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Abstract: Nonsense mutations that generate a premature termination codon (PTC) can induce both the
accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the
production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their
“readthrough” based on small-molecule drugs. These molecules promote the incorporation of a near-
cognate tRNA at the PTC position through the native polypeptide chain. In this review, we detailed
the various existing strategies organized according to pharmacological molecule types through their
different mechanisms. The positive results that followed readthrough molecule testing in multiple
neuromuscular disorder models indicate the potential of this approach in peripheral neuropathies.

Keywords: nonsense mutation; readthrough; premature termination codon (PTC); genetic disease;
nonsense-mediated mRNA decay (NMD); translation

1. Introduction

It has been estimated that many genetic diseases can be caused by a premature
termination codon (PTC) within coding genes [1]. According to the National Organiza-
tion for Rare Disorders (http://www.rarediseases.org, accessed on 13 February 2024),
2400 distinct genes among the 7000 genes responsible for rare genetic diseases existing in
the human population are sensitive to the presence of PTCs. Amid those diseases, we could
name cystic fibrosis (CF), which results from an alteration within the CFTR gene (cystic
fibrosis transmembrane conductance regulator); Duchene muscular dystrophy (DMD),
characterized by progressive muscle degeneration caused by mutations in the DMD gene;
and many cancers often linked with TP53 mutations. Also, multiple neurodegenerative
diseases [2] are found within these 2400 PTC-triggered rare genetic disorders, often leading
to a serious and progressive condition observed in various age onsets.

Charcot–Marie–Tooth disease (CMT) is a peripheral disease with a prevalence of
1 in 2500 cases. Also known as sensory–motor neuropathy, this disorder affects both motor
and sensory nerves. The first-onset symptoms affect early childhood to late adulthood,
typically with muscular atrophy in the feet and/or hands and weakness in the limb
muscles [3]. Nonsense alterations in many CMT-associated genes result in a PTC, as has
been previously shown in the GDAP1 gene, among others [4]. Nonsense mutations have
been associated with both axonal and demyelinating forms of neuropathy [5]. Indeed,
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sequencing performed on 17,880 patients suffering from CMT associated with a panel of
14 genes, reported in the case of SH3TC2 a very high majority are nonsense mutations,
some of which were found to be pathological [6].

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by
the progressive loss of motor neurons (MNs). The most common age of disease onset varies
between 40 and 70 years old. In some cases, mutations inducing premature stop codons
in the gene encoding the Cu/Zn superoxide dismutase (SOD1) have been reported to be
responsible for this disorder.

Frontotemporal Dementia (FTD) refers to a group of heterogeneous neurodegenerative
dementias characterized by frontal and temporal brain deteriorations leading to behavioral
troubles and language disorders [7]. Pathogenic mutations have been detected in FTD
patients 40 to 65 years old, especially in the PGRN gene, whose main role is to regulate the
production of progranulin [8]. Most of them are classified as nonsense mutations, resulting
in lysosomal dysfunction [9].

1.1. Origin of PTC

Just as with natural stop codons, UAA, UAG, and UGA are the three types of codons
that are able to give rise to PTCs. The emergence of such premature stop codons in mRNA
can occur at different levels (DNA, RNA) related to gene expression [10].

1.1.1. DNA Level

PTC can be introduced into a DNA molecule through DNA replication or transcrip-
tion processes, resulting in frame-shift or nonsense mutations [1]. A frame-shift mutation
generally refers to the deletion or insertion of a number of nucleotides not divisible by
three, changing the reading frame and perturbing the genetic translation. Meanwhile,
nonsense mutations are defined as the substitution of a single DNA base pair, and, accord-
ing to a meta-analysis of the Human Gene Mutation Database (HGMD), these account
for approximately 11% of alterations affecting gene-coding regions [2]. It has been re-
ported that 23 different nucleotide substitutions affecting the gene-coding region could
give rise to a PTC. Of the three nonsense codons, TAG (40.4%) and TGA (38.5%) represent
the two most frequent pathological nonsense mutations reported from 995 genes, with
approximately the same ratio, while the nonsense codon TAA (21.1%) is less commonly
described. According to this same meta-analysis [11], the conversion of CGA (Arg) to
TGA and CAG (Gln) to TAG represents the highest proportion of PTCs causing transition.
The Predominantly observed substitution of C for T (44%) results from the deamination
properties of 5-methylcytosine within CpG sites, which converts cytidine into uracil, which
is later corrected in thymidine [11,12].

1.1.2. RNA Level

mRNA-carrying PTCs can be the result of errors occurring during the transcription
or splicing processes [10,13]. Splicing mutations occur within an intron or an exon and
result in the creation of new splice sites or in the disruption of existing ones. Transcription
is a high-fidelity mechanism through which errors occur only 0.05 to 0.5% [10] of the
time compared to alternative pre-mRNA splicing; a third of mRNA isoforms obtained by
alternative splicing are degraded by nonsense-mediated mRNA decay (NMD) due to the
presence of a PTC [14].

In the past few decades, various therapeutic approaches have been developed to coun-
teract the negative effects of PTCs. Some of them, known as nucleic acid-based approaches,
exploit different molecular therapy strategies, such as tRNA suppressors, antisense oligonu-
cleotides, and genome editing [15]. Here, we will focus on two alternative methods based
on small-molecule drugs [16]: readthrough molecules and NMD inhibitors (NMDIs). Sev-
eral studies have already demonstrated the effectiveness of nonsense restoration using
these pharmacologic drugs.
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2. Natural Translation Mechanism

To synthesize a protein, a cell needs the corresponding genetic code, also known as
DNA. First, the nucleotide sequence is transcribed and processed into mRNA, and then,
mRNA is subjected to translation into an amino acid chain, forming the protein of interest.
mRNA is therefore an essential molecule for the proper functioning of cells since it estab-
lishes the link between genetic information and protein production. mRNA is made up
of a series of nucleotides which, by triplet, correspond to a particular codon. Each of the
61 existing codons are associated with one of the 20 amino acids. With each codon compos-
ing the mRNA, the ribosome is associated with a particular aminoacyl-tRNA anticodon.

The ribosome is composed of two subunits made of protein components and ribonu-
cleic acid (rRNA). In eukaryote cells, the 80S ribosome consists of the 60S large subunit
and the 40S small subunit with 18S RNA and 33 proteins, while in prokaryote cells, the
70S ribosome consists of the 50S large subunit and the 30S small subunit with a 16S RNA
subunit and 21 proteins. Three main active binding sites where mRNAs and tRNAs interact
are present at the interface of these two subunits. The A site (for Aminoacyl) corresponds to
the first location of the amino-acylated tRNA, carrying an amino acid bind when entering
the ribosome, the P site (for Peptidyl) detains the tRNA carrying the current peptide chain
synthesis, and finally, the E site (for Exit) is where the deacylated tRNA resides, ready to
leave the ribosome.

2.1. Ribosome Fidelity: The Role of the Decoding Center

The ribosome holds the main role in translational fidelity. The decoding center, situ-
ated on the small ribosomal subunit at the interface with the big one, is involved in the
recognition and faithful selection of the codon–anticodon tRNA. The distinction between
cognate tRNA and near-cognate tRNA happens when mRNA codons are positioned at the
A-site, located within the small subunit. Among the 20 aminoacyl-tRNA (aa-tRNA), only
the cognate one is to be presented at the A-site. We may wonder how the ribosome manages
to discriminate high-fidelity cognate tRNAs from near-cognate (single mismatch with the
mRNA codon) or non-cognate (more than one mismatch with the mRNA codon) ones.

During the translation step of the elongation, the process of aa-tRNA selection is
monitored by two distinct steps: the initial selection and the proofreading. The latter is
driven by the energy produced following GTP hydrolysis right after the initial selective
binding [17].

Noncognate tRNAs are rejected during the first step, while near cognate tRNAs that
escape the first selection end up rejected during the second one. The accuracy of tRNA
selection by the ribosome alone is not enough to discriminate noncognate/near-cognate
codon–anticodon interactions; other elements of monitoring present in the decoding center
are necessary to adjust the ribosome accuracy [3].

At the atomic level, a previous foot-printing experiment allowed researchers to identify
significant regions encompassing the A-site, and in particular, the two universally con-
served adenines at positions 1492 and 1493 (prokaryote numbering) [18], A1755 and A1756
(eukaryote numbering) [19]. Helix 18 (H18) also encompasses an important region, as it
carries the conserved G530 base (Figure 1). These nucleotides are essential for the binding
of the cognate tRNA at the A-Site, since they play a fundamental role in the discrimination
between correct and incorrect codon/anticodon pairings, as consecutive adenines have a
strong preference for canonical Watson–Crick pairs.

