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Abstract: Mutant isocitrate dehydrogenase 1 (mIDH1) is a common driving factor in acute myeloid
leukemia (AML), with the R132 mutation accounting for a high proportion. The U.S. Food and Drug
Administration (FDA) approved Ivosidenib, a molecular entity that targets IDH1 with R132 mutations,
as a promising therapeutic option for AML with mIDH1 in 2018. It was of concern that the occurrence
of disease resistance or recurrence, attributed to the IDH1 R132C/S280F second site mutation, was
observed in certain patients treated with Ivosidenib within the same year. Furthermore, it should be
noted that most mIDH1 inhibitors demonstrated limited efficacy against mutations at this specific
site. Therefore, there is an urgent need to investigate novel inhibitors targeting mIDH1 for com-
bating resistance caused by IDH1 R132C/S280F mutations in AML. This study aimed to identify
novel mIDH1 R132C/S280F inhibitors through an integrated strategy of combining virtual screening
and dynamics simulations. First, 2000 hits were obtained through structure-based virtual screen-
ing of the COCONUT database, and hits with better scores than −10.67 kcal/mol were obtained
through molecular docking. A total of 12 potential small molecule inhibitors were identified through
pharmacophore modeling screening and Prime MM-GBSA. Dynamics simulations were used to
study the binding modes between the positive drug and the first three hits and IDH1 carrying the
R132C/S280F mutation. RMSD showed that the four dynamics simulation systems remained stable,
and RMSF and Rg showed that the screened molecules have similar local flexibility and tightness to
the positive drug. Finally, the lowest energy conformation, hydrogen bond analysis, and free energy
decomposition results indicate that in the entire system the key residues LEU120, TRP124, TRP267,
and VAL281 mainly contribute van der Waals forces to the interaction, while the key residues VAL276
and CYS379 mainly contribute electrostatic forces.

Keywords: IDH1 R132C/S280F mutations; molecular docking; pharmacophore modeling; ADMET;
molecular dynamics simulations

1. Introduction

The somatic mutations of IDH1 play a pivotal role in the initiation and maintenance
of various types of cancers [1,2], such as AML [3–5], intrahepatic cholangiocarcinoma [6],
grade II–III gliomas [7], and secondary glioblastomas [8]. IDH1 is a crucial metabolic
enzyme that facilitates the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG)
in the tricarboxylic acid cycle (TCA), predominantly localized in the cytoplasm. Once
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mutation of IDH1 occurs, the conversion of α-KG to R-2-hydroxyglutaric (2-HG) acid
catalyzed by mIDH1 [9]. The development of AML in patients with IDH1 mutations
is often associated with abnormally elevated 2-HG levels [10], and accumulated 2-HG
occupies the active site of α-KG-dependent dioxygenase and competitively inhibits its
activity. The inhibition hinders the conversion of 5-methylcytosine to 5-hydroxycytosine,
thereby impairing the process of DNA demethylation [11–17]. Simultaneously, it inhibits
the expression and regulation of JmjC domain-containing histone demethylases in cell
differentiation [18,19], resulting in DNA hypermethylation and epigenetic dysregulation.
In summary, increased levels of 2-HG due to mutations promote the occurrence and
development of AML.

The oral mIDH1 R132 inhibitor, Ivosidenib, was first approved by the FDA for the
treatment of adult patients with AML carrying mIDH1 [20,21]. Ivosidenib treatment is
both effective and safe, capable of reducing or even eliminating the variant allele frequency,
thereby providing deep and long-lasting relief for some patients [22]. However, resistance
was observed in some patients treated with Ivosidenib during the same year [23]. This
resistance mechanism involves specific mutations in the IDH1, including secondary site
mutations at R132C and S280F [24]. When patients developed IDH1 R132C/S280F muta-
tions, the efficacy of Ivosidenib as an inhibitor against these variants was compromised,
thereby significantly undermining its therapeutic potential for patients with AML [24–26].
Additionally, for patients who have undergone Ivosidenib treatment, the presence of muta-
tions can result in treatment failure and increase the risk of disease recurrence, posing a
significant threat to patient survival and quality of life. Consequently, there is an urgent
need to explore novel therapeutic approaches targeting resistance mechanisms associated
with mIDH1, which have great potential for therapeutic options in AML patients, especially
approaches developed at secondary sites.

DS-1001b, a compound specifically targeting mIDH1 R132, has successfully pro-
gressed into phase 2 clinical trials and demonstrates the ability to reduce 2-HG levels
in oral molecule inhibitor-induced tumors [27]. The tolerability and permeability of
the blood–brain barrier were found to be excellent for DS-1001b, as demonstrated by
previous studies [28,29]. Reinbold et al. conducted biochemical and cytologic investiga-
tions on DS-1001b and other agents in phase 2 clinical trials targeting the second site of
mIDH1 R132C/S280F. The findings demonstrated that treatment with DS-1001b signifi-
cantly reduced 2-HG levels in R132C/S280F cells and exhibited a robust binding affinity
to mIDH1 of R132C/S280F. These results suggested that DS-1001b showed potential
for overcoming S280F mediated drug resistance in AML patients [30]. However, since
DS-1001b is in the second phase of clinical trials and mainly targets the R132 mutation,
there has been no clinical trial on the target of the second site mutation. Therefore,
there is an urgent need to develop an mIDH1 that can inhibit the second site mutation
of inhibitors.

