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Abstract: Phosphodiesterase 5 (PDE5) inhibitors presented themselves as important players in the
nitric oxide/cGMP pathway, thus exerting a profound impact on various physiological and patho-
logical processes. Beyond their well-known efficacy in treating male erectile dysfunction (ED) and
pulmonary arterial hypertension (PAH), a plethora of studies have unveiled their significance in the
treatment of a myriad of other diseases, including cognitive functions, heart failure, multiple drug
resistance in cancer therapy, immune diseases, systemic sclerosis and others. This comprehensive
review aims to provide an updated assessment of the crucial role played by PDE5 inhibitors (PDE5-Is)
as disease-modifying agents taking their limiting side effects into consideration. From a medicinal
chemistry and drug discovery perspective, the published PDE5-Is over the last 10 years and their
binding characteristics are systemically discussed, and advancement in properties is exposed. A
persistent challenge encountered with these agents lies in their limited isozyme selectivity; con-
sidering this obstacle, this review also highlights the breakthrough development of the recently
reported PDE5 allosteric inhibitors, which exhibit an unparalleled level of selectivity that was rarely
achievable by competitive inhibitors. The implications and potential impact of these novel allosteric
inhibitors are meticulously explored. Additionally, the concept of multi-targeted ligands is critically
evaluated in relation to PDE5-Is by inspecting the broader spectrum of their molecular interactions
and effects. The objective of this review is to provide insight into the design of potent, selective
PDE5-Is and an overview of their biological function, limitations, challenges, therapeutic potentials,
undergoing clinical trials, future prospects and emerging uses, thus guiding upcoming endeavors in
both academia and industry within this domain.

Keywords: phosphodiesterase 5 inhibitors; selectivity; NO/cGMP; erectile dysfunction; pulmonary
arterial hypertension

1. Introduction

PDE5 inhibitors (PDE5-Is) are groundbreaking medications for treating ED. They
increase cGMP levels, causing muscle relaxation and vasodilation in the penis, leading to
erections. Their therapeutic potential extends beyond ED, with clinical approval for treating
PAH, BPH, and LUTS. Research highlights their potential in diseases like cancer, neurologi-
cal disorders, cystic fibrosis, and diabetes. Promisingly, this has incited the development of
new PDE5-Is with higher potency, selectivity, and improved pharmacokinetics for enhanced
efficacy. This review provides an update on the approved and potential uses, side effects,
and published inhibitors, covering binding properties, selectivity, pharmacokinetics, and
in vivo efficacy over the past decade, as well as the most recent clinical studies.
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2. Classification of Phosphodiesterases

PDE superfamily comprises 11 families (PDE1–PDE11) that are encoded by 21 different
genes, whose expression are modulated via multiple promotors and messenger RNA (mRNA)
alternative splicing generating more than 50 isoforms [1,2]. It is worth noting that PDE12,
which cleaves 2′,5′-phosphodiester bond linking adenosines of the 5′-triphosphorylated
oligoadenylates, belongs to the C–C chemokine receptor 4 (CCR4)/nocturin family [3] and is
not a member of the cyclic nucleotide PDE superfamily. PDE isoforms are classified based on
their amino acid sequences, substrate specificities, catalytic and cofactor requirements, kinetic
properties, regulatory mechanisms, and tissue distributions [1]. Some PDEs are selective for
the hydrolysis of cAMP (PDE 4, 7, and 8) or cGMP (PDE 5, 6 and 9), while others can hydrolyze
both cAMP and cGMP (PDE 1, 2, 3, 10 and 11) [4]. PDEs share a conserved catalytic domain
(C domain) but differ significantly in their N-terminal regulatory domains. PDEs are mainly
regulated via (i) binding of Ca2+/calmodulin (PDE1), (ii) phosphorylation/dephosphorylation
events (PDE1, 3, 4 and 5) and (iii) allosteric binding of cGMP via GAF domains (PDE2, 5, 6,
10 and 11) [1]. The description of diverse tissue distribution/cell expression and functional
significance of PDE isoenzymes is detailed in [5] and is beyond the scope of this review.
Notably, such tissue/cellular compartmentalization allows selective PDE inhibitors to exert
their effects almost exclusively on the target tissue.

Our focus herein is on the PDE5 family, which is generated by one gene, PDE5A,
and has three alternative spliced variants, PDE5A1, 5A2 and 5A3. The three human PDE5
isoforms differ only in the 5’-end of the mRNA and the corresponding N-terminal of the
protein. These isoforms have similar phosphorylation sites, allosteric cGMP-binding sites,
catalytic domain and cGMP binding and hydrolysis activities [6]. However, PDE5A1 was
reported to be more resistant to chemical inhibition than PDE5A2 or PDE5A3. PDE5A1
and PDE5A2 are widely distributed in nearly all tissues, whereas PDE5A3 is confined to
vascular smooth muscle cells [2].

3. Tissues and Organs of High Expression for PDE5

PDE5 is present in virtually all cell types, tissues and organs. PDE5 is highly expressed
in the smooth muscle cells of the peripheral arteries and venous vessels and in coronary
and pulmonary arteries [2]. In addition, PDE5 is expressed in the vascular smooth muscle
cells of the corpora cavernosa of the penis besides spermatozoa, peritubular myoid of
Leydig cells and vas deferens in males [7]. PDE5 is widely distributed in the cytoplasmic
cell compartment in myometrial cells, endothelial cells and peripheral blood mononuclear
cells. It is also expressed in skeletal muscles, cardiomyocytes, platelets, lung, spinal cord,
cerebellum, retina, pancreas, prostate, urethra and bladder [1,2,8]. PDE5A1 and PDE5A2 are
further expressed in renal vessels, glomeruli, tubular epithelial cells of the renal proximal
tubule and medullary collecting duct [9]. Consequently, PDE5 isoforms exhibit diverse and
numerous functions both in physiological and pathological conditions.

