.81%

Average Epitope Hit b 2.3 30.88 1.11 38.74

PC90 c 1.51 11.2 0.55 19.24

2.7. TCR Models and Binding

We modeled three top epitopes to two EHLA-I pairs and one EHLA-II pair using
mDockPep and PyMol. The 3D models of the EHLA pairs are shown in Figures 4 and 5.
The bound epitopes are docked within the binding grooves of the HLA molecules. Then,
the 3D models of the EHLA–TCR interactions were developed utilizing TCRModel, as
shown in Figure 6. The 0606T1-2 TCR complex is sensitive to HLA-A*03 and was thus
used to model the interactions between the TCR complex and HLA-A*03:01 bound to
ILKETELKK. The TCRs are able to dock closely to the EHLA pairs such that the residues of
the TCRs interact with the epitope. Supplementary Figures S1–S3 include superimposed
images of our EHLA pairs with sample HLA molecules from the RCSB Protein Data Bank.
The EHLA complex aligns closely with the original protein in the superimposed images.
We did not find any significant conformation deformation of the HLA with the peptide
epitope’s bound structure. The 3D coordinates of all pMHC and pMHC–TCR models’ PDB
files for Figures 4–6 and Supplementary Figures S1–S3 are available for download in the
Supplementary PDB Files.
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Figure 4. The yellow structures are HLA molecules, and the red structures are epitopes. (A) Glioblas-
toma multiforme epitope, VVMGENNTLV, binding to MHC Class I molecule HLA-A*02:06 (RCSB
PDB: 3OXR). (B) Head and neck squamous cell carcinoma epitope, ILKETELKK, binding to MHC
Class I molecule HLA-A*03:01 (RCSB PDB: 7L1C, A chain). These models appear to illustrate epitopes
binding efficiently to the binding grooves of the MHC molecule.
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ILKKTEFKKIKVLGS, binding to MHC Class II molecule HLA-DRB1*04:01 (RCSB PDB: 5JLZ).
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Figure 6. The yellow structures are HLA molecules, and the red structures are epitopes. The green
structures are TCRs. (A) ILKETELKK-HLA-A*02:06 complex binding to the human 0606T1-2 TCR
complex (RCSB PDB: 7RRG, C and D chain). (B) ILKETELKK-HLA-A*03:01 complex binding to the
D30 TCR in the complex. The EHLA complexes appear to bind effectively to the TCR complex.

3. Discussion

We developed AutoPepVax to automatically select immunogenic EHLA pairs that do
not cause allergic or toxic effects. Our prior methods of epitope selection address the safety
and efficacy of vaccine candidates via a series of exclusion criteria [3–5]. However, the lists
that we generated with these methods did not rank EHLA pairs [3–5]. Therefore, relying on
exclusion criteria alone does not provide a definitive method to prioritize epitope testing in
pre-clinical and clinical trials. Gartner et al. addressed this issue by developing a model
for the ranking of tumor neoantigens that is trained on experimental data derived from
tumor samples [7]. This model requires RNA sequence analysis data and is geared toward
the development of personalized cancer vaccines [7]. Gartner et al. also did not consider
the viability of EHLA-II pairs, a primary limitation of their study [7]. Thus, unlike the
model developed by Gartner et al., AutoPepVax can rank viable EHLA-I pairs or select
viable EHLA-II pairs without the need for tumor-specific RNA sequence analysis data [7].
The levels of neoantigen expression may vary across tumors, so cancer-specific and pan-
cancer vaccine studies cannot consider tumor-specific transcriptomic data. Additionally, the
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model developed by Gartner et al. does not include the safety precautions that our previous
methods employed [3–5,7]. AutoPepVax applies the strengths of Gartner et al.’s epitope
selection model by utilizing two machine-learning-based models, a linear regression model
and an RF classification model, with subsequent filtration by exclusion criteria. Both
models are validated with experimental data. By training the models on known positive
EHLA-I pairs, our models have a concrete threshold to determine whether an EHLA-I
pair will induce TILs and a basis for the ranking of EHLA-I pairs. With AutoPepVax,
potential peptide-based cancer vaccines targeting many missense mutations can be studied
expeditiously. AutoPepVax may be applied to pan-cancer, cancer-specific, and personalized
peptide vaccines. For pan-cancer and cancer-specific peptide vaccines, the user must input
any mutations of interest and AutoPepVax will rank the viable epitopes. The user input
can be adjusted to study mutations and HLA alleles that are specific to a patient; studies
aiming to develop personalized peptide vaccines may produce ranked EHLA-I lists for
each participant.