Nowadays, structure-based virtual screening has emerged as a rapid and cost-effective
method for identifying potential lead compounds. Unlike high-throughput screening
assays, structure-based virtual screening enables the prediction of compound affinity
towards specific binding sites [31–34]. For example, our group previously used a docking-
based virtual screening strategy to screen 57 structurally different IDH1 R132H inhibitors
and identified 10 highly active compounds through experimental testing [31]. In addition,
other international groups have also used virtual screening technology to discover mIDH1
small molecule inhibitors with diverse structures [35,36]. In addition to synthetic small
molecule compounds, natural products are also an important source of potential inhibitors
of mIDH1. Zheng et al. identified three natural steroids from Ganoderma sinense, a unique
medicinal edible fungus native to China [37], while Zhou et al. discovered Styraxlignolide
F and Tremulacin as potential mIDH1 inhibitors through virtual screening technology [38].
All compounds showed high specificity for the target enzyme and demonstrated low
toxicity in experimental studies.
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Natural products refer to bioactive small molecules synthesized within living organ-
isms, exhibiting diverse biological activities that render them promising candidates for
applications in pharmacology and various industries [39,40]. According to the statistics
and categorization of drugs approved by the FDA over the past 39 years conducted in 2020,
as presented by David J. Newman and Gordon M. Cragg, it was discovered that more than
45% of pharmaceuticals were derived from natural products and their derivatives [41],
particularly focusing on antibacterial and antitumor agents. The COCONUT database is a
compilation of 53 different databases and literature, encompassing 426,916 natural prod-
ucts lacking stereochemical structures and 746,626 natural products with stereochemical
structures. This comprehensive dataset comprises both elucidated and predicted natural
products from various open sources [42]. Therefore, virtual screening technology from
the COCONUT database can be used to discover potential inhibitors targeting mIDH1
R132C/S280F.

In this study, initial virtual screening was conducted using Glide docking and the phar-
macophore model to identify inhibitors targeting mIDH1 from the COCONUT database of
407,270 compounds. Subsequently, dynamics simulations [43,44] and binding free energy
calculations [45] were performed to further investigate the detailed dynamic mechanisms
between inhibitors (positive drugs and selected compounds) and crystal structures of IDH1
with R132C/S280F mutations.

2. Results and Discussion
2.1. Virtual Screening of Natural Compounds for mIDH1 Inhibitor

To identify mIDH1 R132C/S280F inhibitors, we first employed virtual screening to
discover the targeted compounds with the best docking score. The workflow of virtual
screening is depicted in Figure 1. Following a three-stage screening process involving
HTVS, SP, and XP, a total of 2000 compounds were identified, exhibiting the highest
docking score obtained from Glide screening. Among them, 280 molecules had docking
scores lower than −10.67 kcal/mol and were selected for further analysis. After conducting
pharmacophore screening, this number was eventually reduced to 28 molecules. The
Prime MM-GBSA analysis was performed on these 28 molecules, with ∆G Bind being
chosen as the parameter. Consequently, a total of 12 molecules displaying an affinity of
less than −50 kcal/mol were identified as potential inhibitors (Table 1 and Figure 2). The
three molecules that exhibited optimal performance in Prime MM-GBSA were chosen as
inhibitors for subsequent investigations. As shown in Figure 2, the chemical structure
of the compounds has a similar core structure to coumarins and flavonoids. However,
the compounds were clustered with coumarin and flavonoids through fingerprinting
(Figure S1 in Supplementary Materials), and the results showed that the similarity was not
high, indicating that the structure was diverse.

The presence of seven pharmacophores can be observed in DS-1001b (Figure 3A).
The carboxyl group at the terminal end of the molecule exhibits negative ionic properties,
while benzene and trichlorophenyl in the indole ring contribute to its aromaticity. Fur-
thermore, the three carbon atoms display hydrophobic characteristics. The two methyl
groups on CNP0119040 (Figure 3B) overlap with the hydrophobic region of DS-1001b,
while the benzene rings on methoxyphenyl and chromene align with two aromatic ring
pharmacophores. In CNP0243438 (Figure 3C) and CNP0449118 (Figure 3D), the terminal
carboxyl group coincides with a negative ionic pharmacophore, while the two benzene
rings coincide with an aromatic ring pharmacophore. The two hydrophobic groups in
CNP0243438 correspond to a methyl group and two chlorine atoms on chromene, respec-
tively. Finally, in CNP0449118, the carbon atom on the methyl ether group corresponds
to a hydrophobic pharmacophore.
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The pharmacophore features include acceptor (Color: Brown), donor (Color: Sky blue), hydrophobic
(Color: Forest green), negative ionic (Color: Firebrick red), aromatic ring (Color: Orange), and positive
ionic (Color: Deep blue).
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Table 1. The MW, docking score, phase screen score and Prime MM-GBSA energy of the top
12 compounds screened.

ID MW SP Docking Score
(kcal/mol)

XP Docking Score
(kcal/mol)

Phase Screen
Score

Prime MM-GBSA
(kcal/mol)

DS1001b 535.79 −10.67 −14.09 2.61 −84.90
CNP0119040 410.42 −8.60 −10.75 1.53 −65.57
CNP0243438 407.25 −8.84 −11.83 1.54 −60.72
CNP0449118 357.36 −9.61 −11.34 1.51 −59.10
CNP0348579 352.39 −8.72 −11.65 1.50 −57.48
CNP0294912 366.41 −9.89 −10.72 1.60 −54.00
CNP0135500 416.81 −8.68 −10.68 1.62 −53.26
CNP0349353 399.31 −8.79 −11.24 1.60 −52.91
CNP0286492 390.35 −9.57 −11.27 1.51 −52.79
CNP0290966 437.45 −10.03 −11.64 1.50 −51.28
CNP0234840 406.43 −6.72 −11.21 1.63 −51.13
CNP0404801 449.46 −9.09 −11.66 1.66 −50.77
CNP0223368 492.52 −9.49 −11.08 1.56 −50.47