4. PDE5 Physiological Role

Nitric oxide (NO) is synthesized from the precursor L-arginine through the activi-
ties of different NO synthases (neuronal, inducible or endothelial NOS). Intracellularly,
NO binds to and activates soluble guanylyl cyclase (sGC), promoting the conversion of
guanosine triphosphate (GTP) to the second messenger cyclic guanosine monophosphate
(cGMP) [10,11]. Thereafter, cGMP activates protein kinase G (PKG), whose phosphory-
lation mediates activities of various membrane channels/pumps, leading to decreased
calcium influx through L-type calcium channels and increased calcium sequestration, re-
sulting in smooth muscle relaxation and vascular tone modulation [12]. PKG-dependent
phosphorylation of other various downstream proteins can regulate further pivotal physio-
logical functions, such as cell differentiation and proliferation, endothelial permeability,
ion transport, secretion and gene transcription [13].

Given the broad expression and the ability of PDE5 to specifically hydrolyze cGMP, control-
ling its cellular levels, PDE5 has been proposed as a crucial player in many NO/cGMP/PKG-
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dependent biological processes such as smooth muscle relaxation, heart muscle contraction,
platelet activation/aggregation and immune response [14].

PDE5 inhibition was found to enhance smooth muscle relaxation and vasodilation,
which in the penis corpus cavernosum favors erection, in the pulmonary vasculature
decreases pulmonary vessels’ pressure, and in the systemic circulation decreases arterial
blood pressure [15].

In addition, PDE5 is an important regulator of platelet function, whose inhibition
increases platelet cGMP levels and augments the ability of NO to inhibit platelet aggregation
and activation [16].

Furthermore, PDE5 governs fundamental physiological processes in the kidney. It
can regulate renal vascular blood flow by hampering cGMP-mediated vascular relaxation.
PDE5 is also a negative regulator for cGMP-dependent natriuresis. Moreover, it increases
renin synthesis by degrading cGMP in juxtaglomerular cells [17].

5. PDE5 as a Drug Target for Disease Treatment

Competitive PDE5-Is reported so far exclusively bind to the catalytic domain, prevent-
ing cGMP hydrolysis and elevating its levels in cells of various tissues [18]. The subsequent
activation or restoration of normal NO/cGMP/PKG signaling cascade prompted the use
of these inhibitors as therapeutics for several clinical indications. Food and Drug Admin-
istration (FDA)-approved PDE5-Is (Figure 1) include (i) sildenafil (approved in 1998 for
erectile dysfunction (ED) as Viagra®, and in 2005 for pulmonary arterial hypertension
(PAH, WHO Group I) as Revatio®), (ii) vardenafil (approved in 2003 for ED as Levitra®),
(iii) tadalafil (approved in 2003 for ED as Cialis®, in 2009 for PAH (WHO Group I) as
Adcirca® and in 2011 for lower urinary tract symptoms secondary to benign prostatic hy-
perplasia (LUTS/BPH) with or without ED and the most recent (iv) avanafil (approved in
2012 for ED as Stendra®) [19,20].

These inhibitors differ in their selectivity, potency, onset and duration of action, cost,
administration considerations, precautions, and adverse effects profiles. The relative po-
tency of vardenafil for PDE5 was reported to be the highest (PDE5 IC50 of 0.1–0.4 nM), fol-
lowed by tadalafil (PDE5 IC50 of 2 nM), and then sildenafil and avanafil (PDE5 IC50 of 4 nM
and 4.3–5.2 nM, respectively). They all share a quick onset time in the range of 11–16 min
after oral administration, with avanafil advertised as the fastest-acting. Plasma half-lives
of sildenafil and vardenafil are similar, about 4 h, and their efficacy of action lasts up
to 12 h. Avanafil half-life is shorter, about 3 h, with a maximal duration of action of
6 h. Tadalafil’s half-life is the longest, 17.5 h, with an efficacy maintained for up to
36 h [18,20–22].

A new generation of PDE5-Is, namely lodenafil, udenafil, and mirodenafil are also
available in Brazil and Korea for ED treatment (Figure 1), but none of them have been
FDA-approved, yet [23].

Aside from the three FDA-approved clinical indications, PDE5-Is have been intensively
investigated for their potential use in the treatment of various emerging indications, such
as cancer, central nervous system (CNS) and cardiovascular system (CVS) related diseases,
kidney diseases, cystic fibrosis and diabetes, all of which will be discussed herein.
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Figure 1. Chemical structures of marketed PDE5 inhibitors.

5.1. Approved Clinical Uses of PDE5 Inhibitors
5.1.1. Erectile Dysfunction

In the corpora cavernosa, parasympathetic stimulation and sexual arousal induce
the release of NO from endothelial cells and nitrergic neurons surrounding the arteries
and sinusoids, leading to increased cGMP synthesis. PDE5-Is can slow the degradation
of penile connective tissue cGMP. This leads to a drop in the intracellular Ca2+ levels
in the corpus cavernosum smooth muscles, causing their relaxation and a reduction in
arterial blood drainage, providing a sufficient degree of penile tumescence and sustaining
penile erection (Figure 2). Accordingly, it can be deduced that the action of PDE5-Is requires
normal neuronal input into the erectile tissues, as well as unimpaired cavernous endothelial
structures [24,25].

