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Abstract: Among the vinca-alkaloid class, vincristine is a potent chemotherapeutic agent with sig-
nificant neurotoxic effects and is employed to address a wide spectrum of cancer types. Recently,
the therapeutic potential of the cholecystokinin type 2 receptor (CCK2R) as a target for vincristine-
induced peripheral neuropathy (VIPN) was demonstrated. In this study, the impact of preventive
CCK2R blockade using netazepide (Trio Medicines Ltd., London, UK) was investigated in a mouse
model of vincristine-induced peripheral neuropathy. Netazepide is a highly selective CCK2R antag-
onist under development for the treatment of patients with gastric neuroendocrine tumors caused
by hypergastrinemia secondary to chronic autoimmune atrophic gastritis. Vincristine-induced pe-
ripheral neuropathy was induced by intraperitoneal injections of vincristine at 100 µg/kg/d for
7 days (D0 to D7). Netazepide (2 mg/kg/d or 5 mg/kg/d, per os) was administered one day before
vincristine treatment until D7. Vincristine induced a high tactile allodynia from D1 to D7. VIPN was
characterized by dorsal root ganglion neuron (DRG) and intraepidermal nerve fiber (IENF) loss, and
enlargement and loss of myelinated axons in the sciatic nerve. Netazepide completely prevented the
painful symptoms and nerve injuries induced by vincristine. In conclusion, the fact that netazepide
protected against vincristine-induced peripheral neuropathy in a mouse model strongly supports the
assessment of its therapeutic potential in patients receiving such chemotherapy.

Keywords: chemotherapy-induced peripheral neuropathy; vincristine; allodynia; netazepide; CCK2R

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is characterized by sensory
and/or motor dysfunction, according to the anticancer drug administered. Vincristine
is a commonly used and effective chemotherapeutic drug for the treatment of a wide
range of cancer types, especially in children and young adults with lymphoma and acute
lymphoblastic leukemia [1]. Vincristine is the most neurotoxic of the vinca alkaloid fam-
ily and can lead to the onset of vincristine-induced peripheral neuropathy [2]. Other
main adverse drug effects (ADR) of vincristine include alopecia, myelosuppression, and
gastrointestinal toxicity [3]. Vincristine-induced peripheral neuropathy is the side effect
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experienced by almost all children who receive vincristine [4–8]. Those patients develop
neuropathic pain such as tactile allodynia and hyperalgesia [9]. Vincristine binds to free
tubulin in the cytoplasm, causing it to aggregate into non-functional polymers. Free tubulin
is then unavailable for incorporation into microtubules [10], and cancer cells are blocked
in metaphase. This phenomenon may be implied in the onset of peripheral neuropathy
because of a disorganization of the axonal microtubule network [11]. However, other
mechanisms occurred, such as neuronal hyperexcitability, neuroinflammation, and oxida-
tive stress [8]. Duloxetine, the only recommended drug, alleviates chemotherapy-induced
painful symptoms in adult patients. However, in children, the only known method of
treatment is dose reduction, the delay or discontinuation of the neurotoxic molecule, which
reduces the patient’s potential for survival. It is noteworthy that some non-pharmacological
interventions showed promising effects on sensory symptoms and on quality of life, such
as physical exercise and acupuncture [12–14]. None of the preventive therapies tested so
far have shown significant clinical efficacy, probably because the exact pathophysiolog-
ical mechanism of vincristine-induced neuropathic pain remains unclear [15,16]. Thus,
there is an important unmet need for an effective preventative treatment. Several studies
have shown a strong link between the cholecystokinin type 2 receptor (CCK2R) and the
nociceptive process [17,18]. CCK2R belongs to the CCKergic system, which also includes
the CCK neuropeptide and the CCK1R receptor [19,20]. The CCK2R is found mainly in
the gastric enterochromaffin-like (ECL) cells in the stomach and in regions of the brain
associated with pain modulation, as well as other functions including memory, anxiety, and
thermoregulation. The few studies focused on the expression of CCK2R in the peripheral
nervous system have shown that CCK2R RNA is expressed in the dorsal root ganglion
(DRG) in physiological conditions and overexpressed in traumatic nerve injuries [21–23].
Previous preclinical studies have highlighted the potential for the blockade of CCK2R in
the management of pain [23–25]. Thus, we believe that CCK2R could be a therapeutic
target for CIPN in patients. Recently, we demonstrated overexpression of the cck2r gene in
DRG in a mouse model of vincristine-induced peripheral neuropathy [26]. In that model,
preventive treatment with the CCK2R antagonists, proglumide (a non-specific CCK2R an-
tagonist) or Ly225910 (a selective CCK2R antagonist), prevented the painful symptoms of
vincristine-induced peripheral neuropathy, but only Ly225910 alleviated the nerve injuries
induced by the anticancer agent. Also, blockade of CCK2R showed analgesic and neuro-
protective effects. Several other CCK2R antagonists, including YF476 (netazepide) [27],
have been described [28]. Netazepide has been called the gold standard for gastrin/CCK2R
antagonists [29] and has been the subject of several clinical pharmacology trials [30–34]
and trials for the treatment of patients with gastric neuroendocrine tumors caused by
hypergastrinaemia secondary to chronic autoimmune atrophic gastritis [35] and for other
conditions associated with hypergastrinaemia. In this study, our goal was to evaluate
the effect of netazepide on pain behavior and nerve injuries induced by vincristine in a
mouse model.