When no ligand is bound to the ribosomal A-site, residues A1492 and A1493 are
positioned in the internal loop of helix 44 (H44). When cognate tRNA binds to their codon
at the A-site, both the A1492 and the A1493 residues are displaced outside helix loop 44,
altering its conformation from an “off” state to an “on” state. The observed conformational
change is necessary to allow A1492 and A1493 to interact specifically with the base pairs
formed by the cognate codon–anticodon interaction, therefore stabilizing preferentially the
minihelix formed between cognate tRNAs and mRNA codons. At the same time, the G530
base undergoes changes from a syn conformation to a trans one. G530 therefore interacts
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with A1492, just like the second position of the anticodon and the third base of the codon.
The same phenomenon is observed with A1755 and A1756 in eukaryotes [19].
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2.2. Course of Natural Translation Termination Mechanism

Physiologically, during the translation, the ribosome moves along the mRNA by
incorporating the corresponding amino acid until it reaches the natural stop codon (NTC).
When one of the three stop codons, UAA, UAG, or UGA, occurs through the ribosomal
A-site, it will not be recognized by any existing tRNA, but by a release factor (RF).

In eukaryotic cells, translation termination is managed by two factors: eRF1 and
eRF3. The first one recognizes the three-termination codon at the A-site, then forms a
complex with eRF3, which possesses a GTPase activity. The hydrolysis of GTP provides the
energy that allows the cleavage between the polypeptide chain and the tRNA to which it is
attached and thus releases the polypeptide chain [20] (Figure 2A), allowing the production
of the normal protein.
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the ribosome. (B) Nonsense mutation. Introducing stop codon (TAA, TAG, TGA), this mutation
causes the appearance of a premature stop codon (PTC) that prevents the ribosome from continuing to
translate mRNA. This leads to the synthesis of a truncated protein and potentially to the degradation
of this mRNA by the NMD pathway. (C) Strategy of readthrough. The use of pharmacological
molecules promotes the entry of tRNA at the level of PTC during translation, which allows the
ribosome to pass through the PTC and continue the translation and re-express a whole protein,
sometimes modified from a gene interrupted by a stop codon.

To enhance the translation termination efficiency, the ternary termination complex
(eRF1-eRF3-GTP) requires other stimulation, notably that provided by the complex polyA-
binding protein (PABP) located at the 3′UTR of mRNA [20].

3. Disturbance of the Translation Mechanism: Consequences of PTCs within the mRNA

The presence of a PTC in the mRNA sequence prevents the ribosome from continuing
the translation process up to the end of the open reading frame, leading to the recruitment
of the release factors eRF1 and eRF3, which favors translation termination (Figure 2B). This
disturbance results in either the production of a truncated protein or the degradation of the
altered mRNA by the nonsense-mediated decay (NMD) system.

3.1. Truncated Protein: The Aftermath

The presence of a PTC in the mRNA sequence might lead to three main consequences.
First, (i) the predicted truncated protein could accumulate in the cell, leading to high
toxicity. The regular effect of such a protein could become stronger; furthermore, a new
abnormal function may appear. This phenomenon is also known as “gain-of-function”. In
ALS disorder, one hypothesis is that PTCs in SOD1 mRNA could lead the protein to adopt
a new conformation. This change would likely enable the misfolding of SOD1, and as a
consequence, its interaction with other molecules, which could lead to the formation of
aggregates, toxic for the cells [21].

Besides the gain-of-function mechanism, the existence of a PTC within the mRNA
could induce a (ii) “dominant negative effect” in which the unfunctional truncated protein
could interfere in trans with the wild type one and subsequently void its function [22]. This
mechanism was shown in β-thalassemia models, when the PTC was located on the last
exon, and could escape from the NMD mechanism [23]. Finally, (iii) “loss-of-function” is the
third of the main consequences that could arise. In the event of disorders transmitted as a
recessive trait, as in GDAP1-associated recessive CMT neuropathy, the predictable truncated
protein carrying a mutation would be totally deprived of its function. Due to this loss of
function, calcium homeostasis and mitochondria–endoplasmic reticulum interaction would
be altered [24,25]. Also, loss of function could arise as a consequence of haploinsufficiency.
This mechanism is exclusively found when the disorder is transmitted as a dominant trait,
as was previously shown in Frontotemporal Dementia [8]. This phenomenon occurs when
one copy of a gene becomes unfunctional and the remaining functional copy cannot solely
preserve the normal function.

3.2. Degradation of Altered mRNA by the NMD System

Cells are able to deploy natural mechanisms to protect themselves from PTCs’ adverse
effects. We will focus on one of them, known as the NMD system. PTC-containing mRNA
does not necessarily lead to truncated protein production, as they can potentially be
recognized and degraded by this system. NMD is an mRNA-, cytoplasm-, and translation-
dependent quality control mechanism, conserved across all eukaryotic cells. The pivotal
role of this system concerns the recognition and the degradation of aberrant mRNAs
harboring a PTC. Therefore, the NMD system prevents the production of truncated or
erroneous proteins that could have deleterious effects for the organism.

In mammalian cells, the NMD can discriminate between NTC and a PTC based on the
presence of a multi-subunit protein complex (eIF4A3, MAGOH, Y14, MLN51) named exon
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junction complex (EJC) [26]. Amid the pre-mRNA splicing, EJCs are laid by the spliceosome,
a protein complex that precisely cuts out introns from pre-mRNA, 20 to 24 nucleotides (nt)
upstream of the exon junction complex. EJCs accompany mRNA from the nucleus to the
cytoplasm where the single-stranded RNA is translated [27,28].

In physiological circumstances, the force of the ribosome during the pioneer round
of the translation process is sufficient to remove all EJCs carried by the mRNA until the
NTC. This process ensures that no EJCs remain on mRNA up to the translation termina-
tion. However, if the ribosome displacing the EJCs encounters a PTC, its progression is
disrupted and the EJCs’ removal ceased. The remaining EJC signals the presence of the
PTC located typically >50–55 nucleotides upstream of the last exon–exon junction and leads
the abnormal mRNA to its degradation. The resulting discharge of the ribosome from the
mRNA transcript provides enough time to recruit NMD factors [29] (Figure 3).
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of the last exon–exon junction, holds back EJCs downstream of the premature stop codon, which are
recognized as a signal for the presence of a PTC; therefore, mRNA is targeted for degradation by the
NMD pathway.

3.2.1. NMD Factors

Genetic screens in Saccharomyces cerevisiae and Caenorhabditis elegans were used to
identify conserved factors that constitute the core machinery of the NMD system. In
human cells, activation of NMD includes UPF proteins (upframeshift) and SMG proteins
(suppressor with morphological effect on genitalia) [30]. See below for a brief description
of each of the NMD core factors to clarify their different functions involved in the NMD
mechanism conserved in human cells [31] (Figure 4).

3.2.2. NMD Mechanism Course

To achieve the degradation of mRNAs containing an early stop codon, UPF1, consid-
ered as the main key factor, triggers the NMD mechanism and undergoes phosphorylation
and dephosphorylation cycle steps, which are essential for NMD progression [32]. This
phenomenon intervenes exclusively when the translation termination takes place at a
PTC [33,34].
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Briefly, when the ribosome is stalled at the PTC position, UPF1 binds to the translation
termination complex, composed of eRF1 and eRF3, already located at the PTC position. This
complex, together with UPF1, associates with the SMG1 kinase to form the surveillance
complex named SURF [35]. Thanks to the recruitment of UPF2 and UPF3b at the EJC
position, a bridge is formed to join UPF1 to the mRNA, allowing the whole SURF complex
to interact with UPF2 (via its CH domain) and UPF3b, as well as with the EJC complex
to form the decay-inducing complex (DECID) [36]. Stimulated by DECID formation,
phosphorylation of UPF1 is carried out by the SMG1c complex, comprised of the protein
kinase SMG1, and two additional sub-units, SMG8 and SMG9. SMG9 associates tightly with
SMG1, then SMG8 binds to the preformed SMG1c complex. All three factors regulate UPF1
activity through the induction of conformational changes, impacting its phosphorylation
state [35,37]. Recently, another kinase named AKT1 was identified to be involved in the
phosphorylation of UPF1 [38,39].

mRNA degradation can proceed through several pathways. Indeed, subsequent to its
phosphorylation, UPF1 induces the recruitment of either the endonuclease SMG6 or the
SMG5-SMG7 complex that participates in mRNA decay and prevents the resumption of the
translation. SMG6 cleaves the mRNA in the vicinity of the PTC, whereas the SMG5-SMG7
complex not only recruits both a decapping and a deadenylation complex but also triggers
the dephosphorylation of UPF1 through recruitment of the protein phosphatase 2A (PP2A).
mRNA degradation occurs at both 3′ and 5′ ends [40]. After its deadenylation, the 5′ to 3′

end will be the target of exoribonucleolytic enzyme XRN1; meanwhile, the 3′ to 5′ end is
exposed to degradation by the exosome [28] (Figure 5).