PDE5-Is are thus considered the first-line choice for on-demand and chronic treatment
of most ED cases. The efficacy and safety of the four FDA-approved PDE5-Is (sildenafil,
vardenafil, tadalafil and avanafil) have been confirmed by a multitude of worldwide clinical
trials involving thousands of ED patients with diverse etiologies that were documented by
several reviews [19,26–30].
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It is worth noting that the few differences between sildenafil, tadalafil and vardenafil
pharmacokinetics allow tadalafil, with a longer half-life, to be superior in a number of
sexual intercourses per pill, while vardenafil and sildenafil exhibited privilege whenever
duration of erection, or vascular efficacy and penile hardness are explored [31,32].
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Figure 2. Approved clinical uses of PDE5 inhibitors. Nitric oxide (NO) is produced by neurons
and endothelial cells. Inside smooth muscle cells, NO activates soluble guanylyl cyclase (sGC),
promoting the conversion of guanosine triphosphate (GTP) to the second messenger cyclic guanosine
monophosphate (cGMP). Thereafter, cGMP activates protein kinase G (PKG), whose phosphorylation
mediates activities of various membrane channels/pumps, leading to decreased intracellular calcium
levels resulting in smooth muscle relaxation (SMR). Phosphodiesterase 5 (PDE5) regulates cGMP
levels by degrading it into inactive 5′ guanosine monophosphate (5′ GMP). PDE5-Is can thus enhance
the cGMP/PKG pathway, boosting the relaxation of various smooth muscles. In the penis corpus
cavernosum, SMR favors erection due to increased penile arterial inflow, and thus PDE5-Is are
approved for the treatment of erectile dysfunction. In the lungs, PDE5-Is lead to vasodilation of
pulmonary vasculature, which, along with other mechanisms, such as suppressed DNA synthesis
and proliferation and enhanced apoptosis of pulmonary artery cells, increased endothelial progenitor
cell number, and enhanced release of vasodilating adenosine triphosphate (ATP) from erythrocytes
culminate in effectiveness in the treatment of pulmonary arterial hypertension (PAH). In the lower
urinary tract (LUT), PDE5-Is mediate prostate and bladder SMR, vasodilation and increased LUT
oxygen perfusion. In addition, PDE5-Is could suppress prostatitis, bladder afferent nerve activity and
prostate stroma cell proliferation, and thus indicated in the treatment of LUT symptoms secondary to
benign prostatic hyperplasia (BPH).

5.1.2. Pulmonary Arterial Hypertension

PAH is a disease associated with endothelial dysfunction, vascular remodeling and
fibrosis that causes gradual progression of pulmonary vascular resistance, ultimately lead-
ing to right heart failure. Accordingly, PAH therapies usually aim to enhance vasodilation,
suppress cellular hyperproliferation and induce apoptosis [33].

PDE5 is highly expressed in the lung vasculature [34]. The fact that lung endothelial
NOS is reduced [35] and PDE5 is upregulated in the remodeled pulmonary artery dur-
ing PAH has proposed PDE5-Is as a potential PAH treatment [36]. A plethora of PDE5
inhibition-mediated mechanisms have been documented (Figure 2) including (i) activation
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of the NO/cGMP/PKG pathway, resulting in decreased calcium influx through L-type
calcium channels and increased calcium sequestration, inducing vasorelaxation [37], (ii) sup-
pression of DNA synthesis and cell proliferation and stimulation of apoptosis of pulmonary
artery smooth cells whose proliferation is involved in the pathogenesis of intimal hyper-
plasia and major vascular lesions in PAH [38], and (iii) increasing circulating endothelial
progenitor cell (EPC) number [39].

Several clinical studies confirmed the potential of PDE5-Is to improve several hemo-
dynamic and clinical parameters in PAH patients [40–43], such as diminishing pulmonary
artery systolic and mean artery pressure, dyspnea score and gas transfer, pulmonary vas-
cular resistance and cardiac output [44]. Furthermore, PDE5-Is could improve ventilatory
efficiency and oxygen uptake kinetics and prevent exercise-induced pulmonary edema [45].
Vardenafil usually exhibits the most rapid effect on pulmonary vasorelaxation, while silde-
nafil and tadalafil are more selective for pulmonary circulation. Substantial enhancement
of arterial oxygenation is mainly observed with sildenafil [46].

Sildenafil, in 2005, and, thereafter, tadalafil have been FDA approved and became
first-line therapies for PAH [47], primary or secondary to other connective tissue diseases,
such as scleroderma (SSc) or systemic lupus erythematosus (SLE) [34].

PDE5-Is can also be used as combination therapy with other PAH-targeted treatments.
The combination of sildenafil and long-term intravenous epoprostenol therapy was supe-
rior to epoprostenol monotherapy regarding improved exercise capacity, hemodynamic
measurements and prolonged time to clinical worsening [48]. Other combinations, such as
tadalafil with the endothelin receptor antagonist ambrisentan and sildenafil with systemic
nitrates [49], were proven safe and effective in potentiating vasodilation and reducing
mortality in PAH patients. Moreover, combined prostacyclin analogs and PDE5-Is were
reported to synergistically enhance the release of the potent vasodilator ATP from PAH
erythrocytes [50].

PDE5 inhibition has also emerged as a therapeutic strategy for high-altitude PAH
where sildenafil’s ability to reverse hypoxia-mediated pulmonary vasoconstriction was
proved to mediate positive results on exercise performance and lung hemodynamics [51,52].