2. Results
2.1. Netazepide at 2 and 5 mg/kg Prevents Vincristine-Induced Allodynia

Netazepide and its vehicle (50% PEG 300, 40% NaCl 0.09%, 10% DMSO) had no
significant effect on mechanical responses in the Ctrl groups on D1, D3, D5, or D7. As
already described [36], mice of the Veh-VCR group developed significant mechanical
allodynia from D1 to D7 compared with mice of the Veh-Ctrl group (D1: p = 0.0171;
D3: p = 0.0279; D5: p = 0.0001; D7: p = 0.0003). Vincristine-administered mice treated
with netazepide did not develop mechanical allodynia. Indeed, there was no significant
difference between NTZ5-VCR and Veh-Ctrl mice from D1 to D7 (D1: p = 0.9991, D3:
p = 0.9657, D5: p = 0.9332, D7: p = 0.9984) (Figure 1). Likewise, there was no significant
difference between NTZ2-VCR and Veh-Ctrl mice for mechanical allodynia (D1: p = 0.9646,
D3: p = 0.5221, D5: p = 0.6714, D7: p = 0.7757).
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cle; VCR: vincristine. 
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Figure 1. Effects of netazepide (2 or 5 mg/kg) on mechanical allodynia induced by vincristine in
mice. Mechanical sensitivity was evaluated using the von Frey filament test at D1, D3, D5, and
D7. n = 10 mice per group, * p < 0.05, *** p < 0.001, Veh-VCR vs. Veh-Ctrl. $ p < 0.05, $$ p < 0.01,
$$$ p < 0.001, Veh-VCR vs. NTZ5-VCR, # p < 0.05, ## p < 0.01, ### p < 0.001 Veh-VCR vs. NTZ2-VCR,
RD: reference day, Ctrl: control; NTZ2: netazepide at 2 mg/kg; NTZ5: netazepide at 5 mg/kg; Veh:
vehicle; VCR: vincristine.

Thus, the data suggest a protective effect of netazepide on vincristine-induced me-
chanical allodynia. Netazepide 5 mg/kg restored normal mechanical sensitivity similar to
Veh-Ctrl mice and significantly lower than Veh-VCR mice from D1 to D7 (D1: p = 0.0165,
D5: p = 0.0023, D7: p = 0.0003 Veh-VCR vs. NTZ5-VCR) (Figure 1). Similar results were
obtained with a lower dose of 2 mg/kg (D1: p = 0.0065, D3: p = 0.0005, D5: p = 0.0125, and
D7: p = 0.0132 Veh-VCR vs. NTZ2-VCR).

2.2. Netazepide Alleviates the Decrease in IENF and DRG Neuron Densities Induced
by Vincristine

Netazepide at 2 or 5 mg/kg had no effect on IENF and DRG neuron densities in
the Ctrl groups. The density of IENF was lower in Veh-VCR mice than in Veh-Ctrl mice
(p = 0.0043). However, there was no significant difference in IENF density between Veh-Ctrl
mice and Veh-VCR mice treated with netazepide at 2 or 5 mg/kg (Figure 2A). Similarly,
the administration of vincristine resulted in a significant reduction in the density of DRG
neurons. (p = 0.0325 Veh-Ctrl vs. Veh-VCR, Figure 3B). Treatment with netazepide pre-
vented the vincristine-induced loss of DRG neurons (p = 0.0022, NTZ5-VCR vs. Veh-VCR,
p = 0.0152, NTZ2-VCR vs. Veh-VCR) (Figure 2B).