3.3. Impact of the PTC Position in the NMD System and Illustration in Peripheral Neuropathy

The PTC location within the mRNA sequence influences the NMD system carrying out
such mRNA degradation, therefore affecting the severity of the phenotype. In the neurolog-
ical phenotypes, the position of the nonsense mutation seems to hold a significant impact
depending on the disorder. It is the case for the SOX10 gene. When the PTC is located in the
last exon, the NMD system is unable to recognize it. This occurrence induces the production
of a truncated protein, leading to a more severe form of the disorder, then called PCWH,
which includes four complex syndromes: peripheral demyelinating neuropathy, central
demyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease [41].
On the contrary, if the mRNA-PTC is subject to the NMD system, the phenotype is less
severe, leading to the development of only some of the symptoms [41].



Pharmaceuticals 2024, 17, 314 8 of 29

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 8 of 31 
 

 

phosphorylation state [35,37]. Recently, another kinase named AKT1 was identified to be 
involved in the phosphorylation of UPF1 [38,39]. 

mRNA degradation can proceed through several pathways. Indeed, subsequent to 
its phosphorylation, UPF1 induces the recruitment of either the endonuclease SMG6 or 
the SMG5-SMG7 complex that participates in mRNA decay and prevents the resumption 
of the translation. SMG6 cleaves the mRNA in the vicinity of the PTC, whereas the SMG5-
SMG7 complex not only recruits both a decapping and a deadenylation complex but also 
triggers the dephosphorylation of UPF1 through recruitment of the protein phosphatase 
2A (PP2A). mRNA degradation occurs at both 3′ and 5′ ends [40]. After its deadenylation, 
the 5′ to 3′ end will be the target of exoribonucleolytic enzyme XRN1; meanwhile, the 3′ to 
5′ end is exposed to degradation by the exosome [28] (Figure 5).  

 
Figure 5. When the ribosome stops at PTC, protein UPF1-SMG1 and eRF1 eRF3 factors form a SURF 
complex. Then, the SURF complex interacts with the complex EJC-UPF2-UPF3 to form DECID; this 
allows UPF1 phosphorylation by SMG1 kinase, inducing the recruitment of SMG6 SMG7-SMG5 to 
dephosphorylate UPF1, and the phosphorylation/dephosphorylation steps set off degradation 
events. 

3.3. Impact of the PTC Position in the NMD System and Illustration in Peripheral Neuropathy 
The PTC location within the mRNA sequence influences the NMD system carrying 

out such mRNA degradation, therefore affecting the severity of the phenotype. In the neu-
rological phenotypes, the position of the nonsense mutation seems to hold a significant 
impact depending on the disorder. It is the case for the SOX10 gene. When the PTC is 
located in the last exon, the NMD system is unable to recognize it. This occurrence induces 
the production of a truncated protein, leading to a more severe form of the disorder, then 
called PCWH, which includes four complex syndromes: peripheral demyelinating neu-
ropathy, central demyelinating leukodystrophy, Waardenburg syndrome, and 

Figure 5. When the ribosome stops at PTC, protein UPF1-SMG1 and eRF1 eRF3 factors form a SURF
complex. Then, the SURF complex interacts with the complex EJC-UPF2-UPF3 to form DECID; this
allows UPF1 phosphorylation by SMG1 kinase, inducing the recruitment of SMG6 SMG7-SMG5 to
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4. Readthrough Mechanism

As previously mentioned, natural translation termination is elicited by the ternary
termination complex (eRF1-eRF3-GTP) at the NTC. However, several mechanisms of transla-
tion termination suppression exist. Among them a process called stop codon “readthrough”,
enabling the translation of the stop codon [42], thus driving the nonsense codon to be read
as a sense one, in the same reading frame [42], until the next termination signal. However,
this phenomenon remains quite rare, with a frequency < 0.1% [43].

4.1. The Translational Readthrough

The translational readthrough process was first discovered in both E. Coli bacteria and
in the tobacco mosaic virus (TMV). In the latter case, the tobacco virus was able to produce
two polypeptide chains of 126 KDa and 186 KDa that resulted from the readthrough of
an UGA codon by incorporation of a non-cognate tRNA AUG (Tyr) [44]. In this case,
translational readthrough was shown to be essential for both the viability of the virus and
the control of its replication level. Translational readthrough has now been identified in
many viruses [45–47], yeast [44], Drosophila [48], and mammalian models. More recently,
readthrough has been identified in a few human genes as a mechanism meant to regulate
their expression by producing two isoforms from a single mRNA [49]. One of the rare
cases of translational readthrough in humans concerns the transmembrane protein MPZ
(myelin protein zero), which accounts for approximately 50% of the peripheral myelin
protein content. The readthrough phenomenon led to C-terminally extended myelin zero
(L-MPZ) proteins, which could still be involved in myelination [40]. Also, in a second case,
natural readthrough has been shown to provoke the addition of peptide extensions to the
sequence encoding human vascular endothelial growth factor A (VEGF-A), generating a
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VEGF-Ax (x: extended). This extension allowed the stop codon to be decoded into a serine
one, which led to a change in its activity from pro-angiogenic to anti-angiogenic [50].

4.2. Readthrough Therapeutic Approach

As part of a promising therapy for the treatment of neuropathies resulting from an
alteration inducing a PTC, natural or designed small molecules conferring a readthrough
potential need to be strongly considered. Such components could allow the ribosome to
pass through the PTC and resume translation until the NTC, inserting a stand-in amino
acid in place of the one originally constituting the PTC (Figure 2C). The new protein may
differ by only one amino acid from the wild type one, leading to a possible missense
mutation. Nonetheless, such a protein could still offer a less severe phenotype [41], as is
suggested in the case of the GDAP1 gene. Indeed, CMT patients carrying a homozygous
nonsense mutation in GDAP1 develop a more severe form of the disease compared to
patients harboring a missense mutation.

When the PTC passes through at the ribosomal A-site, competition between tRNA
near cognate and the complex of translation termination eRF1/eRF3-GTPase will arise.
Certain events, like the nature of the stop codon, the nucleotide sequence in the vicinity of
the PTC post-transcriptional modifications, or small drugs, could promote an influence on
the readthrough mechanism (Figure 2C).

As detailed above, the natural readthrough process inserts an amino acid into the
polypeptide chain at the PTC during translation. Researchers hijacked this mechanism as a
therapeutic approach to insert a near-cognate amino acid at the PTC level. This paved the
way for the search for molecules activating the readthrough system to correct a disorder
induced by nonsense mutations. In this review, we classified the readthrough activating
molecules according to their mechanism of action into three main categories:

• Ribosome-targeting molecules;
• tRNA post-transcriptional inhibitors;
• eRF1-targeting molecules.

4.2.1. Ribosome-Targeting Molecules

➢ Aminoglycoside

Discovery
Aminoglycosides are natural compounds synthetized by microorganisms. The first

aminoglycoside ever discovered was streptomycin in 1944. This component was previously
used as an antibacterial agent against Mycobacterium Tuberculosis [51]. Following this
discovery, several drugs naturally produced were isolated from soil bacteria, including
neomycin, kanamycin, paromomycin, gentamicin, amikacin, and geneticin (also known
as G418) [52,53]. Most aminoglycosides are known as antibacterial components, mainly
prescribed to treat Gram-negative bacterial infections.

Chemical structure
Aminoglycosides are characterized by a common central ring, called 2-deoxystreptamine

(2-DOS), which represents ring II. This ring can be linked to a variety of amino sugars by
glycosidic linkage. According to the carbon substitution position, aminoglycosides can be
classified into mono-substituted aminoglycosides (substitution at C4 position, referring to
ring I) and di-substituted ones (substitution at both the C4 and C5 positions or at both the
C4 and C6 positions). The substituent at the C5 or C6 positions of the 2-DOS is referred to
as ring III [54] (Figure 6).