5.1.3. Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia

Several studies have established an association between ED and BPH-related LUTS
where alterations in the NO/cGMP pathway, alterations in RhoA/Rho kinase/endothelin
signaling, pelvic atherosclerosis, autonomic adrenergic hyperactivity, inflammatory path-
ways, sex hormones and psychological factors were the major contributing factors [53,54].
Accordingly, attention was drawn towards the development of a single therapy to treat
both conditions.

The clinical benefits of chronic PDE5 inhibition on LUTS secondary to BPH, regardless
of whether these symptoms are associated with ED, are well documented [55]. These bene-
ficial effects have been correlated to several mechanisms (Figure 2), including (i) stromal
smooth muscle relaxation of the prostate and bladder due to modulation of the NO/cGMP
pathway in the nitrinergic innervated organs or enhanced generation of relaxing hydrogen
sulfide, (ii) significant cGMP-mediated dilatation of local blood vessels, (iii) enhanced LUT
oxygen perfusion, (iv) inhibition of afferent nerve activity of bladder, (v) down-regulation of
prostate inflammation and (vi) negative regulation of proliferation and trans-differentiation
of the prostate stroma [54,56,57].

Many preclinical studies of PDE5 and its inhibitors in the prostate and bladder (re-
viewed in [58]) could validate the role of PDE5-Is in relaxing prostatic tissue, improving
the severity of urinary symptoms, reducing bladder overactivity, decreasing indicators of
bladder ischemia, normalizing changes in NOS activity and preventing the accumulation
of collagen [59].

Several clinical trials demonstrated that the use of PDE5-Is alone could ameliorate
LUTS in the first 12 weeks of treatment, where sildenafil [60], tadalafil [61–63] and var-
denafil [64] led to a decrease, at different degrees, in the International Prostate Symptom
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Score (IPPS) scale. In particular, the effects of tadalafil 5 mg once daily versus placebo
on LUTS/BPH have been extensively investigated (reviewed by Gacci et al. [65]). Only
tadalafil (5 mg once daily) has been licensed for the treatment of LUTS with or without ED.

The combined administration of sildenafil, tadalafil or vardenafil with the
α1-adrenoceptor antagonists alfuzosin or tamsulosin for the treatment of LUTS/BPH has also
been evaluated and was confirmed to often outperform either type of monotherapy [66–70].
Interestingly, a very recent meta-analysis of randomized clinical trials demonstrated that
tadalafil could be superior to tamsulosin in treating LUTS/BPH when associated with ED [71].

5.2. Emerging and Future Uses of PDE5 Inhibitors
5.2.1. Cancer

Numerous studies have reported the role of cGMP in suppressing cell growth and
inducing apoptosis and that elevated PDE5 expression is involved in the progression of
various tumor types, such as chronic lymphocytic leukemia, colon adenocarcinoma, bladder
squamous carcinoma, human papillary thyroid carcinomas, metastatic breast, prostate,
pancreatic and lung cancers [72–74]. Accordingly, PDE5 has gained attention as a promising
target for anticancer drug discovery. Over the last two decades, several pre-clinical and
clinical studies revealed potential anti-cancer effects of PDE5-Is [75,76] that were mediated
via different mechanisms of action discussed herein (Figure 3).

(1) Cell growth arrest and induction of apoptosis

Sildenafil and vardenafil were reported to induce caspase-dependent apoptosis and
antiproliferative effects in B-cell chronic lymphatic leukemia [77]. Moreover, sildenafil
was shown to boost intracellular reactive oxygen species (ROS) levels, induce cell cycle
arrest, and suppress cell proliferation in colorectal cancer cells [78]. In addition, multiple
studies have validated the proapoptotic effects of exisulind (sulindac sulfone) and sulindac
sulfide (SS), two metabolites of the non-steroidal anti-inflammatory drug (NSAID) sulindac,
in breast, colorectal and metastatic prostate cancers. Exisulind or SS increases the activation
of cGMP-dependent PKG, triggering a series of signaling events (Figure 3), including
(i) phosphorylation of β-catenin and inducing its proteosomal degradation which leads to
decreased expression of Wnt/β-catenin regulated proteins, such as cyclin D1 and survivin,
(ii) activation of c-Jun NH2-terminal kinase (JNK) via phosphorylation of mitogen-activated
protein kinase kinase kinase 1 (MEKK1), and (iii) blocking the phosphoinositide 3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) and the mitogen-activated protein
kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways, all of
which culminate in triggering apoptosis cascade [79–84].

(2) Chemotherapy sensitization

Several studies provided evidence that PDE5-Is can increase cellular concentrations
of standard chemotherapeutic drugs or even enhance their efficacy within certain tumor
cells where a combination of potential agents allows the reduction of dose levels and,
consequently, of toxic side effects (Figure 3) [76,85–87].

One of the major causes of chemotherapy failure in cancer treatment is multidrug
resistance (MDR) attributed to overexpression of the ATP-binding cassette (ABC) trans-
porters, such as P-glycoprotein (ABCB1/P-gp/MDR1), multidrug-resistance proteins
(ABCCs/MRPs) and breast cancer resistant protein (ABCG2/BCRP). These transporters
actively expel chemotherapeutic agents out of the cancer cell, ameliorating their cellular
efficacy [88]. Vardenafil was reported to inhibit the drug efflux in ABCB1-overexpressing
cells [89], while sildenafil was effective in opposing the activity of ABCB1 and ABCG2,
both attenuating MDR in tumor cells [90].