2.2. ADME Prediction

The Lipinski five rules were proposed by American medicinal chemist Christopher
A. Lipinski in 1997 for the evaluation of molecular drug candidates, which encompass the
following criteria: (1) Molecular mass (MW) < 500; (2) lipid solubility (QplogPo/w) < 5;
(3) the number of hydrogen bond donors (HB) < 5; (4) the number of hydrogen bond
acceptors (Accept HB) < 10. The information presented in Table 2 demonstrates that the
values of QPlogPC16 range from 11.65 to 17.06, while the range for QPlogPoct is from
16.94 to 28.20. Additionally, QplogPw ranges from 7.37 to 17.66, and QPlogS ranges from
−3.33 to −7.55. The CIQPlogS values fall within the range of −3.77 to −8.73, whereas the
range for QplogHERG is between −2.69 and −6.63. The human oral absorption values
are in the range of 1 to 3, with a percentage ranging from 59.66% to 100%. The ADME
results demonstrated that the selected compounds exhibited adequate oral absorption and
possessed suitable solubility and absorption properties in accordance with drug-like princi-
ples. The QPPCaco values of all compounds, except CNP0286492, exhibited satisfactory
results. The range of QPlogBB was from −2.87 to −0.36, and the majority of compounds
achieved good scores in terms of QPPMDCK, with the exception of CNP0286492. Hu-
man intestinal absorption plays a crucial role in determining drug bioavailability, while
Caco-2 and MDCK cell lines are widely utilized in vitro models for evaluating intestinal
drug absorption and blood–brain barrier permeability, respectively. The solubility and
bioavailability parameters of these molecules, including QPlogPC16, QPlogPoct, QplogPw,
QplogPo/w, CIQPlogS, Qplog HERG, QPPCaco, QPlogBB, QPPMDCK, and QPlogKp all
exhibit favorable characteristics for human absorption. The bioactivity radar, BOILED-Egg
plot, druglikeness and PAINS of hits were obtained through SwissADME analysis (Table S1,
Figure S2 in Supplementary Materials). In the Figure S2, CNP0349353 and CNP0294912
showed better blood–brain barrier permeability (BBB), except DS-1001b; CNP0223368 and
CNP0286492 demonstrated better human intestinal absorption (HIA), except CNP0404801;
CNP0290966 and CNP0234840 displayed low P-glycoprotein permeability (PGP). Among
these hits, CNP0349353 and CNP0294912 showed appropriate BBB permeability, excellent
HIA, and low PGP permeability, and may be potential drug candidate compounds. None
of the hits were identified as PAINS in the current PAINS screening method, and all of them
exhibited good druglikeness.
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Table 2. The Lipinski’s rule of five and ADME prediction.

ID a CNS b DonorHB c AccptHB d QplogPo/w e QPlogPC16 f QPlogPoct g QplogPw h QPlogS i CIQPlogS
j Qplog
HERG

k QPPCaco l QPlogBB m QPPMDCK n QPlogKp # Metab
o Qplog

Khsa

p Human
Oral

Absorption

q Percent
Human Oral
Absorption

DS1001b −1 1 6.50 5.82 15.14 22.340 10.80 −7.55 −8.73 −3.76 79.38 −0.91 394.98 −3.25 1 0.82 1 69.09
CNP0119040 −2 0 8.00 3.09 12.75 18.87 10.13 −4.69 −5.04 −5.88 424.82 −1.40 196.10 −2.81 6 −0.05 3 92.10
CNP0243438 −2 1 5.25 4.63 13.06 19.12 9.41 −6.21 −6.36 −4.19 84.18 −1.12 222.44 −2.95 5 0.35 1 88.54
CNP0449118 −2 1.25 7.00 2.66 12.63 19.00 13.97 −3.98 −3.77 −3.23 32.97 −1.73 28.88 −3.00 3 −0.39 2 69.67
CNP0348579 −2 1 5.25 4.03 12.14 17.86 9.54 −5.48 −5.24 −4.29 82.57 −1.44 42.46 −2.87 6 0.29 3 84.88
CNP0294912 −1 0 5.25 4.33 12.01 16.94 7.69 −6.05 −5.38 −6.05 1068.85 −0.84 531.63 −2.14 6 0.58 3 100.00
CNP0135500 0 0 6.75 3.50 11.89 17.33 9.06 −4.78 −5.87 −5.62 1056.24 −0.63 1114.00 −2.17 4 0.04 3 100.00
CNP0349353 −1 1 4.75 4.93 11.65 18.28 7.37 −6.34 −5.82 −2.96 137.08 −0.87 299.42 −3.26 3 0.55 1 94.03
CNP0286492 −2 1 6.75 2.77 12.37 18.37 10.47 −4.89 −5.17 −3.73 8.32 −2.67 3.56 −5.06 6 0.01 2 59.66
CNP0290966 1 0 8.75 2.45 12.22 20.36 11.01 −3.33 −4.44 −6.20 249.08 −0.36 121.83 −4.56 6 −0.12 3 84.19
CNP0234840 −2 3 8.40 2.54 12.90 21.13 13.24 −3.85 −4.79 −5.17 239.10 −1.94 105.36 −2.96 8 −0.12 2 84.38
CNP0404801 −2 0 7.50 3.95 14.69 21.09 10.89 −6.07 −6.33 −6.63 251.65 −1.66 111.35 −2.96 6 0.41 3 93.02
CNP0223368 −2 5 7.95 3.30 17.06 28.20 17.66 −5.74 −7.02 −6.41 46.48 −2.87 17.94 −3.96 8 0.36 2 76.09