Mechanism of action
Aminoglycosides are polar polycationic compounds that strongly bind to the riboso-

mal decoding center (A-site) located in the small ribosomal subunit in both prokaryotes
and eukaryotes. In light of the A-site role, Aminoglycoside’s mechanism of action is mainly
centered on the loss of translation accuracy and fidelity [56].
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Aminoglycosides’ interaction with the prokaryote’s ribosome
Several studies based on crystallography and Nuclear Magnetic Resonance (NMR)

have helped to understand how aminoglycosides stimulate the misreading of the genetic
code to allow the acceptance of near-cognate codon–anticodon interaction [57,58]. One of
the most studied structural models concerning the interaction of aminoglycosides with
the bacterial ribosome relates to paromomycin [57–59]. In the presence of paromomycin,
the 2-DOS ring strongly binds to the A1408 residue in the 16S rRNA of the A-site just
across the A1492 and A1493 residues. This tight link induces residues A1492 and A1493
to bulge outside of the internal loop of helix 44 in an “on” state [57]. Then, the bacterial
ribosome loses its ability to discriminate between cognate and non-cognate tRNA–mRNA
associations, thus introducing dysfunctions in the protein sequence during the elongation
of the translation, leading to the inhibition of protein synthesis and to bacterial death, hence
its antibiotic effect [60] (Figure 7A).

Aminoglycosides’ interaction with the eukaryote’s ribosome
Using X-ray crystallography and single-molecule FRET (smFRET) imaging, Prokhorova

et al. highlighted that G418 (4,6-linked aminoglycoside) could interact with the 80S ribo-
some of S. cerevisiae [61]. At the molecular level, aminoglycosides bind to the canonical
eukaryotic ribosomal decoding center 18S rRNA and displace the universally conserved
nucleotides A1755 and A1756 outside of helix 44 [61]. The link is weaker than the one
displayed in prokaryotes, which results in the progression of the translation. The difference
in readthrough efficiency of aminoglycosides between eukaryotes and prokaryotes can be
explained by the presence of a guanosine nucleotide in eukaryotes’ 18S rRNA at position
1645, responsible for the weak affinity of aminoglycosides to the mammalian ribosomal
18S [61] (Figure 7B).

Due to their ability to interact with ribosomal RNAs during the translation process,
aminoglycosides can be used as drugs to potentially treat several human genetic disorders
caused by nonsense mutation [62]. Aminoglycosides are the first- and the best-characterized
drugs that enhance PTC readthrough. Not all aminoglycosides induce PTC translation
with the same efficiency. Notably, aminoglycosides containing ring I at the 6’-OH group,
such as paromomycin, are more efficient at promoting the readthrough of PTC compared
to aminoglycosides containing a 6’-NH2 group at this same position [16,61].
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Figure 7. Aminoglycosides’ mechanism of action. (A) 16S prokaryote, from the left side of the panel,
at the A-site: site of the ribosome. Bases A1492 and A1493 are positioned towards the inside of helix
44 (off state). On the right side, the codon is recognized by the tRNA, and A1492 and A1493 switch
outside of helix 44 (on state). Strong fixation of aminoglycosides to A1408 in the rRNA of the A site
changes the conformation in which the adenines A1492 and A1493 are directed towards the outside of
the helix in the presence of a near-cognate tRNA, inducing a loss of its ability to discriminate between
cognate and non-cognate tRNA-mRNA and an inhibition of protein synthesis. (B) 18S eukaryote. Low
fixation of aminoglycosides to G1645 in the rRNA of the A site displaces the adenines A1755 and A1756
of helix 44, outside of the helix in the presence of a near-cognate tRNA, maintaining the translation
process. A1408: high affinity = bacterial death; G1645: low affinity = continuity of translation.

Aminoglycosides as a readthrough inducer in various models
For many cancers, as well as for various neuromuscular and neurodegenerative

disorders caused by nonsense mutations, aminoglycosides represent, thanks to their ability
to promote PTC readthrough, a promising therapeutic approach [62]. Thus, many studies
have demonstrated the capacity of aminoglycosides as readthrough molecules in different
genetic disease models in vitro and in vivo, until clinical trials.

In 1985 and for the first time, Julian and Mogg published their results concerning the
phenotypic suppression of nonsense mutations after aminoglycoside (paromomycin and
G418) treatment. In this study, they treated mammalian cells (Cos-7) with various doses
of paromomycin and G418. Cos-7 cells had previously been transfected with a plasmid
containing a bacterial gene comprising an amber nonsense (TAG) codon at position 38. With
either treatment, the readthrough of this mutation was restored up to 20% levels of wild
type protein [63]. Later on, in 1996, the efficacy of G418 and gentamicin was demonstrated
in Hela cells. In this study, cells were transfected with a plasmid vector harboring either the
nonsense mutation p.Gly542* or p.Arg553*, inducing a UGA mutation in the CFTR gene.
Alteration in this gene is at the origin of cystic fibrosis development. Aminoglycosides
were also evaluated in neurological diseases, such as Ataxia–Telangiectasia (A-T), that
encode the ATM gene. In this model, various lymphoblastoid cell lines derived from A-T
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patients harboring different PTCs were treated with geneticin and gentamicin. Following
the treatment, cells were able to restore the synthesis of functional ATM protein [64].

The Mdx mouse model for Duchenne Muscular Dystrophy (DMD) is the first animal
model for which the efficacy of aminoglycosides has been tested. Mdx rodents underwent
subcutaneous injections of gentamicin once per day for 14 days. After the treatment,
expression of the dystrophin protein was restored up to 10 to 15% of the level found in
wild type mice. This therapeutic approach also promoted a significant improvement of the
muscle function [65]. However, the beneficial results of gentamicin treatment in the mdx
model could not be replicated by other teams [66]. Nonetheless, a second positive result
was observed in a different mouse model created by Ming Du et al. [67]. They reported
that transgenic mice carrying a human nonsense mutation (p.Gly542*) in CFTR (Cftr−/−)
exhibited re-expression of functional CFTR under gentamicin (14%) or tobramycin (5%)
through daily administration [67].

Two previous encouraging pilot studies set up by Wilschanski et al. [68] and Clancy
et al. [69] investigating the consequences of gentamicin treatment in CFTR patients were
quickly supported by a randomized, double-blind, placebo clinical trial. This third study
reported that gentamicin therapy administrated during two successive weeks in 19 CF pa-
tients carrying a PTC (in either an homozygote or heterozygote state) led to the production
of full-length CFTR protein [70]. A total of 25% and 35% of recovery were observed in
patients carrying the p.Arg553* and p.Gly542* mutations, respectively. Notably, in another
clinical trial, daily intravenous gentamicin administered to four patients suffering from
DMD and Becker Muscular Dystrophy carrying various stop codon sequences did not
permit any dystrophin re-expression [71–73].

Later on, in 2016, five patients suffering from Recessive Dystrophic Epidermolysis
Bullosa, an incurable disease caused by mutations in the gene encoding type VII colla-
gen, entered into another aminoglycoside PTC correction therapy clinical trial. In this
study, patients harboring various nonsense mutations (p.Arg236*, p.Arg2814*, p.Arg578*,
p.Arg613*, and p.Arg683*) in the COL7A1 gene were treated with topical and intradermal
administration of gentamicin for 3 months. A recovery varying from 20% to 165% of the
level of functional type VII collagen protein was obtain and persisted for 3 months [74].
Topical gentamicin administration also corrected dermal–epidermal separation, improved
wound closure, and reduced blister formation in the treated patients.

In addition, a single patient suffering from both Epidermolysis Bullosa Simplex and
Muscular Dystrophy (EBS-MD) carrying a nonsense mutation in PLEC1 underwent aminogly-
coside treatment. EBS-MD is an autosomal recessive disorder caused by pathogenic variants
in PLEC1, which encodes plectin protein. The patient received gentamicin (7.5 mg/kg/d) for
14 consecutive days in July 2019 and February 2020. Following the treatment, expression
of plectin in the skin was detected for at least 5 months [75], and the patient also showed
signs of both skeletal and respiratory muscle improvement.