We trained our models with five-fold cross-validation to reduce the possibility of
overfitting our models to one subset of the data that we used. We found that the linear
regression model was robust, with an AUC of 0.989. However, this linear regression model
was not the highest-performing regression model. Of all validated models, the logistic
regression model with the input features of the MHCflurry rank, MHCflurry wild-type
rank to mutant rank ratio, and NetMHCstabpan stability had the highest AUC of ROC
(AUC = 0.992). Despite its impressive AUC, this logistic regression model generates mostly
binary scores of 0 or 1 for EHLA-I pairs. These binary scores were too similar to compare.
Therefore, this model is unfit for the ranking of EHLA-I pairs. Of the classification models
validated, AutoPepVax’s RF classification model was the most accurate (accuracy = 0.967).
It is also important to consider the model sensitivity, as only a small portion of the analyzed
EHLA pairs will be immunogenic. The RF classification model had a TPR of 0.898. Only the
MLP classification model with the input features of antigenicity, hydropathicity, MHCflurry
rank, MHCflurry wild-type rank to mutant rank ratio, and NetMHCstabpan stability
prediction offered a better TPR (TPR = 0.928). With either model, less than 11% of the
truly positive EHLA-I pairs will be falsely labeled as negative. Thus, AutoPepVax will not
egregiously omit therapeutic epitopes. The RF classification model was tested on epitopes
that were used in peptide vaccine clinical trials. Despite its accuracy during the five-fold
validation, the RF classification model identified only 62.1% of the epitopes from clinical
trials as having at least one positive EHLA-I pair. We did not investigate whether these
epitopes successfully induced anti-tumor immune responses. It is possible that the TAAs
used in clinical trials are not highly immunogenic.

According to the feature importance of our RF model, the binding rank, wild type to
mutant rank ratio, binding stability, antigenicity, and hydropathicity were determined to
be important in ranking and classifying EHLA-I pairs. These features have previously been
used by us and others to assess epitope viability for peptide vaccines [3,4,7]. The general
trends of the linear regression model scores indicate this as well. EHLA-I pairs with high
scores tend to have a low binding rank and high stability. It is uncommon for a positive
EHLA pair to have a binding rank above the fifth percentile. Despite the binding rank
being an important parameter, the ratio of the wild type to mutant epitope rank carries
much less importance. It may be that substituting a single amino acid due to a missense
mutation does not usually alter the binding properties of an epitope significantly. Although
hydropathicity and antigenicity contribute some value to the classification of EHLA-I pairs,
they demonstrated the least importance of the five input features for the RF classification.
These characteristics tend to vary the most among the positive EHLA-I pairs.

We applied AutoPepVax to the design of a pan-cancer peptide vaccine targeting EGFR
missense mutations. AutoPepVax was used to determine the positive EHLA-I and EHLA-II
pairs for prevalent EGFR mutations across various cancers. AutoPepVax’s inclusion of
EHLA-II pairs accounts for the various effects that CD4+ T cells have on the antitumor
immune response [23,24]. There were 19 mutations with both positive EHLA-I and EHLA-
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II pairs. The G598V mutation was represented in both the GBM and LUAD vaccines.
Immunization with peptides specific to G598V mutations may elicit a particularly potent
immune response against cancers harboring this mutation.