a CNS: Predicted central nervous system activity on a −2 (inactive) to +2 (active) scale. b DonorHB: Estimated number of hydrogen bonds that would be donated by the solute to water
molecules in an aqueous solution. Values are averages taken over a number of configurations, so they can be non-integer (0.0–6.0). c AccptHB: Estimated number of hydrogen bonds
that would be accepted by the solute from water molecules in an aqueous solution. Values are averages taken over a number of configurations, so they can be non-integer (2.0–20.0).
d QplogPo/w: Predicted octanol/water partition coefficient (−2.0–6.5). e QPlogPC16: Predicted hexadecane/gas partition coefficient (4.0–18.0). f QPlogPoct: Predicted octanol/gas
partition coefficient (8.0–35.0). g QplogPw: Predicted water/gas partition coefficient (4.0–45.0). h QPlogS: Predicted aqueous solubility, log S. S in mol dm−3 is the concentration of the
solute in a saturated solution that is in equilibrium with the crystalline solid (−6.5–0.5). i CIQPlogS: Conformation-independent predicted aqueous solubility; log S. S in mol dm−3 is the
concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid (−6.5–0.5). j Qplog HERG: Predicted IC50 value for blockage of HERG K+ channels
(concern below-5). k QPPCaco: Predicted apparent Caco-2 cell permeability in nm/sec. Caco-2 cells are a model for the gut–blood barrier. QikProp predictions are for non-active
transport (<25 poor, >500 great). l QPlogBB: Predicted brain/blood partition coefficient. Note: QikProp predictions are for orally delivered drugs so, for example, dopamine and
serotonin are CNS negative because they are too polar to cross the blood–brain barrier (−3.0–1.2). m QPPMDCK: Predicted apparent MDCK cell permeability in nm/sec. MDCK
cells are considered to be a good mimic for the blood–brain barrier. QikProp predictions are for non-active transport (<25 poor, >500 great). n QPlogKp: Predicted skin permeability,
log Kp (−8.0–−1.0). # metab: Number of likely metabolic reactions. See QikProp descriptor information for a complete list of reactions (1–8). o Qplog Khsa: Prediction of binding to
human serum albumin (−1.5–1.5). p Human Oral Absorption: Predicted qualitative human oral absorption: 1, 2, or 3 for low, medium, or high. The text version is reported in the output.
The assessment uses a knowledge-based set of rules, including checking for suitable values of percent human oral absorption, number of metabolites, number of rotatable bonds, log P,
solubility and cell permeability. q Percent Human Oral Absorption: Predicted human oral absorption on 0 to 100% scale. The prediction is based on a quantitative multiple linear
regression model. This property usually correlates well with human oral absorption, as both measure the same property (>80% is high <25% is poor).
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2.3. The Stability of the mIDH1 Inhibitor System

To further investigate the molecular interaction with mIDH1, MD simulations were
performed using AMBER 18 on DS-1001b, CNP0119040, CNP0243438, and CNP0449118.
The RMSD was widely employed for evaluating the stability and dynamics of the overall
molecular structure. Simulations were performed for a duration of 500 ns, during which
the stabilities of mIDH1 backbone, active pocket, and ligand were assessed by calculating
their RMSD values. As depicted in Figure 4, it can be observed that RMSD fluctuations
remained within a range of 2 Å after 400 ns as detected. DS-1001b (Figure 4A) exhibited
a lower RMSD amplitude compared to other identified inhibitors, indicating its superior
stability in terms of active pocket dynamics. In contrast, CNP0119040 (Figure 4B) and
CNP0449118 (Figure 4D) demonstrated more pronounced stability in their respective active
pockets, while CNP0243438 (Figure 4C) displayed enhanced overall system stability.
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The RMSF analysis is a widely employed method for assessing the local flexibility
and fluctuations of protein molecules. Simulations results indicate that the RMSF values
of these four systems exhibit similar trends, thereby demonstrating the dynamic impact
of inhibitors on protein interiors. The region spanning residues 125 to 185 (Figure 5E)
displayed significant flexibility across all systems, with the IDH1 of R132C/S280F mutation
bound to DS-1001b (Figure 5A–D) exhibiting the lowest RMSF value among the complexes.
In Figure 5A–D, the regions 104–124, 265–290, and 205–220 show differences in RMSF
values (>2 Å). The regions were primarily localized in close proximity to the binding
site, as illustrated in Figure 5E. Generally, higher flexibility is associated with a decrease
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in compactness and intramolecular hydrogen bonds, potentially impacting the distance
between crucial residues.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 5. RMSF values of mIDH1 residue backbone and visualization. The fluctuation of RMSF val-
ues of DS-1001b, CNP0119040, CNP0243438, and CNP0449118 are depicted in panels (A–D), respec-
tively. The RMSF fluctuations on the crystal structure are depicted in (E). Residues 104–124 are il-
lustrated in green, while residues 205–220 are shown in blue. The positions of residues 265 to 290 
are indicated by cyan, and red indicates residues 125 to 185. 

The radius of gyration (Rg) is commonly employed for assessing the overall compact-
ness and structural evolution. As depicted in Figure 6, the Rg values of these four com-
plexes remained stable throughout 500 ns dynamics simulations, with their structures ex-
hibited a level of compactness comparable to that of the positive drug DS-1001b. The anal-
ysis demonstrates that the stability of each system was maintained throughout the simu-
lations. 

 
Figure 6. The Rg values of the DS-1001b, CNP0119040, CNP0243438, and CNP0449118 (frame inter-
val = 10). 

2.4. Dynamic Cross-Correlation Maps and Free Energy Landscapes 
The calculation of DCCMs was performed using the C-atom coordinates extracted 

from the MD trajectories to study the intrinsic dynamic association and synergy of inhib-
itors with mIDH1. Figure 7 depicts the correlated movements between residues in the four 
systems, with blue regions indicating strong positive correlations among residue move-
ment and red regions representing robust inverse correlations among residue movement. 
The diagonal component primarily characterizes the positive correlation motion with re-
spect to their own residues, while the off-diagonal region mainly reflects the anti-correla-
tion motion or synergy between residues. The movement patterns of residues are found 
to be similar in the four systems, as depicted in Figure 7. Notably, significant alterations 
in these patterns are observed within the regions highlighted by black boxes. The diagonal 
elements of the R1 region in mIDH1-DS-1001b (Figure 7A) exhibit a robust positive corre-
lation among residues. Residues within the R3 and R4 regions predominantly display pos-
itively correlated motions. In contrast, the R2 region demonstrates pronounced 