Aminoglycoside side effects
Despite the readthrough efficiency displayed by many aminoglycosides in several

genetic disease models, those molecules are also well-known, after long-term treatment, to
induce side effects such as ototoxicity, nephrotoxicity, and to a lesser extent, retinal toxicity,
which limits their clinical use as a PTC correction therapy [76,77]. These adverse effects can
partially be explained by the selective accumulation of aminoglycosides in the kidney and
in the cochlear hair cells of the inner ear [76,77]. Indeed, previous studies suggested that
the nephrotoxicity following accumulation of aminoglycosides in the kidney could result in
their binding to the large glycoprotein receptor named LRP2 (also known as megalin). This
receptor, mainly present at the apical surface of absorptive epithelia, such as in the kidney,
mediates the uptake of aminoglycosides into the cell by endocytosis. Also, aminoglycosides
were described to be endocytosed at the apical membranes of hair cells and transported to
lysosomes. Such lysosomal sequestration, with accumulation, was hypothesized to induce
lysosomal lysis, releasing aminoglycosides in the cytoplasm. Such adverse effects can also
be explained by the role of aminoglycosides in ROS generation. Indeed, the positive charge
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carried by aminoglycosides facilitates their interaction with several negatively charged
components of the cell, such as phospholipids and phospholipases. This property allows
aminoglycosides to bind to the A site of the mitochondrial eukaryote ribosomal 12S rRNA,
which shares similarity with the A site of the bacterial ribosome [78]. Thus, mitochondrial
protein production could be hindered, leading to mitochondrial dysfunction and ROS
generation, resulting in cell death [78–81].

Molecules capable of enhancing aminoglycoside activity
Interestingly, some studies reported that G418 PTC readthrough activity could be

enhanced by other compounds, reducing G418 treatment concentration. Those molecules
are referred to as CDX molecules and Y-320. Among the CDX chemical molecules iden-
tified, CDX5 displayed the best readthough activity [82]. CDX5 and G418 have shown
high readthrough capacities when tested on a neuronal model derived from human in-
duced pluripotent stem cell (hiPSc)-bearing nonsense mutations in the progranulin gene
(PGRN) [82].

Recently, a new small readthrough molecule (SRTM) known as Y-320 was identified.
Alone, this molecule did not permit any readthrough efficacy. In contrast, co-treatment
with G418 and Y-320 increased PTC readthrough at a higher level than G418 alone [83].
Study on the Y-320 mechanism highlighted that this component could increase ribosome
biogenesis, improving protein production.

To overcome side effects that hampered the potential of aminoglycoside read-through
therapeutic approaches, derivatives were chemically designed, separating structural com-
ponents with readthrough properties from those affecting cell viability [84–86].

Development, chemical structure, and mechanism
Structural modifications of certain aminoglycosides generated three classes of deriva-

tives: TC derivatives, designed from neomycin; JL derivatives, designed from kanamycin;
and B and NB derivatives, designed from paromomycin or G418 [87]. The modification of
the paromomycin structure led to the development of the first NB generation, named NB30.
They preserved the pseudo-trisaccharide structure, as it is the main recognition element for
the rRNA. The pseudo-trisaccharide is used as the main structure on which other designed
chemical structures can be attached [88]. Four other generations were developed later on.
The second generation, named compound NB54, was designed after the introduction of
an AHB group (4-amino-2-hydroxy-butanoyl) at the position N-1 of paromomycin ring II.
The third one was obtained by modifications of G418. This aminoglycoside contains a
(R)-6′ methyl group on the glucosamine ring (I ring), giving it the highest reading effi-
ciency among all aminoglycosides. This (R)-6′ methyl group was used to generate the
third generation by adding it on ring I of NB30 and NB54 to form NB74 and NB84, respec-
tively. The fourth generation, called NB124, was developed after including a 5′-(S)-Me
group on ring III, allowing NB124 to bind cytoplasmic ribosomes [86]. The last generation,
made to target the eukaryotic cytoplasmic rRNA A site, was recently synthesized. An
additional hydroxyl group was added on the side chain of the glucosamine ring I of G418,
producing new molecules NB156 and NB157 [89].

Aminoglycoside derivatives as a readthrough inducer studied in various models
In vitro, NB30 showed mutation-correcting activity on the nonsense mutation p.Arg31*

on an Usher syndrome cellular model [90]. NB54 enhanced nonsense mutation readthrough
activity on various genetic diseases such as Usher syndrome, CF, DMD, and Hurler syn-
drome, observed in cellular models at a level at least twice as high as gentamicin, paro-
momycin, or NB30 [91]. In the same cellular models and compared to gentamicin, the new
synthetic drugs NB74 and NB84 displayed superior readthrough efficiency and reduced
toxicity [92].

NB124 derivative restored full-length CFTR for three CFTR UGA mutations (p.Gly542*,
p.Arg1162*, and p.Trp1282*). Also, the chloride transport function was restored at 7% of its
wild type level in primary human bronchial epithelial CF cells [92]. NB124 was recently
evaluated in the human tumor cells HDQ-P1 (human primary breast carcinoma) carrying
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a nonsense mutation of p53 (Arg213*; UGA). This molecule promoted the significant
production of an endogenous and functional p53 protein [85].

To determine in vivo efficacy of NB54 in Usher syndrome, day 0 postnatal mice were
transfected with a plasmid carrying mutated (p.Arg31*) USH1C (gene encoding the scaffold
protein harmonin). The transfection was performed into retinas by electroporation. After
6 weeks, mice were injected sub-retinally with NB54 (125 µg/µL). This molecule induced
a recovery of the full-length harmonin, associated with high biocompatibility [93]. Also,
NB124 has been tested on mice expressing a human CFTR-Gly542* transgene in a Cftr
knockout model. This treatment improved the mice therapeutic index by a factor of
10 compared to gentamicin, with cytotoxicity reduction [92].

In a clinical trial, NB124 was referred to as ELX-02 [6′-(R)-Methyl-5-O-(5-amino-5,6-
dideoxy-α-L-talofuranosyl)-paromamine sulfate]. Indeed, this aminoglycoside analogue
targets the ribosome with low affinity. This characteristic allowed for the increase in the
specificity toward the cytoplasmic ribosome but also the decrease in the affinity for the
mitochondrial one [86,94]. ELX-02 binds preferentially to the A-site of the eukaryotic ribo-
some, which allows significant readthrough of the UGA stop codon of TP53 mRNA, leading
to the synthesis of full-length functional protein in DMS-114 cells. In addition, it allows for
the decrease in the NMD activity [95]. In patient CF-derived intestinal organoids, ELX-02
enhances CFTR expression with different mutations of the CFTR gene (Gly542*, Arg1162*,
Trp679*) [96,97]. This compound was tested in a phase II clinical trial as a therapeutic
approach to treat cystic fibrosis (NCT04135495) and cystinosis (NCT04069260) patients
carrying nonsense mutations and was evaluated as showing good tolerance and safety for
patients. Unfortunately, ELX-02 did not achieve statistical significance for CF subjects with
the Gly542* mutation. Recently, a proof-of-concept trial for ELX-02 was expected to treat a
rare kidney disease, “Alport syndrome”, due to its preferential absorption by the kidneys
(NCT05448755).

➢ Ataluren (PTC124)

Discovery
Following the screening of a library of 800,000 small chemical compounds using a

firefly luciferase reporter gene, one molecule ((3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]-
benzoic acid), also known as ataluren or Translarna, structurally different from aminoglyco-
sides, was identified. Interestingly, ataluren resulted in low toxicity and higher readthrough
activity using lower doses [98].

Mechanism of action
Considering the particular chemical structure of PTC124 compared to original amino-

glycosides, a different mechanism of action was expected. Indeed, two studies highlighted
that PTC124 readthrough potential, contrary to natural aminoglycosides such as G418, is
derived from its ability to inhibit the release factor activity by competition. PTC124 binds
with rRNA at specific sites (18S-A1195), proximal to the decoding center, but also to the
peptidyl transfer center (26S-A2669, 26S-A2672, and 26S-A3093) of the ribosome [99,100].

Ataluren as a readthrough inducer studied in various models
Since its discovery in 2007 by Welch et al., PTC124’s ability to correct nonsense muta-

tions has been the subject of several in vitro studies. At low concentrations (0.01–0.1 mM),
this molecule showed the ability to promote readthrough of PTCs in primary human muscle
cells from DMD patients, with higher results in UGA stop codon, followed by UAG and
then UAA [98]. PTC124 has also shown its effectiveness on nonsense mutations in the
USH1C [101] and dystrophin genes [98].