After selecting the positive EGFR EHLA-I and EHLA-II pairs, we used PCOptim-
CD to determine their population coverage [3]. The optimized lists of EHLA-I pairs
retained population coverage of 98.55%, and the list of EHLA-II pairs retained coverage
of 81.81%. The EHLA-I pairs had average regional coverage of 89.03%. However, Central
America had exceedingly low coverage at 7.76%. No other regional coverages were lower
than 80%. Central America, in this coverage calculation, only includes Costa Rica and
Guatemala [25]. In Central America, only 12.38% of the population carry HLA-A or HLA-B
alleles [25]. Because the binding characteristics were calculated exclusively with HLA-A and
HLA-B molecules, prevalent HLA alleles of the Guatemalan and Costa Rican populations
were not included in our initial analysis of EHLA-I pairs [25]. With each EHLA pair
dataset resulting in high population coverage, AutoPepVax provided a thorough filtering
process for epitope selection. Additionally, there were no population strains imposed by
AutoPepVax’s process of epitope selection. Although the filtered and optimized epitope
lists had equal coverage, the filtered epitopes had a much higher average epitope hits per
allele. Thus, AutoPepVax often identified several distinct EHLA pairs for each HLA allele.
Having several epitopes identified by a single HLA molecule indicates that one mutation is
particularly immunogenic for carriers of this HLA allele or several mutations can induce
TILs through this HLA molecule. Both implications are beneficial for vaccine design. This
confirms that AutoPepVax selected a robust and extensive list of EHLA pairs.

While our results are promising, displaying the binding properties that we calculated
with 3D models is helpful. We created models of three EFGR EHLA complexes from the
optimized lists. In all of the models, the epitope fits within the HLA molecule. Then, we
superimposed the original structures of the HLA molecules onto the EHLA complexes. The
original HLA molecule had no noticeable conformation deformation in the superimposed
models. Thus, the epitopes in these pairs truly bind the HLA molecules that they are paired
with. For the two EHLA-I complexes, we created EHLA–TCR complex models. The TCRs
were able to dock in close proximity to the EHLA pair complexes. Additionally, none of the
epitopes demonstrated clashing with the TCRs. These findings confirm the possibility of
these epitopes being able to bind HLA molecules and be recognized by a TCR.

4. Limitations

AutoPepVax is capable of automatically generating a list of EHLA pairs that are
derived from missense mutations. Missense mutations are relevant to pan-cancer, cancer-
specific, and personalized peptide vaccine studies. However, plenty of malignancies are
characterized by frameshift, insertion, or deletion mutations. Tumors harboring these
classes of mutations may not be studied with the current version of AutoPepVax. Conse-
quently, we were unable to study the EHLA pairs generated by the EGFR deletion mutation
that is common in GBM [26]. The inability to analyze other mutation classes reduces
AutoPepVax’s applications to the study of cancers carrying missense mutations.

AutoPepVax’s selection and ranking of EHLA-I pairs rely on RF classification and
linear regression models. The data used to train these models included epitopes that were
recognized by TILs and non-immunogenic antigens. Thus, the models predict an epitope’s
ability to induce TILs. Although the induction of TILs is an important step in an anti-tumor
immune response, it cannot be assumed that all induced TILs will lead to therapeutic
benefits. Due to data availability limitations, we could not train our models with clinical
significance as an endpoint. Thus, no conclusion can be made about the therapeutic effects
of the EHLA-I pairs selected by AutoPepVax.

We used PCOptim-CD [3] to calculate the population coverage of the positive EGFR
EHLA pairs identified by AutoPepVax. The HLA alleles that can be included in the
population coverage calculations are dictated by the population data available on IEDB.
Our calculations were limited by the MHC Class II population data, as only 57% of the
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EHLA-II pairs could be assessed. This led to an underestimate of the population coverage
for EHLA-II pairs.

Despite the limited population data for EHLA-II pairs, the positive EHLA-I and EHLA-
II pairs could achieve sufficient world population coverage. However, there is little overlap
in the mutations specific to each cancer. Only the G598V mutation was identified as a
mutation that produces positive EHLA-I and EHLA-II pairs for more than one cancer. For
patients to benefit from a vaccine, inoculated peptides must address their specific tumor
mutations and match their HLA phenotypes. Therefore, a pan-cancer vaccine would likely
include many peptides that are irrelevant to the patient receiving it. Depending on the
manufacturing practices for vaccines, it might be more sensible to produce a separate
vaccine for each cancer or personalized vaccines as needed.