2.3. Effect of Netazepide on Myelinated Nerve Fiber Density and Morphology in Sciatic Nerves on
Vincristine-Induced Peripheral Neuropathy Model

Neither dose of netazepide had any noticeable effect on the morphology of myelinated
or unmyelinated nerve fibers in the sciatic nerves of the control groups. However, there
was no significant alteration in the morphology of unmyelinated fibers. (Figure 3A) in
Veh-VCR mice relative to Veh-Ctrl mice. Quantitative analysis of electron microscopy
images revealed a significant reduction in myelinated fiber density following vincristine
treatment. (p = 0.0076, Figure 3B). This reduction was linked to an augmentation in the area
of myelinated axons. (p < 0.01, Figure 3C). Netazepide prevented the decrease in myelinated
fiber density at 2 or 5 mg/kg (p = 0.0206, Figure 3B) and the increase in myelinated axon
area induced by vincristine (NTZ2-VCR: p = 0.0313, NTZ5-VCR: p = 0.0043 vs. Veh-VCR),
such that there was no significant difference between the myelinated axon areas of mice in
the Veh-Ctrl, VCR-NTZ2, and VCR-NTZ5 groups (Figure 3C).
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induced by vincristine in mice. Immunohistochemistry for PGP9.5 was performed on paw skin
sections (A) and DRG (B). (C) Intraepidermal nerve fiber density was assessed. Three sections of paw
skin were examined per mouse. n = 6 mice. (D) Quantification of DRG neuron density was evaluated.
Three DRG sections and three DRG per mouse were counted. n = 6 per group. * p < 0.05, ** p < 0.01 vs.
Veh-Ctrl; ## p < 0.05 vs. Veh-VCR. PGP9.5: protein gene product 9.5. Ctrl: control, NTZ2: netazepide
at 2 mg/kg, NTZ5: netazepide at 5 mg/kg, Veh: vehicle, VCR: vincristine.
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Figure 3. Quantitative analysis of sciatic nerves by electron microscopy. (A) Visualization of myeli-
nated fibers in the sciatic nerve. (B) Quantification of myelinated fiber density. (C) Measurement of
myelinated axon area in the nerve. n = 6 per group; ** p < 0.01 vs. Veh-Ctrl. # p < 0.05; ## p < 0.01; vs.
Veh-VCR. Ctrl: control, Ly: Ly225910; NTZ2: netazepide at 2 mg/kg; NTZ5: netazepide at 5 mg/kg;
Veh: vehicle; VCR: vincristine.
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3. Discussion

Overall, the main findings of this preclinical study are that CCK2R blockade by
netazepide is effective in preventing the occurrence of painful symptoms, i.e., tactile
allodynia, and sensory nerve injuries induced by repeated injection of vincristine in a
mouse model.

Tactile allodynia is one of the predominant sensory symptoms in humans receiving
vincristine. Mice exposed to vincristine also developed tactile allodynia from D1 to D7
after the start of vincristine injections, as found in other studies in rodent models [37–39].
An administration of netazepide in mice prevented the onset of vincristine-induced tactile
allodynia at both tested doses. The lowest dose of 2 mg/kg was sufficient to prevent the
onset of vincristine-induced pain. Allodynia is a complex process involving both peripheral
and central mechanisms [40].

Among the pharmacological treatments that have been used to modulate neuropathic
allodynia, drugs that act on opioid receptors have shown a beneficial effect. However, opi-
oid administration is frequently associated with the onset of adverse effects, tolerance, and
dependence [41]. One explanation for CCK2R blockade-induced analgesia is its capacity
to dimerize with the opioid receptor MOR [42]. Indeed, upon activation, CCK2R forms
heterodimers with MOR, preventing the binding of opioids to their receptor and so blocking
their analgesic effect. Thus, CCK2R antagonists have been investigated in combination with
opioids and proposed as morphine adjunct therapy [24,43–45]. Does YF476 (netazepide)
cross the BBB? Following injection of carbon-11-labeled YF476 into the tail vein of rats,
exceedingly low levels of radioactivity were found in all brain regions from 5 to 60 min
post-injection [46]. Other investigators obtained similar results in rats [47,48]. However,
Zhang et al. [49] showed that netazepide can cross the BBB and that neuropathic pain
is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors
(CCK2R-MOR) [50].