Recently, an in vivo study on dystrophin-deficient zebrafish has pointed out that
PTC124 only displayed readthrough efficacy for the UAA stop codon. This result was
pretty unexpected, as UAA is normally considered as displaying the lowest level of read-
through activity [102]. The efficiency of PTC124 was also demonstrated in other mouse
models for different genetic diseases: DMD [98], CF [103], Usher syndrome, and the
neuronal ceroid lipofuscinoses [104].
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Supported by phase I and IIb clinical trials with beneficial results in DMD patients [105],
this therapeutic drug was indicated in a phase III clinical trial for the ambulatory treatment
of patients aged 5 years or older. Its efficiency was evaluated on various criteria based on a
walking perimeter (6 min test; 150 m) [106].

Other preclinical studies did not confirm the readthrough activity of ataluren. Indeed,
when the drug was administrated for over 48 weeks in a cohort of 238 patients exhibiting
nonsense mutation-inducing CF (phase III), there was no significant improvement in
patients’ lung function [107]. This disappointing result observed in most patients could be
explained by the prescription of a parallel treatment with Tobramycin. Indeed, the authors
considered Tobramycin as a potential antagonist which could inhibit the effect of PTC124.
However, in another phase III clinical trial in which 279 patients randomly received either
ataluren treatment or a placebo, with no further prescription of Tobramycin, no significant
lung function improvements were obtained [108].

Still, PTC124 received conditional approval by the European Medicines Agency in
2014 for the treatment of nonsense mutation Duchenne Muscular Dystrophy (nmDMD) in
ambulatory patients aged 2 years and older under the trade name Translarna™.

PTC124 was reported as a nontoxic drug, orally bioavailable [98]. Currently, this is
the only readthrough molecule that received global approval for a phase III test to treat
cystic fibrosis and DMD diseases [106,109]. Nevertheless, after the contradictory results of
a phase III clinical study, PTC124 was suspended in 2017 for the treatment of CF and DMD
patients [65,106]. Besides its ineffectiveness, PTC124 was the subject of much criticism and
questions, as a study indicated that the initial discovery of PTC124 may have been biased
by its direct effect on the FLuc (firefly luciferase) reporter used [110].

➢ PTC414

Discovery
To counter the feeble and fluctuating readthrough efficiency achieved by PTC124

treatment, chemical optimization of PTC124 was performed, leading to the creation of the
PTC414 molecule. PTC414 allows for maintaining the beneficial activity of PTC124 with a
higher level of plasma exposure and tissue penetration, improving the pharmacokinetic
characteristics in all three different PTCs [111].

PTC414 as a readthrough inducer studied in various models
Fibroblasts harboring a UAG PTC collected from humans suffering from Choroi-

deremia (CHM), an X-linked chorioretin dystrophy due to mutations in the CHM gene
coding for REP-1 protein, were treated with PTC414. No increase in REP1 protein was
detected after the treatment [111].

PTC414 has been tested in a zebrafish model with a CHM gene harboring a UAA PTC
chmru848 [111]. This molecule partially restored the expression of the REP-1 protein (17.2%).

Side effect
In a zebrafish model, after PTC414 (2 µM) treatment, signs of renal toxicity were

observed. This side effect was not described after PTC124 treatment [111].

➢ RTC13 and RTC14

Discovery
To overcome the bias encountered when using the firefly luciferase gene reporter

assay, a luciferase-independent HTS assay was developed for future drug screening. This
alternative system exploited a protein transcription/translation (PTT) assay coupled to
an enzyme-linked immunosorbent assay (ELISA) to test multiple compounds that may
enhance PTC readthrough. To perform the PTT-ELISA assay, the plasmid used harbored a
PTC mutation (either UGA or UAA) in the ATM gene, responsible for the development of
ataxia–telangiectasia (A-T). The sequence carrying the PTC was N- and C-terminally tagged
by two epitopes, Myc and V5, respectively. Any partially or fully translated protein would
be caught on the ELISA plate thanks to an anti-myc antibody. If the compound tested
promoted PTC readthrough, the concerned translated protein would be detected with
anti-V5–horseradish peroxidase (HRP) antibody [112]. On the contrary, truncated protein
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would miss the C-ter sequence and so would not contain the V5 epitope. Consequently,
the protein would not be detected by the anti-V5–horseradish peroxidase (HRP) antibody.
This new method was applied to a 34,000 SRTM library. Two leading compounds were
identified: RTC13 (2-imino-5-{[5-(2-nitrophenyl)-2-furyl]methylene}-1,3-thiazolidin-4-one)
and RTC14 (4-tert-butyl-2-[(3-nitrobenzylidene)amino]phenol).

Mechanism of action
The molecular mechanism responsible for RTC13 and RTC14 readthrough activity

effectiveness remains unknown. These molecules possibly display a similar mechanism of
action as aminoglycoside, interfering with ribosomal translation.

RTC13 and RTC14 studied in various models
Both RTC13 and RTC14 induced the restoration of the full-length dystrophin protein

expression in myotubes derived from skeletal mouse muscle mdx carrying a UAA nonsense
mutation [112].

Intramuscular injection of RTC14 compound into skeletal muscles of mdx mice showed
no significant readthrough activity. However, intramuscular injection of the RTC13 com-
pound led to re-expression of dystrophin in the mouse diaphragm and heart. RTC13
treatment also improved muscle function [113].

➢ GJ071 and GJ072

Discovery
GJ071 and GJ072 have been identified in a screening of 36,000 other molecules with

the same biological system previously described to identify RTC13 and RTC14 [114].
Mechanism of action
GJ072 is known to share the same mechanism of action as PTC124 [115]. The molecular

mechanism of GJ071 remains unknown.
GJ071 and GJ072 as readthrough inducer studied in various models
Treatment with GJ071 and GJ072 in cells derived from an A-T patient offered equal

readthrough activity regardless of the three stop codons, compared to RTC13 and PTC124,
that display various activity depending on the stop codon [114].

➢ TLN468

Discovery
In order to identify new molecules with more efficient readthrough activity, Bidou

et al. used a three-step screening protocol. First, they generated a stable NIH 3T3 cell
line by integrating a secreted Metridia luciferase reporter gene interrupted by a nonsense
mutation Arg213* (TGA) from the TP53 gene [116]. A live-cell assay served to screen
17,680 molecules from chemical libraries. Based on their activity to induce luciferase with
a high level compared to untreated cells, 43 molecules were selected. Then, to limit the
selection of false positives, a second screen was performed by a dual reporter system
including β-galactosidase and firefly luciferase surrounding a PTC Arg213*. Thus, four
molecules were retained. In the third assay, they demonstrated the efficacy of TLN468 to
increase the mRNA level of the TP53 in human HDQ-P1 cell line, harboring the Arg213*
mutation in its endogenous gene [116].

Mechanism of action
TLN468, a 2-guanidino-quinazoline, has been described initially as an antibacterial

molecule [117], with a site of action at the level of the ribosome. However, the mechanism
of action needs to be investigated. In vitro analysis reveals that TLN468 introduces cysteine
for the UGA codon, glutamine for the UAG codon, and tyrosine for the UAA codon [118].

TLN468 as readthrough inducer studied in various models
The efficacy of TLN468 to promote readthrough of 40 different PTCs most frequently

involved in DMD disease was described [116].

4.2.2. tRNA Post-Transcriptional Inhibitors

➢ 2,6-diaminopurine
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Discovery
In order to identify new drugs with higher efficiency to treat inherited genetic diseases

resulting from nonsense mutations, several natural extracts of fungi, plants, or marine
invertebrates were screened. A new construct encoding firefly luciferase was used to
evaluate those compounds. Its novelty lies in the fact that it carries both an intronic sequence
and a nonsense mutation (TGA, TAG, or TAA) [119], therefore efficiently mimicking mRNA
submission to the NMD system. This screening identified an extract from the fungus Lepista
inversa named H7. This extract reveals luciferase activity on both the UGA and UAA stop
codons with a correction almost twice as good as the one offered by the aminoglycoside
G418 at 1 mg/mL [119]. Splitting of this extract revealed a new active component named
2,6-diaminopurine (DAP) [120].

Mechanism of action
It is well-known that various post-transcriptional modifications induced at the tRNA

level are crucial for their structure, function, and stability, especially at position 34 of the tRNA
anticodon. Among those modifications, the 2′-O-methylation of the cytosine 34 induced by
the 2′-O-methyltransferase (FTSJ1) in humans, or TRM7 in yeast, is strongly involved in the
fidelity of the codon recognition. It is possible to exploit these essential modifications using
2,6-diaminopurine-like inhibitors, such as DAP, to decode mRNAs disrupted by a PTC
(UGA) [120]. Indeed, this molecule hinders the cytosine 34 methylation (Cm34) of tRNA by
FTSJ1 enzymes, hampering the post-transcriptional modification process (Figure 8).
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Figure 8. Mechanism of action of 2-Diamin purine. DAD (blue) inhibits FTSJ1 enzyme, which is
responsible for the 2′-O-methylation of cytosine 34 of the anticodon in tRNATrp.