5. Future Directions

We will continue to develop AutoPepVax to improve its ease of use. AutoPepVax
is currently executed within the JupyterLab environment, so those who are unfamiliar
with Python may have difficulty operating AutoPepVax. We will create a graphical user
interface (GUI) to allow for the more intuitive use of AutoPepVax. Our GUI will be simple
to download and operate.

As mentioned in the Limitations, non-missense mutations may not be analyzed by
AutoPepVax. Given that numerous cancers are defined by various classes of mutations, we
will update AutoPepVax to accommodate the analysis of frameshift or deletion mutations
for these cancers. Personalized vaccine studies may use transcriptomic data to inform
epitope selection for patients. We will develop models that utilize transcriptomic data for
the study of specific tumor samples in personalized vaccine trials.

With these updates, AutoPepVax will have more use cases in investigating person-
alized peptide vaccines and other cancers. In one such case, we plan to retrospectively
investigate whether AutoPepVax can predict whether immunized epitopes improve patient
clinical outcomes. We will collect a list of EHLA pairs from past clinical trials and determine
whether AutoPepVax can scrutinize which of the EHLA pairs causes tumor regression or
improved survival.

We also aim to substantiate AutoPepVax’s efficacy with preclinical trials. With 368
EHLA-I pairs and 430 EHLA-II pairs identified as positive, there are many permutations for
possible EGFR-specific vaccines. We will administer our vaccine to murine models using
high-scoring EGFR EHLA pairs from each cancer. Dosage–response testing and CD4+ and
CD8+ T-cell responses will be used to characterize the potency and efficacy of our vaccine.
We will also further investigate the characteristics of the epitopes used in clinical trials that
were not identified by AutoPepVax’s RF classification model.

6. Conclusions

In this study, we developed AutoPepVax to expedite and improve the in silico epitope
selection for peptide vaccine design. AutoPepVax takes the input of missense mutations for
a given protein and identifies mutant epitopes that will safely induce TILs. AutoPepVax is
the first automated neoantigen ranking method trained with tumor neoantigen data that
can assist in the study of pan-cancer, cancer-specific, and personalized peptide vaccines.
Preclinical trials can be expensive and arduous, so AutoPepVax offers a simple solution to
narrow candidate epitopes for the design of pan-cancer, cancer-specific, and personalized
peptide vaccines. AutoPepVax leverages two machine-learning-based models: a linear
regression and an RF classification model. The linear regression model that we developed
is used to rank EHLA-I pairs based on their ability to induce TILs. The linear regression
model is adept at making ranking predictions by using the binding characteristics. The
AUC of this model’s ROC was 0.989. The linear regression model scores for EHLA-I pairs
determine which epitopes to prioritize for efficient testing in preclinical and clinical trials
for peptide vaccines. By ranking EHLA-I, AutoPepVax allows experimenters to assess
epitopes in vitro or in vivo in the most cost-effective manner. This is far more robust than
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relying on the binding rank calculated by a single online tool. The RF classification model
that we developed separates EHLA-I pairs into positive and negative groups with accuracy
of 0.967. This model is sensitive to epitope selection, as it had a TPR of 0.898. The RF
classification model will likely identify epitopes that induce TILs. We have combined the
capabilities of these models with exclusion criteria to enhance the safety precautions of
AutoPepVax’s epitope selection.

We used AutoPepVax to develop an EGFR-specific pan-cancer vaccine design for GBM,
LUAD, HNSCC, and CRAD. Our analysis of 96 missense mutations with AutoPepVax
yielded 368 positive EHLA-I pairs and 385 positive EHLA-II pairs. The pan-cancer EHLA
pair lists had maximum world population coverage of 98.55% for EHLA-I pairs and 81.81%
for EHLA-II pairs. Because the HLA alleles for 43% of the EHLA-II pairs were not included
in IEDB’s population coverage tool, the population coverage for EHLA-II pairs is underes-
timated. Regardless, our pan-cancer vaccine is not limited by the population coverage, a
common complication in previous studies. Despite the adequate coverage of the EHLA
pairs, there was little overlap in mutations with positive EHLA-I and EHLA-II pairs across
the cancers. Consequently, cancer-specific EGFR vaccines may be more efficient to produce
than a pan-cancer vaccine. To investigate the binding properties of select EGFR epitopes,
we created models of some EHLA pairs bound to TCRs. The models demonstrated that the
epitopes may bind tightly to HLA molecules while being recognized by TCRs. Our results
for this EGFR-specific vaccine may be further validated in preclinical trials with murine
cancer models.