Vincristine does not cross the blood-brain barrier and is responsible for peripheral
nerve injuries. Thus, we suppose that netazepide-induced analgesia in our vincristine-
induced peripheral neuropathy model also involved peripheral mechanisms. Another
explanation is that activation of CCK2R expressed in mouse DRG neurons could lead to
neuronal hyperexcitability, resulting in pain hypersensitivity [51]. Actually, Yu et al., 2019
showed that activation of CCK2R by CCK-8 stimulated the Gαo subunit, leading to the
induction of a particular signal transduction pathway resulting in the inhibition of the Ia
current in small-sized sensory neurons. A decrease in Ia, encoded by A-type K+ channels,
caused an increase in excitability in small-sized sensory neurons [52]. Our functional results
support the use of a CCK2R blocker alone as an efficient analgesic for the treatment of
neuropathic pain.

Several studies have demonstrated that damage to small C and Aδ nociceptors and to
low-threshold Aβ fibers leads to mechanical allodynia [40,53–55]. It is important to notice
that a definitive diagnostic protocol is not present in the current literature, especially when
the damage is to small fibers, and therapeutic strategies are lacking, especially for small
fiber damage. This underscores the importance of developing new drugs [13,26,56].

These observations are in agreement with our histological findings. Immunofluores-
cence analysis of the skin demonstrates that vincristine induced damage to small nerve
fibers is highlighted by a decrease in IENF density, as previously shown in rats [57]. Further-
more, electron microscopy analyses show that vincristine leads to a decrease in myelinated
nerve fiber density and an enlargement of myelinated axons in the sciatic nerve, as pre-
viously shown [11,58,59]. Here, netazepide pretreatment at 2 and 5 mg/kg prevented
vincristine-induced nerve injuries, suggesting a neuroprotective role for netazepide. Vin-
cristine acts by inhibiting microtubule polymerization and mitotic spindle formation, stop-
ping the cell cycle and leading to cancer cell death [60]. Integrity of the microtubule network
is crucial for the peripheral neurons, although neurons do not divide. Microtubules main-
tain the elongated morphology of peripheral neurons, ensure axonal transport, and cause
neuronal excitability [61]. Thus, structural alteration of myelinated nerve fibers exposed to
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vincristine could be associated with the microtubule-targeting agent activity of vincristine.
However, other pathophysiological mechanisms are involved in vincristine-induced neuro-
toxicity, such as neuro-inflammation and mitochondrial dysfunction. Vincristine affects
calcium movement by acting on the mitochondrial membrane [62]. This change in calcium
flux alters mitochondrial function, resulting in a decrease in energy production and axon
degeneration [63,64]. CCK2R belongs to the G protein-coupled receptor (GPCR) family and
is preferentially associated with the Gαq protein, whose activation results in mobilization
of intracellular Ca2+ and activation of Ca2+ dependent-signaling pathways [65]. Overstimu-
lation by CCK-8 has been shown to induce mitochondrial changes in pancreatic acinar cells,
leading to acute pancreatitis (González et al., 2003). Overexpression of CCK2R in DRG
could alter calcium homeostasis, leading to mitochondrial dysfunction and energy loss in
sensory neurons. Blocking CCK2R could limit intracellular Ca2+ accumulation and thus
protect sensory neurons from degeneration. In addition, it was shown that activation of mi-
croglia and astrocytes in the spinal cord during exposure to vincristine leads to the release
of cytokines, sustaining neuropathic pain through inflammatory mechanisms [38]. Blocking
the CCK system may exert anti-inflammatory properties and prevent VCR-induced neuroin-
flammation. The overexpression of CCK2R mRNA in airway-innervating sensory neurons
was observed after lung inflammation [66]. Upregulation of CCK2R in DRG in response
to injury and/or inflammation may initiate either a neuroprotection/neuroregenerative
process or an inflammatory process. Thus, the blockade of CCK2R may inhibit anarchic
nerve sprouting, causing pain, or regulate an inflammatory mechanism leading to pain and
neurodegeneration. An anti-inflammatory effect of CCK system blockade has already been
demonstrated in a proglumide-treated model of chronic pancreatitis [67].