2,6-diaminopurine-like inhibitors as a readthrough inducer studied in various models
DAP was tested on three cancer cell lines, Calu-6 cells, Caco-2 cells, and Caov-3

cells, harboring three different endogenous nonsense mutations in the TP53 gene, UGA,
UAG, and UAA, respectively. Interestingly, DAP (25 µM) was more efficient than G418
at 1 mg/mL. In particular, for UGA nonsense mutations, it allowed the restoration of the
function of p53, increasing transcriptional activity on its target gene.

The efficiency of DAP to correct nonsense UGA mutations was confirmed in immun-
odeficient nude mice injected with Calu-6 cells carrying a UGA nonsense mutation in the
TP53 gene. After 5 weeks of treatment with either DMSO (vehicle) or DAP (1mg per day)
every day, tumor growth was significantly decreased with DAP treatment compared to
DMSO. Recently, the efficacy of DAP was demonstrated in several models of CF pathology:
in animals, patient-derived organoids, and patient cells carrying a UGA as a PTC in the
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CFTR gene. The pharmacokinetic analysis demonstrates a stable molecule in plasma, with
high biodistribution in different tissues like lung, brain, and muscle. In this study, DAP
was more effective than G418 or ELX-02 [121].

➢ NV derivatives

In another recent study, three small molecules named, NV848, NV914, and NV930
were shown to promote the readthrough activity by inhibition of FTSJ1, a tRNATrp-specific
2′-O-methyltransferase [122].

NV848, NV914, and NV930 are synthetized molecules containing 1,2,4-oxadiazole [123].
In vitro testing showed a higher readthrough activity in CF model systems [123,124], NV848,
NV914, and NV930 were evaluated in CF mouse models with a good tolerability and with-
out any mortality at 2000 mg/kg of NV914 and 300 mg/kg of NV848 or NV930 [125].
Further studies are necessary to support these beneficial effects.

4.2.3. Molecules Targeting eRF1

➢ SRI-37240 and SRI-41315

Discovery
In order to identify molecules with higher readthrough efficiency, Jyoti et al. searched

among 771,345 compounds. They developed a novel bioluminescence system based on
NanoLuc, a small luciferase enzyme derived from the deep-sea shrimp Oplophorus gra-
cilirostris. Compared to other luciferase such as Firefly or Renilla, limited by their size,
stability, and luminescence efficiency, NanoLuc reacts with the furimazine as a substrate
to produce furimamide, a luminescent component, in the presence of molecular oxygen.
This system offers more stability and a smaller-size luciferase (19 kDa) with high duration
and luminescence intensity (>150-fold compared to firefly luciferase) [126]. This process
identified two molecules named SRI37240 and SRI41315.

Mechanism of action
As previously detailed, competition constantly occurs between the translation termi-

nation and the readthrough process. The readthrough efficiency depends on the capacity
of the decoding center to incorporate a tRNA near cognate at the PTC position before eRF1
terminates the translation. Therefore, molecules that could deplete eRF1, such as SRI-41315,
allow an extended pause at any stop codons. Hence, the crucial point is to investigate
whether the NTC can also be disturbed using these molecules targeting eRF1 [127].

However, the translation termination at PTC or at NTC is different since translation
termination at NTC is well-known to be more efficient. Only a high reduction in eRF1
activity at the level of NTC would be necessary to disturb the normal translation termi-
nation [127,128] (Figure 9). Thus, it has been demonstrated that depletion of eRF1 using
oligonucleotides (ASO) reduced by 40% the abundance of eFR1 and promoted translational
readthrough in hFIX-p.Arg338* hemophilia mice [128].

Molecule targeting eRF1 as a readthrough inducer studied in various models
SRI-41315 and its derivative SRI-37240 were able to rescue CFTR expression in FRT cells

expressing a human gene harboring a UGA nonsense mutation in the CFTR gene compared
to G418 alone. Co-treatment with SRI-37240 and G418 mediated better readthrough efficacy,
resulting in 25% of wild type CFTR protein expression and function compared to the control
group [127].

Side effects
It has been reported that SRI-37240 and SRI-41315 induce modifications on cell sodium

transport [128].
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Figure 9. Mechanism of action of molecules targeting eRF1. The molecule SRI-41315 and its derivative
SRI-37240. The latter is a promising candidate to block eRF1, paving the way for the incorporation of
a near-cognate amino acid at the PTC position.

4.3. Readthrough Limits

Certain events, like the nature of the stop codon, the nucleotide sequence in the stop
codon vicinity, as well as post-transcriptional modifications, can impact the readthrough
process, either promoting or tempering it.

Selected amino acid incorporation in premature termination codon promoted by
readthrough molecules

In cells, the genetic code is read by complementarity between tRNA cognate anti-
codon and mRNA codon. However, it can be read with near-cognate tRNA, establishing
two codon–anticodon bonds with a mismatch on either the third or first position of the
codon and anticodon (called the wobble position). Thus, this explains how, thanks to
readthrough molecules, near-cognate tRNAs can be inserted to resume translation at stop
codons that normally do not match any specific tRNA. This could potentially help treat
patients affected by many genetic diseases harboring PTC [129].

At the mispaired wobble position 3, SRTM almost exclusively allows the readthrough
of UGA stop codon by preferentially inserting Trp, followed by Arg and then Cys. As
for the UAG stop codon, correction was mostly performed by inserting Gln, then Tyr
and Lys. Finally, with the UAA stop codon, PTCs were predominantly readthrough after
insertion of Gln, followed by Tyr and rarely by Lys. As for the wobble position 1 mispairing,
U-G is the most authorized readthrough of UAG which can be more easily read by the
tRNA-Arg-UCG than U-U and U-C mispairing [130].

Readthrough studies using mass spectrometry revealed that treatment by
2,6-diaminopurine (25 µM) of HEK293FT cells transfected with a plasmid carrying
Fluc-int-UGA led to exclusive incorporation of Trp at the UGA PTC position, underlying
the model influence [120].

Function and structure of proteins restored by readthrough process
Promoted by the readthrough process, the incorporation of an amino acid at the

PTC position could induce the production of either a native protein or could lead to
the production of a modified one (varying by only one amino acid). In the latter case,
investigations are always necessary to characterize the activity and the stability of the
modified expressed protein.

It was previously shown that treatment with Gentamicin in order to correct nonsense
mutations in the CD18 gene responsible for Leukocyte adhesion deficiency 1 (LAD1), an
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inherited disorder of neutrophil functions, was able to increase the expression of entire
proteins, CD18. However, their function and subcellular localization were impaired when
modified in vitro, and abnormal adhesion and chemotactic functions were also observed
in vivo [131]. Those side effects were due to the replacement of Arg, the wild type codon,
by Trp at the PTC.

Factors influencing readthrough efficacy

• The stop codon nature

In vitro, in vivo, and clinical trial studies have been performed to evaluate the effi-
ciency of readthrough molecule treatments on different PTCs for many genetic disorders.
However, various results are linked to several factors that impact the effectiveness of
readthrough, such as the PTC nature and nucleotide sequence surrounding it [132]. It
is crucial to underline that readthrough molecules do not have the same influence on all
three PTCs. Thus, it is well-known that pharmacological drugs are able to correct the UGA
PTC more efficiently than the UAG and UAA ones, with the proposed gradual intensity:
UGA > UAG > UAA [133]. The stop codon UGA differs only by the wobble position with Trp
(UGG) and Cys (UGC), which increases the chances of efficient readthrough with this codon.

• The nucleotide context

Experimental results have shown that the identity of the nucleotide sequence upstream
and downstream of the PTC could influence the translation termination efficiency.

➢ 3′context

The presence of a pyrimidine located at the +4 position, right after the PTC
(positions 1 to 3), highly stimulates a drug’s readthrough capacity. Especially, the presence
of a cytosine next to the stop codon UGA and UAA and a uracil next to the UAG stop
codon enhance the readthrough efficacy [42].

At this position, a tetranucleotides hierarchy of C > A > G > U was observed, from
the nucleotide allowing the highest readthrough levels to the lowest [134]. Several studies
revealed that the consensus sequence CAA, either downstream or upstream of the stop
codon UAG, could influence the efficiency of the readthrough process [135,136].