Figure 5. RMSF values of mIDH1 residue backbone and visualization. The fluctuation of RMSF values
of DS-1001b, CNP0119040, CNP0243438, and CNP0449118 are depicted in panels (A–D), respectively.
The RMSF fluctuations on the crystal structure are depicted in (E). Residues 104–124 are illustrated in
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The radius of gyration (Rg) is commonly employed for assessing the overall com-
pactness and structural evolution. As depicted in Figure 6, the Rg values of these four
complexes remained stable throughout 500 ns dynamics simulations, with their struc-
tures exhibited a level of compactness comparable to that of the positive drug DS-1001b.
The analysis demonstrates that the stability of each system was maintained throughout
the simulations.
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2.4. Dynamic Cross-Correlation Maps and Free Energy Landscapes

The calculation of DCCMs was performed using the C-atom coordinates extracted
from the MD trajectories to study the intrinsic dynamic association and synergy of in-
hibitors with mIDH1. Figure 7 depicts the correlated movements between residues in the
four systems, with blue regions indicating strong positive correlations among residue
movement and red regions representing robust inverse correlations among residue
movement. The diagonal component primarily characterizes the positive correlation
motion with respect to their own residues, while the off-diagonal region mainly reflects
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the anti-correlation motion or synergy between residues. The movement patterns of
residues are found to be similar in the four systems, as depicted in Figure 7. Notably,
significant alterations in these patterns are observed within the regions highlighted by
black boxes. The diagonal elements of the R1 region in mIDH1-DS-1001b (Figure 7A)
exhibit a robust positive correlation among residues. Residues within the R3 and R4
regions predominantly display positively correlated motions. In contrast, the R2 region
demonstrates pronounced anticorrelation motions along with subtle positive correla-
tions between residues. Compared to DS-1001b, the binding of CNP0119040 (Figure 7B)
significantly enhanced positive correlation motion in the R1 region, while CNP0119040,
CNP0243438 (Figure 7C), and CNP0449118 (Figure 7D) notably increased positive corre-
lation motion in R3. The observed significant changes in movement patterns within the
R3 corresponded to previous RMSF findings. Hence, distinct substitutions at the same
position can induce variations in mDIH1 internal dynamics.
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The energy landscape serves as a valuable tool for elucidating the energetic under-
pinnings of protein conformational changes, with each distinct energy depression in
the figure representing a unique lowest energy conformation. The motion information
within the system is obtained by performing principal component analysis, which is a
method employed to comprehend the dynamics of molecular trajectories. The eigenval-
ues and focus matrices were obtained through orthogonal coordinate transformations.
The principal components were derived from the eigenvectors and eigenvalues. The
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motion of the system in two dimensions is reflected by the horizontal and vertical
coordinates, respectively.

The free energy landscapes, 3D binding models, protein contact potential, and 2D
binding models are presented in Figure 8. In the free energy landscape, the mIDH1
(Figure 8A–D) systems have achieved the two lowest energy conformations. The con-
formational transitions within each complex are delineated by a subspace, indicating
that these small molecule inhibitors bind to the protein through different binding modes,
resulting in minimal binding effects. Based on these principal components, representative
conformations during the simulations were extracted. The 3D and 2D binding modes
between DS-1001b and mIDH1 (Figure 8A) reveal that the carbonyl group in the molecule
forms hydrogen bonds with SER 278, while carboxyl groups form hydrogen bonds with
RPO127. Additionally, indole rings exhibit pi-alkyl interactions with LEU120 and ILE128,
and TRP267, ALA258, and VAL255 engage in pi-alkyl interactions with trichlorophe-
none rings. In the binding mode of CNP0119040 and mIDH1 (Figure 8B), there is a
significant conformational change in the position of the carbon–oxygen bond, leading
to substantial alterations in the docking posture of small molecules. Specifically, anisole
forms hydrogen bonds with LEU120, MET259 interacts with anisole, and benzofuran
rings form pi-alkyl interactions with VAL281 and VAL255 in Figure 8(Ba). However, in
Figure 8(Bb), due to rotation of the carbon–oxygen bond, the benzofuran ring forms a
pi-alkyl interaction with TRP124 and VAL281 instead. In the binding mode between
CNP0243438 and mIDH1 (Figure 8C), TPR267 forms intermolecular hydrogen bonds with
the carboxyl group oxygen, while benzofuran interacts through pi-alkyl interactions with
ILE130. In Figure 8(Ca), VAL276 forms hydrogen bonds with the carboxylic acid oxygen,
whereas dichlorobenzene rings interact via pi-alkyl interactions with ALA258, VAL255,
MET254, TYR208, and PHE265. In Figure 8(Cb), the carboxylic acid oxygen forms hydro-
gen bonds with ASN271, CYS132 and TRP267 form hydrogen bonds with benzofuran
oxygen, dichlorobenphenyl ring interacts via pi-alkyl interactions with LEU120, ALA257,
TRP124, and VAL255. Although the rotation of carbon–hydrogen bonds causes a shift in
the position loop of dichlorobenzene rings in the diagram, it can still be observed that
small molecules interacted with TRP267, ASP275 ILE130, and VAL255. In the binding
mode of CNP0449118 and mIDH1 (Figure 8D), ALA111 engages in pi-alkyl interactions
with benzene rings, and CYS379 establishes hydrogen bonds with nitrogen atoms on
acetamide. In Figure 8(Da), ALA282 forms hydrogen bonds with oxygen atoms in ester
groups, VAL281 engages in pi-alkyl interactions with benzene rings, and ALA282 forms
hydrogen bonds with oxygen atoms in the ester groups. In Figure 8(Db), SER287 and
MET290 form a C-H bond with the end-group carbon of the ether bond, and ligand
283 forms a pi-pi T-shaped bond with the benzene ring. Consistent with the decomposi-
tion free energy structure, LEU120, TRP124, and TRP267 predominantly contribute to van
der Waals interactions, while VAL281 and VAL276 mainly provide electrostatic energy.
Additionally, CYS379 is primarily responsible for the electrostatic energy contribution.
The protein contact potential of Figure 8 is a qualitative electrostatic representation gener-
ated by PyMOL. The active pocket contains a combination of different postures exhibited
by all the small molecules. In particular, CNP0119040 adopts a relatively folded posture
within the active pocket, with Figure 8(Bb) showing an even more pronounced folding
compared to Figure 8(Ba). The active pocket exhibits a relatively stretched conformation
for CNP0243438. Upon comparing the two lowest energy conformations, it is evident that
the o-dichlorobenzene ring in the molecule undergoes stretching in opposite directions
(Figure 8(Ca,Cb)). This phenomenon may be attributed to the free rotation of the carbon
group connected to the o-dichlorobenzene ring, which prevents stable interaction with
the active pocket. The binding mode of NP0119040, CNP0243438, and CNP0449118 to
mIDH1 was found to have a lower degree of interaction with active sites compared to
DS-1001b. This observation is consistent with the results obtained from the analysis of
their binding affinities.
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2.5. Analysis of Hydrogen Bond