Another study showed that PDE5-Is can increase cellular uptake of structurally diverse
compounds into lung cancer cells both in vitro and in vivo via modulation of endocyto-
sis [85]. Moreover, oral administration of sildenafil and vardenafil was found to actively
enhance blood tumor barrier (BTB) permeability and boost the efficacy of chemother-
apy in a rat brain tumor model [91]. Vardenafil could also enhance the delivery and
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therapeutic efficacy of herceptin monoclonal antibodies in mouse models of metastatic
HER2/neu-positive brain tumors through stimulating caveolae-mediated endocytosis and
micropinocytosis [92].

Besides augmenting the delivery of chemotherapeutic agents, PDE5-Is can suppress
tumor growth and induce cell death by synergizing with current chemotherapy medications
in treating a wide range of cancers (Figure 3).

Celecoxib and PDE5-Is synergize in a NOS-dependent cyclooxygenase (COX)-independent
fashion to kill multiple tumor cell types, including human glioma cells, as well as their associ-
ated activated microglia in vitro and could suppress the growth of mammary tumors in vivo.
The drug combination increased the levels of autophagy by inactivating mTOR and inducing
endoplasmic reticulum (ER) stress responses in these cells [93].

A combination of sildenafil with various standard chemotherapy agents was proved
effective in various gastrointestinal/genitourinary cancers, such as bladder and colon can-
cers [87]. A combination of the topoisomerase inhibitor doxorubicin and sildenafil resulted
in increased efficacy against prostate cancer cells through ROS generation and subsequent
upregulation of pro-apoptotic proteins Bad and Bax and downregulation of anti-apoptotic
proteins Bcl-2 and Bcl-xL, amplifying caspase-mediated apoptotic death [94]. In a later
study, sildenafil and vardenafil but not tadalafil were found to induce PDE5-independent
apoptotic sensitization to doxorubicin in castration-resistant prostate cancer (CRPC) cells
through impairment of both homologous recombination (HR) and non-homologous end
joining (NHEJ) DNA repair pathways [95]. Furthermore, both in vitro and in vivo studies
suggested that sildenafil could synergistically potentiate vincristine-induced mitotic arrest
signaling and sensitize caspase-dependent apoptosis in CRPC cells via a mitochondrial
damage pathway [96].

The multi-kinase inhibitors sorafenib/regorafenib in combination with sildenafil were
reported to suppress xenograft tumor growth using liver and colon cancer cells in a greater
than additive manner via various autophagy and intrinsic and extrinsic apoptotic path-
ways [97]. In multiple genetically diverse lung cancer cell lines, sildenafil increased the
lethality of pemetrexed and sorafenib combination via fully inactivating signaling by
multiple cytoprotective proteins, including the AKT/ERK pathways, nuclear factor-κB
(NF-κB) and STAT3/STAT5 besides enhancing death receptor expression and activation [98].

Treatment of stem-like glioblastoma cells with a combination of OSU-03012 (a non-
COX-2 inhibiting derivative of celecoxib) and sildenafil abolished the expression of multiple
oncogenic growth factor receptors and plasma membrane drug efflux pumps and caused
rapid degradation of glucose-regulated protein (GRP78) and other chaperones in tumor
cells. This downregulates key oncogenic kinases, including PI3K/AKT signaling, leading
to tumoricidal effects [99]. Similarly, sildenafil alone or in combination with the heat
shock protein 90 (HSP90) inhibitor PU-H71 could alter the expression of HSP90 chaperone
followed by degradation of the oncogenic protein kinase D2 impairing proliferation and
viability of various tumor cell lines [100]. These studies suggest a combination of PDE5
and chaperone inhibitors as a novel, promising strategy for targeting cancer.

(3) Modulation of antitumor immune response

PDE5 inhibition contrasts tumor-induced immunosuppressive mechanisms and gener-
ates a measurable antitumor-immune response that significantly delays tumor progression.
Both sildenafil and tadalafil could abrogate the function of myeloid-derived suppressor
cells (MDSCs) via suppression of arginase-1 (Arg-1) and nitric oxide synthase–2 (NOS-2)
production. This resulted in enhanced intratumoral T-cell infiltration and activation and
restored both systemic and tumor-specific immunity in multiple myeloma and head and
neck cancer patients (Figure 3) [101,102].

(4) Chemopreventive mechanisms

A nationwide population-based study in Sweden suggested that the use of PDE5-Is
was associated with a lower risk of colorectal cancer among male patients with benign
colorectal neoplasm [103]. Moreover, two very recent studies provided evidence that silde-
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nafil was more effective than tadalafil in preventing the development and progression of
aflatoxin B1-induced hepatocellular carcinoma. This beneficial effect was attributed to a
plethora of mechanisms, including (i) improved enzymatic antioxidant system capacity
with a concomitant decline in the level of lipid peroxidation, (ii) increase in activity of
glutathione S-transferase, (iii) downregulation of glucose transporter 1 (GLUT1) restoring
normal declined blood glucose levels in tumor cells, (iv) inhibition of lactate dehydrogenase
dependent glycolytic machinery, (v) vasodilation of blood vessels resulting in decreased
tumor hypoxia and downregulation of the angiogenesis markers; hypoxia-inducible factor
1-alpha (HIF-1α), transforming growth factor-beta 1 (TGF-β1) and vascular endothelial
growth factor A (VEGFA) [104,105]. PDE5-Is have also been shown to suppress the stemness
of PC3-derived cancer stem cells (PCSCs) that were confirmed essential for the initiation,
progression and recurrence of prostate cancer. cGMP-dependent PKG promotes mam-
malian sterile 20-like kinase/large tumor suppressor (MST/LATS) kinases, leading to
cytosolic degradation of the oncogenic protein Tafazzin (TAZ) and the activation of the
Hippo pathway, a crucial player in modulating stemness of PCSCs [106].
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Figure 3. Anti-cancer mechanisms of PDE5 inhibitors. Via activation of the cGMP/PKG signaling
cascade, PDE5-Is can induce apoptosis in cancer cells via various pathways; activation of c-Jun
NH2-terminal kinase (JNK) via phosphorylation of mitogen-activated protein kinase kinase kinase 1
(MEKK1), phosphorylation of β-catenin and inducing its proteosomal degradation which leads to
decreased expression of Wnt/β-catenin regulated proteins, such as cyclin D1 and survivin in addition
to blocking the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)
and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK)
signaling pathways. PDE5-Is could also increase intracellular levels of other chemotherapeutic
agents via inhibition of the ATP-binding cassette (ABC) transporter-mediated drug efflux, averting
multidrug resistance (MDR) in addition to increasing cellular drug uptake via enhancing endocytosis.
Moreover, PDE5-Is synergize with other chemotherapeutic agents via boosting various apoptotic,
autophagy, mitotic arrest and chaperone degradation pathways. PDE5-Is can also abrogate the
function of myeloid-derived suppressor cells (MDSCs) via suppression of arginase-1 (Arg-1) and
nitric oxide synthase–2 (NOS-2) production. This results in enhanced intratumoral T-cell infiltration
and activation and restores both systemic and tumor-specific immunity. P = phosphorylation.