Although the current design of AutoPepVax only supports the analysis of missense
mutations, future iterations of AutoPepVax could analyze non-missense mutations so that
various cancers may be studied. We will also implement updates that improve personalized
peptide vaccine composition analysis by including transcriptomic data in our models.
Further, we will make AutoPepVax available as a GUI that is easy to download and use.

7. Materials and Methods
7.1. AutoPepVax Data Collection: Developing Functions to Obtain Epitope Characteristics

AutoPepVax automatically collects the characteristics of mutated epitopes for a given
missense mutation. For example, it collects the binding affinity to HLA molecules and
antigenicity using various existing in silico tools. AutoPepVax uses these characteristics
to produce lists of epitopes likely to induce tumor-specific T cells by employing machine-
learning-based models and filtration. AutoPepVax integrates web scraping, Python li-
braries, and the IEDB-API for data collection. AutoPepVax is coded in Python with 744 lines
of code. A description of AutoPepVax’s functions and how to run them is freely available
at https://github.com/enricobautista/AutoPepVax (accessed on 21 March 2024).

Each mutated epitope analyzed by AutoPepVax is derived from a missense mutation
of a wild-type protein sequence. The binding properties for epitopes are determined in the
context of an epitope binding to an HLA molecule. The HLA alleles included in this study
are listed in Table 4 When AutoPepVax analyzes missense mutations, each data point is
assigned a mutant epitope and an HLA allele, from which all other epitope characteristics
are derived. A combination of an epitope and an HLA allele is termed an EHLA pair. Those
EHLA pairs associated with MHC-I-restricted epitopes are designated EHLA-I pairs, while
those linked to MHC-II-restricted epitopes are called EHLA-II pairs.

For the EHLA pairs, we assessed the binding affinity, measured in nanomolar (nM)
units, and rank. Rank is defined as the percentile rank of the binding affinity relative to
other EHLA binding affinities. The EHLA-I binding affinity and rank were assessed using
MHCflurry 2.0 and NetMHCpan-4.1 BA. MHCflurry 2.0 has been validated by Gartner et al.
and Wang et al. [7,27–29]. We also calculated the ratio of the wild-type EHLA-I pair rank
to the mutant EHLA-I pair rank. For EHLA-II pairs, the rank and binding affinity were
measured using NetMHCIIpan-4.0 BA [29]. The stability, a measurement of the binding
half-life, was calculated by the NetMHCstabpan 1.0 tool for EHLA-I pairs [30]. AutoPepVax
collects binding characteristics using the IEDB-API and the MHCflurry 2.0 Python library.

https://github.com/enricobautista/AutoPepVax
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Table 4. List of MHC Class I and II alleles classified by IEDB. AutoPepVax calculates the binding
characteristics of each epitope with all HLA molecules corresponding to the alleles listed in the table.

MHC Class I Alleles

HLA-A*01:01, HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:02,
HLA-A*26:01, HLA-A*30:01, HLA-A*30:02, HLA-A*31:01,
HLA-A*32:01, HLA-A*33:01, HLA-A*68:01, HLA-A*68:02,
HLA-B*07:02, HLA-B*08:01, HLA-B*15:01, HLA-B*35:01,
HLA-B*40:01, HLA-B*44:02, HLA-B*44:03, HLA-B*51:01,

HLA-B*53:01, HLA-B*57:01, HLA-B*58:01

MHC Class II Alleles

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01,
HLA-DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02,
HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*12:01,
HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB3*01:01,
HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01,