Hydrogen bonding plays a crucial role as one of the most significant non-covalent
interactions in the binding of molecules to mIDH1. The hydrogen bond changes between
individual residues and inhibitors were monitored over 50–500 ns to investigate the in-
teraction between the molecules and mIDH1. The amino acids listed in Table 3 exhibit
hydrogen bond occupancy exceeding 1%. The findings demonstrate that compound DS-
1001b, along with ILE128 and ALA111, display occupancies of 30.30% and 2.93%, respec-
tively. Compounds CNP0119040 and LEU120 exhibit an occupancy of 14.08%. Additionally,
CNP0243438 and TRP267 account for occupancies of 2.22%, while CNP0449118 and CYS379
contribute to an occupancy of 16.53%. The compounds of NP0119040, CNP0243438, and
CNP0449118 exhibit a reduced proportion of hydrogen bonding with mIDH1 in compari-
son to DS-1001b, suggesting that electrostatic forces play a crucial role in maintaining the
stability of small molecule binding to mIDH1.

Table 3. Analysis of hydrogen bond interaction between mIDH1 and the inhibitors.

Complex Acceptor Donor Occupancy (%) Distance (Å) Angle (◦)

mIDH1-DS-1001b ligand@O1 ILE_128@N-H 30.30% 3.09 143.57
ligand@O2 ALA_111@N-H 2.93% 3.06 153.10
ligand@O2 ILE_128@N-H 2.09% 3.17 145.87
ligand@O2 ARG_119@NH2-H 1.91% 3.12 131.69

mIDH1-CNP0119040 ligand@O6 LEU_120@N-H 14.08% 3.01 157.39
ligand@O6 SER_287@OG-H 5.60% 2.76 163.79
ligand@O1 TRP_124@NE1-H 5.33% 2.94 152.86
ligand@O6 SER_278@OG-H 4.89% 2.80 159.08
ligand@O1 ARG_119@NH1-H 1.42% 2.89 152.98
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Table 3. Cont.

Complex Acceptor Donor Occupancy (%) Distance (Å) Angle (◦)

mIDH1-CNP0243438 ligand@O4 TRP_267@NE1-H 2.22% 3.06 139.10
ligand@O5 TRP_267@NE1-H 1.73% 3.09 138.79
ligand@O4 ASN_271@ND2-H 1.47% 3.11 153.96
ligand@O5 TYR_135@OH-H 1.07% 2.93 151.19
ligand@O4 SER_278@N-H 1.07% 3.19 130.08
ligand@O1 TRP_267@NE1-H 1.02% 3.22 126.50

mIDH1-CNP0449118 CYS_379@O ligand@N1-H 16.53% 2.85 141.71
ligand@O1 SER_287@OG-H 16.44% 2.81 154.95
ligand@O3 SER_287@OG-H 5.82% 3.23 136.59
ligand@O2 SER_287@OG-H 4.53% 3.23 145.12

2.6. Analysis of Binding Free Energy

The binding free energy was utilized as a reference standard for evaluating molecular
activity. It is widely acknowledged that a lower binding value indicates greater stabil-
ity of the protein–small molecule complex formed. To evaluate the binding affinity of
each complex, the MM-GBSA method was employed to calculate the binding free en-
ergy (∆Gbind), aiming to investigate the structural basis and crucial residues involved in
DS-1001b, CNP0119040, CNP0243438, and CNP0449118:

∆Ggas= ∆Eele+∆Evdw

∆Gsol= ∆GGB+∆GGBSUR

∆Gbind= ∆Ggas+∆Gsol

The binding free energies of DS-1001b, CNP0119040, CNP0243438, and CNP0449118 were
−36.951 kcal/mol, −28.74 kcal/mol, −31.32 kcal/mol, and −24.75 kcal/mol, respectively (as
shown in Table 4). Among these values, the electrostatic energy (∆Eele) was significantly
lower than other energy terms except for CNP0119040 (−57.11 kcal/mol, −7.55 kcal/mol,
−74.58 kcal/mol, and −81.80 kcal/mol respectively). This observation suggests that hy-
drophobic interactions play a major role in the ligand binding process. The van der Waals
energy (∆Evdw) values were −49.51 kcal/mol, −39.97 kcal/mol, −43.70 kcal/mol, and
−40.62 kcal/mol, respectively, indicating the positive role of van der Waals interactions in
ligand binding. It is noteworthy that the polar contribution ∆GGB negatively impacts ligand
binding due to the involvement of numerous solvent molecules interacting with functional
groups of the ligands, thereby increasing the entropy contribution and exacerbating the
adverse effects of polarity. The larger value of ∆GGB for CNP0449118 compared to other
compounds in Table 4 indicates a relatively weaker binding affinity. Furthermore, Figure 8
reveals an obvious shift in the position of CNP0449118 when compared to DS-1001b, which
may be attributed to local structural changes occurring in small and medium molecules during
dynamics simulations, leading to an overall increase in free energy alteration.