Pharmaceuticals 2023, 16, 1266 10 of 57

5.2.2. CNS Diseases

cGMP/PKG signaling has been regarded as a central mechanism of neuroinflamma-
tion, neurodegeneration and cognitive disorders [106,107]. Accordingly, PDE5-Is have
gained growing attention as potential therapeutic agents for the treatment of several CNS-
related diseases, such as Alzheimer’s disease (AD), cognitive deficits, strokes, multiple
sclerosis (MS), depression, noise-induced hearing loss (NIHL) and neuropathic pain that
will all be discussed in this section (Figure 4).
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Figure 4. Emerging central nervous system (CNS)-related indications of PDE5 inhibitors. In
Alzheimer’s disease (AD) and cognitive deficiency disease models, PDE5 inhibition increases presy-
naptic cGMP levels, which, through PKG activation, enhances the release of glutamate and activates
N-methyl-D-aspartate receptors (NMDAR). On the other hand, postsynaptic PKG activates tran-
scription factor cyclic adenosine monophosphate (cAMP) response element-binding element (CREB),
promoting neurotransmission, synaptic plasticity and memory consolidation. PKG also activates the
PI3K/AKT signaling pathway that mediates neuroprotection via the inhibition of apoptosis and also
suppresses tau hyper-phosphorylation via inhibition of glycogen synthase kinase-3 beta (GSK3β).
Elevated cGMP levels exhibit other cognitive enhancement mechanisms, such as vasodilation, which
improves or maintains cerebrovascular endothelial function, preventing Aβ amyloid accumulation,
rise in acetylcholine (ACh) and brain-derived neurotrophic factor (BDNF) levels in the cortex, stria-
tum, and other areas of the brain, facilitation of neurogenesis, suppression of neuroinflammation
and oxidative stress, all averting neuronal loss. In strokes, PDE5-Is could induce angiogenesis and
neurogenesis and enhance cerebral blood flow to ischemic regions. PDE5-Is have anxiolytic effects in
part due to enhanced oxytocin release. Moreover, PDE5-Is can promote efficient reconstitution of the
myelin sheath and govern the Inflammatory processes involved in demyelination models of multiple
sclerosis. PDE5-Is are also beneficial in noise-induced hearing loss via activating cGMP/protein
kinase cGMP-dependent 1/poly (ADP-ribose) polymerase (cGMP/PRKG1/PARP) signaling in re-
sponse to traumas in cochlea sensory cells. PDE5-Is exhibit pain-relieving effects in neuropathic pain
models via enhanced release of gamma-aminobutyric acid (GABA). P = phosphorylation.

PDE5 inhibition increases presynaptic cGMP levels, which, through PKG activation,
enhances the release of glutamate and activates N-methyl-D-aspartate (NMDA) recep-
tors. On the other hand, postsynaptic PKG activates transcription factor cyclic adenosine
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monophosphate (cAMP) response element-binding element (CREB), promoting neurotrans-
mission, synaptic plasticity and memory consolidation [108,109]. PKG also activates the
PI3K/AKT signaling pathway that mediates neuroprotection via the inhibition of apoptosis
(Figure 4) [110].

The upregulation of PDE5 expression in the brains of AD patients and the subsequent
drop in cGMP levels have been linked to the elevation of Aβ amyloid peptide, whose
deposition in the brain is the main hallmark of AD [111]. Sabayan et al. described PDE5-Is
as disease-modifying agents against AD and proposed three main mechanisms for their
action: (i) vasodilation, which improves or maintains cerebrovascular endothelial function
preventing Aβ amyloid accumulation; (ii) cGMP-dependent rise in acetylcholine (ACh)
levels in the cortex, striatum, and other areas of the brain, reversing low-ACh associated
memory and cognitive deficits in AD, and finally (iii) inhibition of apoptosis and facilitation
of neurogenesis averting neuronal loss (Figure 4) [112].

For example, chronic administration of sildenafil completely reversed cognitive im-
pairment in Tg2576 transgenic mice without changing Aβ load. The underlying mechanism
involved suppression of tau hyperphosphorylation and inhibition of glycogen synthase
kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) [113]. In addition, Puzzo et al.
and Zhang et al. showed that chronic administration of sildenafil in amyloid precur-
sor protein/presenilin-1 (APP/PS1) transgenic mice could reverse AD-related cognitive
deficits and synaptic dysfunction via improving cGMP/PKG/CREB signaling, inhibiting
neuroinflammation and reducing hippocampal Aβ levels [114,115].