HLA-DPA1*01:03/DPB1*02:01, HLA-DPA1*01:03/DPB1*04:01,
HLA-DPA1*02:01/DPB1*01:01, HLA-DPA1*02:01/DPB1*05:01,
HLA-DPA1*02:01/DPB1*14:01, HLA-DPA1*03:01/DPB1*04:02,

HLA-DQA1*01:01/DQB1*05:01, HLA-DQA1*01:02/DQB1*06:02,
HLA-DQA1*03:01/DQB1*03:02, HLA-DQA1*04:01/DQB1*04:02,
HLA-DQA1*05:01/DQB1*02:01, HLA-DQA1*05:01/DQB1*03:01

AutoPepVax uses web scraping or the IEDB-API to automatically collect the remaining
EHLA pair characteristics first calculated by various in silico tools. These characteristics and
the tools used to calculate them are discussed in the following. Immunogenicity for MHC-
I-restricted epitopes was calculated with IEDB’s MHC I immunogenicity tool to predict
a peptide’s ability to elicit a T-cell-mediated immune response [30,31]. Each epitope’s
antigenicity, or ability to trigger an immune response, was determined using VaxiJen [31].
This tool evaluates the immune response potential of a peptide based on its physiochemical
properties using a method known as auto-cross-covariance, rather than relying on the
sequence similarity [31]. The toxicity of the epitopes was calculated with ToxinPred.
This tool accounts for the dipeptide composition and positions of amino acids to predict
whether a peptide is toxic or non-toxic [32]. The ability of MHC-II-restricted epitopes to
elicit IFNgamma release by helper T cells was evaluated with the tool IFNepitope [33].
Allergenicity was evaluated by AllerTop v2.0, a tool that identifies probable allergens [34].
Our group evaluated the accuracy of this tool to be 65% [3]. Hydropathicity was calculated
as the sum of the corresponding Kyte and Doolittle hydropathy scale for amino acids
in positions 4 to n − 1 in an epitope, where n is the length of the epitope [35]. Other
physiochemical characteristics of the epitopes were calculated via the ProtParam tool on
the Expasy server [36]. The half-life, isoelectric point, instability index, aliphatic index, and
GRAVY score were all recorded according to the tool’s calculations. All the tool links for
each characteristic are listed in Supplementary Tables S27 and S28.

7.2. AutoPepVax Selection and Ranking of EHLA-I Pairs with Machine-Learning-Based Models

Two machine-learning-based models, a random forest (RF) classification and a linear
regression model, were developed to assess the EHLA-I pairs and incorporated into Au-
toPepVax. The RF classification model separates the EHLA-I pairs into two groups. An
identifier (ID) of 1 is assigned to positive EHLA-I pairs likely to induce TILs, and an ID
of 0 is assigned to negative non-antigen pairs. The linear regression model assigns high
scores to EHLA-I pairs that exhibit favorable binding characteristics. This model ranks
EHLA-I pairs according to their binding characteristics. The models were trained with a
randomly sampled subset of EHLA-I pairs experimentally determined to be positive or
negative [7]. Our training dataset included 109 positive EHLA-I pairs and 654 randomly
sampled negative EHLA-I pairs. The complete training data are recorded in Supplementary
Table S29. The MHCflurry 2.0 percentile rank, NetMHCpan-4.1 BA rank, NetMHCstabpan
prediction, MHCflurry 2.0 wild-type rank to mutant rank ratio, IEDB immunogenicity,
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VaxiJen antigenicity, and hydropathicity were assessed as potential input features for the
RF classification and linear regression model. To discern which input features were best
for epitope selection, we performed five-fold cross-validations for models with different
combinations of these input features. In five-fold cross-validation, the dataset is split into
five subsets. For each fold, one subset is used to train a model, and the rest of the dataset is
used to test the trained model. Each fold of the five-fold cross-validations used 80% of the
experimental dataset to train the model and 20% to test the model.