The interaction energies of DS-1001b, CNP0119040, CNP0243438, and CNP0449118 were
further analyzed to gain a deeper understanding of their interaction mechanism. Specifically,
residue interaction energies exceeding −1.0 kcal/mol were decomposed into electrostatic
interactions, van der Waals interactions, polar solvation free energy, and nonpolar solvation
free energy as illustrated in Figure 9. The mIDH1-DS1001b system demonstrates key residues,
specifically LEU120, TRP124, ILE128, ILE130, VAL255, TRP267, SER278, and VAL281. Van
der Waals interactions play a significant role in the process of ligand binding. The polar
effect has a negative impact on ligand binding. LEU120 forms a pi-alkyl interaction with
the indole ring while TRP124 engages in p-p stacking with the five-membered ring on the
indole moiety. The mIDH1-CNP0119040 (Figure 9B) system exhibits a significant interaction
energy of more than 1.0 kcal/mol with the molecule, primarily attributed to van der Waals
interactions involving five specific residues: LEU120, ILE130, VAL255, MET257, and VAL281.
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The TRP267 residue was p-p conjugated to the benzopyran loop on CNP0119040 (Figure 8B).
In the mIDH1-CNP0243438 (Figure 9C) system, VAL276 primarily interacts with electrostatic
forces and forms a hydrogen bond interaction with the carboxyl group at the C-terminus of
CNP0243438 (Figure 8C), which aligns well with the principal component analysis results.
The interaction energies of TRP124, ILE128, ILE130, TRP267, and VAL281 with molecules
primarily arise from van der Waals interactions. In the mIDH1-CNP0449118 (Figure 9D)
system, the interaction force between CYS379 and molecules is predominantly derived from
electrostatic energy through hydrogen bond formation with N-H bonds on small molecules
(Figure 8D), consistent with the principal component analysis results.

Table 4. Calculated binding energy (kcal/mol) between mIDH1 and the inhibitors.

Terms DS-1001b CNP0119040 CNP0243438 CNP0449118

∆Evdw −49.51 ± 3.25 −39.97 ± 3.76 −43.70 ± 6.11 −40.62 ± 2.18
∆Eele −57.11 ± 7.16 −7.55 ± 3.15 −74.58 ± 16.78 −81.80 ± 8.72
∆Ggas −106.61 ± 8.10 −47.52 ± 4.91 −118.28 ± 20.38 −122.42 ± 8.66
∆GGB 76.29 ± 7.20 24.33 ± 2.97 92.22 ± 16.89 103.23 ± 8.21

∆GGBSUR −6.63 ± 0.34 −5.55 ± 0.44 −5.26 ± 0.48 −5.56 ± 0.19
∆Gsol 69.66 ± 7.12 18.78 ± 2.86 86.96 ± 16.62 97.67 ± 8.20

∆Gbind −36.95 ± 2.96 −28.74 ± 3.93 −31.32 ± 5.99 −24.75 ± 2.24Pharmaceuticals 2024, 17, x FOR PEER REVIEW 16 of 22 
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3. Materials and Methods
3.1. Preparation of Receptor and Ligands

The X-ray crystal structure of the Ivosidenib-resistant IDH1 variant R132C/S280F in
complex with NADPH and inhibitor DS-1001b (PDB ID: 7PJN; Resolution: 2.45 Å) [30] was
obtained from the Protein Data Bank [46] (PDB: https://www.rcsb.org/, accessed on 28
November 2022). The protein preparation wizard panel in Schrödinger 2015 [47] (Release
2015, Schrödinger, LLC, New York, NY, USA)was utilized to incorporate hydrogen atoms,
remove all water molecules, assign charges and protonation states at pH 7.0, and optimize
the structure using the OPLS-2005 force field [48]. The receptor grid in Schrödinger 2015
was generated using the OPLS-2005 force field through Glide receptor grid generation. The
DS-1001b was designated as the central reference point of the grid, and the grid box was
defined to docking ligands that are comparable in size to the native ligand.

The COCONUT (version 2022, Collection of Open Natural ProdUcTs Online, accessed
on 8 November 2022) database was utilized as the screening source, containing approxi-
mately 407,270 molecules. The chemical structures were prepared using the LigPrep Panel
in Schrödinger 2015 with the OPLS-2005 force field. The possible states of molecules
were generated using Epik [49] at pH 7.0 ± 2.0, retained specified chiralities, followed by
tautomer generation and the generation of up to 8 low-energy conformations per ligand.

3.2. Structure-Based Virtual Screening

The generated grid and prepared ligands were subjected to structure-based virtual
screening using the virtual screening workflow of Glide [50]. The prepared ligands under-
went prefiltration using QikProp to obtain the required properties, followed by application
of Lipinski’s rule of five [51]. Ligands containing reactive functional groups were subse-
quently excluded.

The Glide screening consists of three docking stages. The initial stage is dedicated
to HTVS docking, which enables rapid high-throughput screening. The molecules that
pass this stage proceed to the subsequent stage, where SP docking is performed. At each
stage, only the top 20% ranked molecules are retained for further evaluation as potential
inhibitors. The surviving molecules from this selection process then advance to the third
and final stage, where XP docking is conducted with a retention of 2000 molecules.