In our previous study, daily administration of proglumide accelerated the recovery of
normal mechanical sensitivity in mice exposed to vincristine and prevented nerve injuries
induced by vincristine [26]. Proglumide is a non-selective antagonist of CCK1R and CCK2R
and has already been the subject of clinical trials. In the perspective of drug repositioning,
netazepide showed more promising results, as its administration completely prevented the
onset of mechanical allodynia induced by vincristine. However, the animal model used in
this study is cancer-free. Thus, the effect of netazepide on tumor growth, the anticancer
properties of vincristine, and the possible adverse effects associated with the interaction of
both drugs could not be evaluated here. Further investigations are needed to determine the
influence of netazepide on a tumor-bearing experimental model.

4. Materials and Methods

This study adhered to the ethical care guidelines for experimental animals of the
European Community (Directive 2010/63/EU) and was submitted to the French Ministry
of Higher Education and Research and approved (APAFiS # 27947-2020111216498126 v2).
Animal experiments are presented in accordance with ARRIVE guidelines [68]. All efforts
were made to minimize both suffering and the total number of animals employed in the
experiments. A total of 60 male and female (30:30) Swiss mice (6–7 weeks old) from Janvier
Labs (Saint Berthevin, France) were housed in groups of 4 to 5 per cage and kept under a 12 h
light/dark cycle with food and water available ad libitum (BISCEm-animal care and facility
center). Shredded paper nesting material was supplied for environmental enrichment.
The mice were allocated to 3 groups: vehicle (Veh), netazepide at 2 mg/kg (NTZ2), and
netazepide at 5 mg/kg (NTZ5). The mice in each group were further categorized into
2 subgroups: control (Ctrl) or vincristine (VCR), resulting in a total of 6 groups of mice
(n = 10 in each group): Veh-Ctrl, NTZ2-Ctrl, NTZ5-Ctrl, Veh-VCR, NTZ2-VCR, and NTZ5-
VCR. The number n was calculated according to the variability obtained during the von
Frey test in previous studies using the same model [26,36].

The maximal dose of 5 mg/kg was calculated until the efficient dose to reduce the
number of tumors in patients with multiple gastric neuroendocrine tumors (type 1 gastric
NETs) Patients received 50 mg orally once a day [35]. Pharmacokinetics studies showed a
bioavailability in non-clinical studies between 30 and 50% [69]. So, according to Nair and
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Jacob (2016), the equivalent dose for mice was: (50 mg × 0.4)/60 kg = 0.33 mg/kg for the
human dose, which corresponds to 0.33 × 12.3 = 4.1 mg/kg for the mouse dose [70]. So, the
dose of 5 mg/kg was defined as the maximal dose, and the dose of 2 mg/kg was defined
as the minimal dose.

The assignment of mice to each group was conducted using an online randomiza-
tion tool. (http://www.graphpad.com/quickcalcs/index.cfm (accessed on 28 September
2021)). Sciatic nerve, DRG, and paw skin were removed at the end of the experiment for
immunohistochemistry and morphological analyses.

4.1. Treatments

Peripheral neuropathy was induced through daily intraperitoneal [i.p.], injections of
vincristine at a dosage of 100 µg/kg for 8 consecutive days (Hospira, Meudon, France) [36],
or an equivalent volume of the diluent (saline solution, i.p.) for Ctrl mice (Figure 4).
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Figure 4. Schematic representation of the study design: Ctrl: control; DMSO: dimethyl sulfoxide;
DRG: dorsal root ganglion; NTZ: netazepide; PEG 300: polyethylene glycol 300; Veh: vehicle [36].

Treatments started one day before the first vincristine administration and were admin-
istered, per os, each following day for 8 days. Netazepide active pharmaceutical ingredient
(API) 2 or 5 mg/kg was diluted in a final solution of 50% polyethylene glycol 300 (PEG
300) and 10% dimethyl sulfoxide diluted in saline solution (50% PEG 300, 40% NaCl 0.09%,
10% DMSO). Vehicle mice received an equivalent volume of 50% PEG 300, 40% NaCl 0.09%,
and 10% DMSO.