➢ 5′context

In addition, it was also established that the vicinity of the 5′ stop codon nucleotide
context could impact the readthrough mechanism. Tork and collaborators hypothesized
that the presence of two adjacent adenines (referred as positions −2 and −1) upstream of
the PTC (referred as positions 1 to 3) could influence translation termination. To explain
this phenomenon, it was hypothesized that the two A localized at the −2 and −1 positions
of the ribosomal P site could directly bind the structural helix 44 of 18S rRNA, which then
would influence the incorporation of a tRNA at the A site [137].

Additionally, it has been reported that the presence of the two nucleotides, upstream
(uridine) and downstream (cytosine) at positions −1 and +4, respectively, of the PTC carries
a decisive role in the readthrough efficiency after treatment with gentamicin [43].

Factors influencing readthrough efficacy
The important point that we would like to underline in the review is the question

of how these readthrough molecules manage to distinguish (or differentiate) between a
PTC and an NTC. Translations of PTC and NTC are two distinct mechanisms. Several
hypotheses were made to explain how readthrough molecules were not able to hinder the
physiological stop codon. The natural stop codon found near the poly (A) binding protein
(PABP) is associated with the 3’poly (A) tail of the mRNA, which facilitate its interaction
with the release factor eRF3, stimulating the efficiency of translation termination.

However, the distance between PTC and the PABP protein decreases the interaction
between PABP and eRF3, which could make the translation termination less efficient [138].



Pharmaceuticals 2024, 17, 314 21 of 29

5. NMD Inhibitors
5.1. Different Types of NMD Inhibitors (NMDIs)

In some cases, truncated protein synthesis could be sufficient to ensure partial or
complete function of the wild type protein. Thus, the inhibition of the NMD system could
be beneficial to stabilize the amount of mRNA carrying a PTC and to increase the protein
synthesized [139]. The NMD system is not usually 100% efficient. Indeed, it has been
reported that 5–25% of mRNA containing a PTC escaped to the NMD [140]. A reduced
NMD efficiency might influence the disease severity and thus potentially save the clinical
phenotype, as observed in Becker muscular dystrophy. In this case, a truncated form of the
dystrophin is still synthesized in insufficient quantities, which gave a less severe phenotype
than the one observed in DMD, where the dystrophin protein is totally absent [141].

As described previously, NMD undergoes a phosphorylation/dephosphorylation
cycle of UPF1. Based on this mechanism, NMD inhibitor molecules can be classified in dif-
ferent categories. Among others, these are the translation inhibitor, cytoskeleton disruptors,
and apoptosis inducers [142]. Here, we are going to focus on another category of NMDI:
those acting on phosphorylation (caffeine and wortmannin) or on dephosphorylation of
hUPF1 (NMDI 1, NMDI 14) (Figure 10).
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Figure 10. NMD inhibitor pathway. Molecules targeting phosphorylation: caffeine and wortmannin
inhibit SMG. Molecules targeting dephosphorylation: NMDI 1 inhibits SMG5 interactions, and NMDI
14 inhibits SMG7 interactions, resulting in the prevention of mRNA degradation harboring PTC.

5.2. Molecules Targeting the Phosphorylation Cycle of hUPF1

➢ Caffeine and wortmannin

Among NMD inhibitors, caffeine and wortmannin were investigated. Those molecules
target the phosphorylation of hUPF1 through the inhibition of SMG1 kinase. Both com-
pounds previously showed beneficial effects on fibroblasts from patients suffering from
Ulrich’s disease (congenital muscular dystrophy) carrying a PTC in the collagen IV gene,
resulting in extracellular matrix defects in patients [143]. Inhibition of the NMD system
by treatment with caffeine or wortmannin allowed the stabilization of mRNA levels and
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the synthesis of a truncated form of the protein of interest. Restoration of the extracellular
matrix was observed; however, their therapeutic uses were restricted due to their inhibiting
activity of other kinases such as PIKKs, essential in DNA damage repair [144].

5.3. Molecules Targeting Dephosphorylation Cycle of hUPF1

➢ NMDI 1

NMDI 1 (Nonsense-Mediated mRNA Decay Inhibitor 1) was identified as the
first small specific inhibitor of the NMD pathway. This molecule reduced the interaction
between hSMG5 and hUPF1 [145], leading to hUPF1 hyperphosphorylation in P-bodies
(eukaryote cytoplasmic structures containing some NMD factors).

➢ NMDI 14

A decade later, another NMD inhibitor, NMDI 14, was discovered. This NMDI
exhibited promising results in cancer cells containing a PTC in the P53 gene, disrupting the
interactions between UPF1 and SMG7 with low toxicity [146].

➢ Amlexanox

In order to unearth new NMDIs, scientists developed cell lines able to evaluate the
NMD mechanism. mRNA encoding the firefly luciferase is directed by NMD factors (one of
the UPF protein) downstream of the NTC in its 3′UTR. The presence of such NMD factors
downstream of the physiological stop codon of the mRNA causes the recognition of this
NTC as a PTC, inducing the degradation of mRNA by the NMD. This system enabled
the identification of 1200 marketed drugs, including one compound named Amlexanox
(2-amino-7-isopropyl-5-oxo-5H-chromeno [2,3-b]pyridine-3-carboxylic acid). In this system,
no cytotoxicity was reported from amlexanox [147].

Treatment with 25 µM of Amlexanox in cell lines from patients with cancer, DMD, and
CF stabilized the amount of PTC containing mRNA. Truncated proteins were found after
treatment with this NMDI; however, full-length protein of dystrophin, P53, and CFTR were
surprisingly produced in several cellular models derived from patients with DMD, cancer,
and CF, respectively. Therefore, Amlexanox seems to possess the ability to both stabilize
mRNA containing nonsense mutation and promote PTC readthrough. Indeed, amlexanox
showed readthrough activity in human cells harboring PTC mutation in COL7A1, from
patients with recessive dystrophic epidermolysis bullosa (RDEB) [148]. In addition, amlex-
anox was able to stabilize GDAP1 mRNA harboring UGA-PTC and to restore the protein
expression of GDAP1 in a CMT model of hiPSC-derived neuronal cells [149]. However, the
mechanism combining both effects in cells remains unclear [150,151].

5.4. Limits of NMD Inhibition

Additionally, regarding the quality control function of the NMD, this system also takes
place in the expression regulation of more than 10% of the transcriptome. Indeed, NMD
plays a crucial role in the regulation of essential biological processes such as embryonic
development, cell homeostasis, cellular response to stress, regulation of the immune re-
sponse, and viral replication [152]. Therefore, treatment with NMDI could potentially affect
the expression of genes that are submitted to NMD transcriptomic regulation. In human
cells subjected to depletion of hUPF1 or hUPF2 following NMDI treatment, transcriptomic
microarray analysis of physiological transcripts revealed an overexpression of 1.5 to 4.9%
of the genes analyzed [153,154].

A comprehensible fear regarding the use of NMDI concerns its impact on natural NMD
substrates. However, studies displayed some fairly encouraging results. They established
that Amlexanox treatment did not affect the mRNA levels of the three genes NAT9, TBL2,
SC35, which are known to be sensitive to the NMD system and reductions in the amount of
its translated mRNA [147,155].
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6. By Itself, Readthrough Mechanism Is Insufficient

The cocktail combining readthrough molecules and NMD inhibitors could be an
interesting strategy to treat patients with genetic diseases and cancer caused by nonsense
mutations. Some molecules even display this therapeutic potential identified with the
dual effect: NMD inhibition and PTC readthrough activation [82,147]. Among them, G418
harbors a high readthrough efficiency and is also an NMDI activity. Amlexanox has also
been reported as being able to promote PTC readthrough and to stabilize nonsense mRNAs
on three different cell lines derived from patients with CF, DMD, and lung cancer [147].

7. Conclusions

Aminoglycosides were the first molecules identified as readthrough inducers. Since
then, several studies have determined possible new NMDI and/or readthrough activators
that can correct nonsense mutations and thus partially or completely restore the protein of
interest. These molecules would have the potential to radically improve the treatment of
many diseases linked to nonsense mutations, especially for disorders lacking therapeutic
approaches (neurological diseases, cancer, rare genetic diseases). Better knowledge and
understanding of molecular mechanisms that lie behind these strategies and their variety of
efficiencies according to the PTC and genetic background are essential to screen molecules
that will be designed for personalized medicine.
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