Chronic treatment with tadalafil even exhibited a higher beneficial effect, probably due
to its longer half-life and could improve spatial memory in the J20 mouse model of AD by
decreasing tau protein via the activation of the AKT/GSK3β pathway [116]. Most recently,
mirodenafil was reported to ameliorate Aβ-induced AD pathology and improve cognitive
behavior in the APP-C105 mouse model through the modulation of the cGMP/PKG/CREB
signaling pathway, GSK-3β activity, glucocorticoid receptor transcriptional activity and
Wnt/β-catenin signaling in neuronal cells (Figure 4) [107].

Preclinical studies proved that PDE5-Is could boost memory and synaptic plasticity
by augmenting the NO/cGMP/PKG pathway [107,117]. In mouse models with induced
cognitive deficits, sildenafil could improve novel object recognition, ameliorate cognitive
impairment and upregulate the brain-derived neurotrophic factor (BDNF), contributing
to neuroprotective effects [118,119]. Another study showed the potential of sildenafil
to defy neurological stress, increase neuroprotection and restore cognitive functions in
the hippocampus region of noise alone-induced mice via modulation of cGMP/PKG/CREB
and p25/CDK5 pathways and induction of various free radical scavengers in the brain of
stressed mice [120]. A similar alleviation n of oxidative stress in the hippocampus of aged
mice has been observed upon chronic tadalafil administration as well (Figure 4) [121].

Very recent reviews by Liu et al. [122] and Zuccarello et al. [123] summarized clinical
trials of PDE5-Is in cognition and AD. However, none of the investigated drugs has reached
the market for those indications so far.

Numerous animal models investigated the potential role of PDE5 inhibition in stroke. In
these studies, PDE5-Is could induce angiogenesis, enhance cerebral blood flow to the ischemic
region, increase neurogenesis and advanced functional post-stroke recovery [124–126]. In
particular, sildenafil treatment for two weeks (25 mg daily) was proven safe in patients who suf-
fered mild to moderate strokes [127]. Additionally, tadalafil could attenuate ischemia-induced
short-term memory impairment by suppressing ischemia-induced neuronal apoptosis [128].

Further mechanisms for PDE5 inhibition-induced neurogenesis have been reported
and include AKT/GSK3β phosphorylation [129] or triggering proliferation of neural
stem cells (NSC) via a mitogen-activated protein kinase (MAPK) dependent signaling
cascade [130].

Moreover, preclinical studies have provided further evidence of sildenafil’s neuro-
protective potential observed against Aβ amyloid-induced mitochondrial toxicity [131].
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Additionally, 3-nitropropionic acid-induced behavioral and biochemical toxicities in a
Huntington’s disease rat model [132].

Interestingly, a clinical study showed that single-dose sildenafil could improve regional
cerebrovascular reactivity deficits in chronic traumatic brain injury patients as well [133].

Sildenafil has also been reported to promote efficient reconstitution of the myelin
sheath and govern the inflammatory processes involved in demyelination models of
MS [134]. Sildenafil could also normalize experimental autoimmune encephalomyelitis in
MS mouse models [135].

Administration of sildenafil or tadalafil could yield significant anxiolytic-like effects in
rodent genetic models of depression as well due to chronic activation of the NO/cGMP sys-
tem [136,137]. Another reported mechanism for the antidepressant-like effect of sildenafil
involved the activation of the oxytocin [138].

Jaumann et al. unveiled a potential protective role of activated cGMP/protein kinase
cGMP-dependent 1/poly (ADP-ribose) polymerase (cGMP/PRKG1/PARP) signaling in
response to traumas in cochlea sensory cells of various animal models. These data suggested
PDE5 as a valid target for the improvement of NIHL. In particular, treatment of rodent
models with vardenafil before or 6 h after acoustic trauma was shown to diminish auditory-
evoked brain stream response thresholds in all frequency ranges tested [139].

Several animal studies have also proposed a beneficial pain-relieving effect of PDE5-Is
in models of lesional [140,141] or metabolic neuropathic pain [142]. Sildenafil could ame-
liorate neuropathic pain symptoms in patients with diabetic peripheral neuropathy [143]
and showed an antinociceptive effect in Sprague–Dawley male rats’ neuropathic pain
models [144]. Mechanistically, this analgesic effect has been correlated to cGMP-dependent
enhanced release of gamma-aminobutyric acid (GABA) [144].

5.2.3. Cardiovascular Diseases

Cardiomyocytes normally express a minimal basal level of PDE5. However, cardiac
PDE5 expression was reported to be upregulated in hypertrophic, dilated, and ischemic
cardiomyopathy and in congestive heart failure [47,145,146]. The protective effects of
PDE5-Is against myocardial infarction (MI), cardiac ischemic and reperfusion (I/R) injury
were validated in many in vitro studies with sildenafil [147], tadalafil [148,149], and var-
denafil [150]. When given either prior to occlusion or at reperfusion, these PDE5-Is could
reduce infarct size, attenuate cardiac hypertrophy, improve left ventricular (LV) function
and prevent progression to heart failure.

In a mouse model, sildenafil exhibited a preconditioning effect to protect the heart
against necrosis and apoptosis [151]. Another study suggested that the cardioprotective
effect of sildenafil in female mice is estrogen-dependent as ovariectomy suppressed its
anti-hypertrophic effect [152].