We performed a five-fold cross-validation of the RF classification models with each
combination of input features. The average accuracy scores, positive predictive values
(PPV), and true positive rates (TPR) were recorded for each validation. The RF classification
model with input features that had the highest average accuracy was used as AutoPepVax’s
RF classification model. We tested the most accurate RF classification model on a list of
epitopes from peptide vaccines that were included in clinical trials. The list contained
103 epitopes and included TSAs and tumor-associated antigens (TAAs) [2]. We recorded
how many epitopes on the list were predicted to have at least one positive EHLA-I pair.
For a comparison of different classification models, we also repeated the cross-validation
procedure for the support vector machine (SVM), Gaussian Naive Bayes (GNB), and multi-
layer perceptron (MLP) classification models.

We also performed a five-fold cross-validation of the linear regression models with
each combination of input features. The average areas under the receiver operator curve
(AUC of ROC) were recorded for each validation. The AUC of ROC is a performance metric
that assesses the linear regression model’s classification ability across a range of thresholds.
We were able calculate the AUC of ROC curve for the linear regression model using the
sklearn version 1.3 function “cross_val_score(model, x, y, cv = kf, scoring = ‘roc_auc’)”. This
function first computes the linear regression model predictions for a given dataset. Then,
the function determines the ROC curve by plotting the true positive rate against the false
positive rate for various thresholds that have been applied to the model predictions. Finally,
the function calculates the AUC of the ROC curve. The linear regression model with input
features that had the highest average AUC of ROC was incorporated into AutoPepVax.
We repeated the cross-validation procedure for the logistic, RF, and gradient boosting (GB)
regression models to compare the different regression models.

The best RF classification and linear regression models were used to classify and score
the EHLA-I pairs. The EHLA-I pairs were grouped by ID and sorted in descending order
by score. Then, exclusion criteria were applied to filter the list of EHLA-I pairs by toxicity,
half-life, instability index, allergenicity, and ID. The exclusion criteria applied to both
EHLA-I and EHLA-II pairs are listed in Table 5. It is important to note that different criteria
were used to filter EHLA-I and EHLA-II pairs. Lists of filtered and unfiltered EHLA-I pairs
and their characteristics were recorded.

Table 5. This table lists the exclusion criteria for the filtering of EHLA-I and EHLA-II pairs. After
collecting EHLA pairs’ characteristics, AutoPepVax creates a filtered list of EHLA pairs that are not
rejected by the exclusion criteria.

Parameter Exclusion Criteria

Toxicity (EHLA-I and EHLA-II pairs) Toxin

Half-life (EHLA-I and EHLA-II pairs) >1 h

Instability Index (EHLA-I and EHLA-II pairs) >40

Allergenicity (EHLA-I and EHLA-II pairs) Probable Allergen

IFNgamma (EHLA-II pairs) Negative

Immunogenicity (EHLA-II pairs) <50

Antigenicity (EHLA-II pairs) <0.4

ID (EHLA-I pairs) =0
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7.3. AutoPepVax Filtration of EHLA-II Pairs

For each EHLA-II pair, their immunogenicity, antigenicity, half-life, toxicity, IN-
Fgamma, allergenicity, isoelectric point, instability index, aliphatic index, GRAVY score,
hydropathicity, NetMHC binding, and NetMHC rank were collected with AutoPepVax.
The pairs were then filtered by their immunogenicity, IFNgamma output, antigenicity,
toxicity, half-life, instability index, and allergenicity using the exclusion criteria shown
in Table 1. Lists of filtered and unfiltered EHLA-II pairs and their characteristics were
recorded and are shown in Supplementary Tables S8–S11 and S16–S19.