3.3. Pharmacophore-Based Virtual Screening

In this study, the phase module of Schrödinger 2015 was employed to generate an
e-pharmacophore [52] hypothesis. The hypothesis was formulated based on the com-
plementarity between the receptor and ligand features, utilizing the crystal structure of
mIDH1 complexed with DS-1001b (PDB ID: 7PJN). The ligands were screened from the
database using a threshold of phase screen score >1.5 to assess how well the ligands fit
the respective hypothesized pharmacophore characteristics for which they were screened.
The phase module provides 6 hypotheses, such as acceptor (A), donor (D), hydrophobic
(H), negative ionic (N), positive ionic (P), aromatic ring (R), which were used to interpret
ligand–receptor interactions.

3.4. ADME Prediction and Prime MM-GBSA

The ADME [53] (adsorption, distribution, metabolism, and excretion) properties of
the compounds are determined using the QikProp module, a rapid and precise ADME
prediction program that calculates physically significant descriptors and pharmaceutically
relevant properties of organic molecules. It evaluates drug-likeness and pharmaceutical
factors for all hits. Bioavailability, solubility, druglikeness and pan-assay interference com-
pounds [54,55] (PAINS) of hits were calculated using SwissADME [56] (www.swissadme.ch,
accessed on 20 February 2024) servers.

The Prime MM-GBSA (molecular mechanics with Generalized Born surface area)
method in Maestro was employed to calculate the binding free energy of potential inhibitors

https://www.rcsb.org/
www.swissadme.ch
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to the mIDH1 R132C/S280F crystal structure, by calculating the fingerprints through
canvas [57] and comparing their similarity.

3.5. Molecular Dynamics Simulations

To investigate the binding mode of inhibitors to mIDH1, molecular dynamics (MD)
simulations were performed on the complex formed by mIDH1 and DS-1001b, as well as the
representative active compounds identified. The initial structure of the mIDH1-DS-1001b
complex was obtained from the PDB. The bond charge corrections (BCCs) [58] were utilized
to fit the partial charges for the inhibitors. The general AMBER [59] force field (GAFF) [60]
was employed for parameterizing the compounds, while the AMBER ff14SB force field [61]
was used for the mIDH1 structure. The complex was solvated in TIP3PBOX at a distance of
12 Å from the boundary. After adding chloride and sodium ions to neutralize each system,
the steepest descent method followed by the conjugate-gradient method were employed
to minimize the system every 2500 steps. Subsequently, the systems were heated in the
NVT ensemble from 0 to 310 K over a period of 500 ns, with restraints applied on backbone
atoms. The restraint force was gradually reduced from 10 to 0.1 kcal/(mol·Å2) within
0.9 ns. The system was subjected to 500 ns molecular dynamics simulations at 310 K under
1 atmospheric pressure in an NPT ensemble, without any restraints. Trajectory analyses
were conducted using the Cpptraj module in AMBER 18.

3.6. Calculation of Binding Free Energy

After MD simulations, trajectory analysis was performed using the Cpptraj module of
AMBER 18. First, the root mean square deviation (RMSD) and root mean square fluctuation
(RMSF) were calculated based on the MD trajectory. Subsequently, the last 5000 frames
out of a total of 25,000 frames were selected to calculate the binding free energy and the
free energy of decomposition using the molecular mechanics/Generalized Born surface
area (MM/GBSA) [62] methodology. The following formula is commonly employed in
MM-GBSA calculations:

∆Gbind = Gcomplex −
(

Gprotein + Gligand

)
where the energy ∆G is expressed as follows:

∆G = ∆Eele+∆Evdw+∆GGB+∆GGBSUR − T∆S

in which the first two components represent the electrostatic and van der Waals interactions
in the gas phase, respectively. The third term corresponds to the electrostatic polar solvation
free energy, which can be determined using the Generalized Born (GB) equation. The
fourth term represents the nonpolar solvation free energy, while neglecting any entropy
changes in conformation. Key residues involved in the binding process were identified by
decomposing the binding free energy into individual residue contributions.

3.7. The Computation of DCCM and PCA

The Cpptraj module [63] in Amber 18 was employed for the computation of dynamic
cross-correlation maps [64,65] (DCCM) and principal component analysis (PCA). DCCM
was utilized to analyze the internal dynamics in biomolecules during molecular simulations
by calculating correlation coefficients between different regions within residues based on
trajectory data, followed by plotting correlation matrices using Origin 2021. PCA was
performed by diagonalizing the position covariance matrix, constructed from the retained
Cα atomic coordinates in the MD trajectory. The feature vectors generated through PCA
represent correlated displacements of atom groups in multidimensional space, with eigen-
values indicating motion magnitude along each vector. The PCA analysis and mapping
were conducted using MATLAB, while the visualization of the lowest energy conformations
was achieved through PyMol 2.6 [66], where the electrostatic potential was obtained in
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vacuum. The 2D structure was completed with Discovery Studio 2020 [67] (Release 2020,
Accelrys Software Inc, San Diego, CA, USA).

4. Conclusions

This study aimed to obtain inhibitors of the IDH1 R132C/S280F mutation by screening
a natural product database. Virtual screening was employed to identify potential com-
pounds and further investigated through dynamics simulations. Interestingly, despite the
similar pharmacophore between the hits and DS-1001b, along with a comparable trend in
RMSD, Rg, and binding affinity measurements, the hit compound still has lower binding
affinity than DS-1001b. The unique structure of the natural product may have limitations
compared to DS-1001b, which may be the reason why the hit compound binds incompletely
to IDH1 of the second site mutation. The hits were further analyzed by dynamics simu-
lations to obtain the interaction between the hits and the IDH1 of second site mutations.
Among them, the key residues LEU120, TRP124, TRP267, and VAL281 were identified as
the main contributors to van der Waals energy, while VAL276 and CYS379 were found to
be a major source of electrostatic energy. This study establishes a theoretical foundation
for the development of inhibitors that can overcome the R132C/S280F mutation-induced
drug resistance.
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