4.2. Behavioral Test

A functional test was conducted on days 1, 3, 5, and 7 across all groups. Animals were
acclimatized to the testing room for at least 1 h before behavioral testing. The behavioral
test was assessed by the same researcher, blinded to the treatment (NTZ 2 mg/kg, NTZ
5 mg/kg, or Veh) and the conditions (VCR or Ctrl).

Tactile sensitivity was assessed using the von Frey filament test (Bioseb, France) [71].
Mice were placed in a plastic cage with a wire mesh floor, which allowed access to their
paws for 30 min for acclimatization. The plastic cage was covered with an opaque cup to
prevent visual stimulation. The testing focused on the mid-plantar left hind paw, and the
mechanical threshold was assessed using a modified version of the simplified up-down
method [72]. The test began with filament #6 (0.40 g) and advanced to higher or lower
filament values based on the animal’s response. Each animal underwent three test rounds
for each paw under each experimental condition.

4.3. Immunohistochemistry and Morphological Analyses
4.3.1. Quantification of IENF and DRG Neuron Densities

To assess for sensory innervation, animals (n = 6 per group) were euthanized at D7
through cervical dislocation following isoflurane anesthesia.

http://www.graphpad.com/quickcalcs/index.cfm
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Then, footpads were removed with a punch biopsy (diameter of 3 mm), fixed overnight
at 4 ◦C in 4% paraformaldehyde (PFA 4%), cryoprotected overnight at 4 ◦C (sucrose 30%),
and frozen at −80 ◦C. Sections of 20 µm were sliced using a cryostat and left to incubate
overnight with the primary antibody directed against protein gene product 9.5 (PGP9.5,
rabbit monoclonal, 1:50; Abcam, Cambridge, UK). Sections were then incubated with
the secondary antibody Cy3-conjugated (1:500; Jackson Immunoresearch, Suffolk, UK).
Epidermal nerve fibers were blindly counted under 400× magnification (Eclipse 50i, Nikon
Instruments Inc., Melville, NY, USA), following established guidelines for humans [19].
The length of the dermo-epidermal junction was determined with NIS-Elements BR 2.30
software (Nikon Instruments Inc., Melville, NY, USA) and was defined as the epidermal
length. Epidermal nerve density was defined as the number of epidermal nerves divided
by the epidermal length. To assess the density of DRG neurons, four lumbar (L4–L5) DRG
sections per mouse were collected and processed as described above, except that 8 µm
sections were sampled. Each DRG section was photographed at 200× under a fluorescence
microscope in a systematic fashion. Immunoreactive DRG neurons were counted, and only
the area containing neurons was measured with NIS-Elements BR 2.30 software (Nikon
Instruments Inc., Melville, NY, USA). The density of PGP 9.5(+) neurons was expressed as
neurons/mm2.

4.3.2. Sciatic Nerve Ultrastructural Analysis

To evaluate the morphology and quantification of myelinated nerve fibers, sciatic
nerves were dissected and immersed in a 2.5% glutaraldehyde solution diluted in Sorensen
buffer, dehydrated, and embedded in Epon 812 resin (Euromedex, Souffelweyersheim,
France). Semi-thin sections were stained with toluidine blue. Ultrathin sections were
stained with uranyl acetate and lead citrate. The observations were made using an electron
microscope (JEM-1400 Flash, Jeol, Tokyo, Japan). Six photographs were captured per
animal (n = 6 per group), covering the entire section of sciatic nerve, were taken at 3000×
magnification, and the number of myelinated fibers per mm2 was counted to calculate
a density.

4.4. Data Analysis

All data were presented as the mean +/− SEM. For multiple groups with a Gaussian
distribution, a one-way analysis of variance (ANOVA) was employed to assess differences,
and Tukey’s multiple comparisons test was utilized to determine p values. In cases where
data did not follow a Gaussian distribution, a nonparametric Kruskal–Wallis test was
conducted, and the Dunn multiple comparisons test was applied. Statistical significance
was considered at p < 0.05.

5. Conclusions

These results provide evidence to support the concept that netazepide has analgesic
and neuroprotective properties. Furthermore, CCK2R is expressed in various types of
cancer, such as melanoma, pulmonary, and digestive cancers, and its antagonism alleviates
cancer growth [73,74]. So, netazepide, a well-tolerated drug already investigated in clinical
trials for other indications, is a potential good candidate in the context of vincristine-
induced peripheral neuropathy because of its neuroprotective and anticancer properties.
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