7.4. Applying AutoPepVax to Design of EGFR Peptide Vaccine

We obtained the 1210-amino-acid-long canonical protein sequence of EGFR from
UniProt [37]. Prevalent EGFR missense mutations for glioblastoma multiforme, colorectal
adenocarcinoma, and lung adenocarcinoma were obtained from the COSMIC database [38].
EGFR missense mutations in HNSCC were obtained from Nair et al. [19]. The locations of
the missense mutations on EGFR for LUAD are shown in Figure 7 We created similar figures
for CRAD, GBM, and HNSCC, as shown in Supplementary Figures S4–S6. We input the
collected missense mutations and EGFR protein sequence into AutoPepVax. AutoPepVax
deposited the files into a specified folder with the filtered and unfiltered lists of EHLA pairs.
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7.5. Determining Population Coverage of Composite Vaccines

After collecting all EHLA pair data, we utilized our PCOptim-CD program to identify
the exclusion criteria restricting the HLA allele coverage [3]. The analysis with PCOptim-CD
allowed us to determine how AutoPepVax’s process of epitope selection interacts with the
clinical variables to affect the population coverage. We filtered the complete EHLA-I pairs
stepwise by toxicity, half-life, instability index, allergenicity, and ID. Similarly, we filtered
the complete EHLA-II pairs stepwise by toxicity, half-life, instability index, allergenicity,
INFgamma, immunogenicity, and antigenicity. PCOptim-CD produced optimized datasets
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from each filtered dataset composed of the fewest EHLA pairs required to obtain the
maximal population coverage.

7.6. Modeling of Peptide–MHC Complexes and TCR Interactions

To confirm the binding affinity of the in silico tools that we used, we created 3D models
of select EHLA complexes. For two EHLA-I pairs and one EHLA-II pair, we downloaded
their respective HLA molecules from the RCSB Protein Data Bank [39]. We input the HLA
molecule and epitope sequences into HPEPDOCK 2.0 [40] to generate each model. Then,
HPEPDOCK 2.0 output several confirmations of the input peptide and their associated
docking energies. We saved the coordinates of the lowest-energy peptide configuration
and the HLA molecule in PDB files. We superimposed the original HLA molecule onto the
EHLA complex and saved the 3D coordinates as a PDB file. All models were inspected for
clashing in PyMOL [41]. We only created models for the two EHLA-I models bound to TCRs
as only a limited number of experimentally validated HLA-TCR complexes were available.
TCRmodel was used to create and analyze the TCR binding to top EHLA pairs [42]. Once
we found suitable TCRs from the RCSB data bank, we input the sequences of the epitope,
the HLA molecule, and the TCR into TCRmodel [39,42]. TCRmodel generated five models
and ranked them based on confidence. We inspected the models and downloaded the 3D
coordinates of the highest-ranking model with no clash.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17040419/s1, Supplementary Figures S1–S3: Superimposed im-
ages of our EHLA complexes with HLA molecules from the RCSB Protein Data Bank. Supplementary
Figure S4: EGFR modeling of mutations prominent in HNSCC. Created with https://biorender.com
(accessed on 6 August 2023). Supplementary Figure S5: EGFR modeling of mutations prominent in
GBM. Created with https://biorender.com (accessed on 6 August 2023). Supplementary Figure S6:
EGFR modeling of mutations prominent in CRAD. Created with https://biorender.com (accessed on
6 August 2023). Supplementary Table S1. This table details the results of 5-fold validation for the
classification models. Supplementary Table S2. This table details the results of 5-fold validation for
the regression models. Supplementary Table S3. This table includes the mutations studied for each
cancer and the total number of MHC-I-restricted epitope–HLA allele pairs before and after filtering.
Supplementary Tables S4–S19. These tables include the unabridged filtered and unfiltered lists of epi-
topes and their characteristics separated by cancer. Supplementary Tables S20 and S21. These tables
include the filtered and optimized regional population coverage calculations for MHC-I-restricted
epitope–HLA allele pairs. Supplementary Tables S22 and S23. These tables include the filtered and
optimized regional population coverage calculations for MHC-II-restricted epitope–HLA allele pairs.
Supplementary Tables S24 and S25. These tables include the optimized epitope lists used to find the
population coverages. Supplementary Table S26. This table includes the MHC Class II epitopes that
were not recognized through IEDB population coverage. Supplementary Tables S27 and S28. These
tables include the tool links for each of the MHC Class I and Class II characteristics. Supplementary
Table S29. This table includes the experimental epitopes used to train the classifications and regression
models. Supplementary PDB Files: The 3D coordinate PDB files for Figures 4–6 and Supplementary
Figures S1–S3.
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