Intramyocardial transplantation of human adipose stem cells (ASCs) is regarded
as a potential treatment for post-ischemic heart failure. Hoke et al. showed that pre-
conditioning of ASCs with sildenafil could trigger the release of significantly high lev-
els of pro-angiogenic or pro-survival growth factors, which enhance ASCs survival and
therapeutic efficacy in cardiac ischemic microenvironment, allowing successful cardiac
regeneration [153].

Tadalafil also showed cardioprotective effects via PKG-dependent generation of hydro-
gen sulfide [154]. Moreover, tadalafil was suggested to be clinically beneficial in metabolic
syndrome (MetS) patients who are at high risk for CVS diseases where it improved insulin
sensitivity, lowered circulating lipids, improved LV diastolic dysfunction and protected
against I/R injury in MetS mice [155].

PDE5-Is manifested more significant protective effects against advanced heart failure
(HF) with reduced ejection fraction than in HF with preserved ejection fraction [156]. Silde-
nafil could suppress chamber and myocyte hypertrophy and reverse preestablished hy-
pertrophy in mice exposed to chronic pressure overload. This anti-hypertrophic effect
was mediated by the deactivation of multiple signaling pathways, including the cal-
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cineurin/nuclear factor of activated T-cells (NFAT), PI3K/AKT, and ERK1/2 signaling
pathways [157]. Furthermore, several clinical studies have confirmed the potential role of
sildenafil in improving cardiac output, endothelial function, muscle perfusion, and exercise
ventilatory and aerobic efficiencies in systolic HF patients [158–160].

Moreover, prophylactic treatment with either sildenafil or tadalafil improved cardiac
contractile function and survival by attenuating doxorubicin-induced apoptosis and cardiac
oxidative stress without interfering with the antitumor efficacy of doxorubicin in both
in vitro and in vivo tumor models [161,162].

PDE5 inhibition could govern two crucial vascular manifestations of essential hy-
pertension as well via diminishing blood pressure and improving arterial stiffness and
endothelial dysfunction [163].

In addition, sildenafil elicited a significant decrease in inducible ventricular tachy-
cardia and ventricular fibrillation in animal models and demonstrated protection against
ventricular arrhythmias associated with the early stages of cardiac ischemia or following
MI [164,165].

PDE5-Is could also inhibit platelet activation and aggregation [166,167]. Sildenafil, in
particular, was demonstrated to (i) improve coronary patency in an animal model [168],
(ii) reduce thrombosis, thromboembolic events, and the risk of thrombotic strokes in a
clinical study [169], and (iii) potentiate the anti-aggregation effect of NO donors via cGMP-
dependent and independent pathways [170].

Owing to their vasoactive effects, both sildenafil and tadalafil showed advantages
in minimizing skin flap necrosis and in preventing extremity and flap ischemia in patients
with Raynaud’s phenomenon and with scleroderma [171,172].

Kloner et al. thoroughly investigated the cardiovascular safety profile of PDE5-Is
published in the last two decades and confirmed their safety [173].

Cardio protection achieved by PDE5-Is is mainly attributed to restoring high cGMP lev-
els in cardiomyocytes that govern diverse cardioprotective mechanisms as follows (Figure 5):
(i) vascular tone regulation and release of endogenous cardioprotective molecules, such as
adenosine, bradykinin and phenylephrine from endothelial cells [174], (ii) PKG-dependent
opening of mitochondrial and sarcolemmal ATP-sensitive potassium channels modulating
calcium homeostasis and survival of cardiomyocytes, preventing post-infarct LV remodeling
and reducing infarct size [175,176], (iii) PKG-dependent suppression of adrenergic drive
which reduces nerve growth factor leading to anti-arrhythmic effects [164], (iv) ischemic post-
conditioning protection against MI via PKG-dependent enhancement of Na+/K+-ATPase
activity [177] and inhibition of Na+/H+-exchanger, delaying normalization of pH during
reperfusion [178], (v) suppression of protein kinase C (PKC) and calcineurin culminating
in improved contractility and protection against HF [179], (vi) improving mitochondrial
ultrastructure and function via increased sirtuin-3 (Sirt3) protein expression and decreased
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) acetyla-
tion protecting against post-infarction HF [180], and (vii) inhibition of RhoA/Rho-kinase
pathway [181].
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Figure 5. Cardioprotective effects of PDE5 inhibitors. PDE5-Is restore high cGMP levels in car-
diomyocytes that govern diverse downstream cardioprotective mechanisms: (i) PKG-dependent
opening of mitochondrial and sarcolemmal ATP-sensitive potassium channels, inhibition of Na+/H+-
exchanger and release of endogenous cardioprotective molecules, such as adenosine, bradykinin
from endothelial cells; resulting in reduced infarct size and hampered post-infarct left ventricular
(LV) remodeling. All are beneficial for ischemic post-conditioning protection against myocardial
infarction (MI) and ischemic reperfusion (I/R) injury, (ii) PKG-dependent suppression of adrenergic
drive which reduces nerve growth factor leading to anti-arrhythmic effects, (iii) suppression of pro-
tein kinase C (PKC), calcineurin and RhoA/Rho-kinase pathways and (vi) suppression of oxidative
stress and improving mitochondrial ultrastructure and function via increased sirtuin-3 (Sirt3) protein
expression and decreased peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1α) acetylation, all culminating in improved cardiac contractility and protection against heart
failure (HF) and doxorubicin(dox)-induced cardiomyopathy.

5.2.4. Kidney Diseases

Coskuner and coauthor [17] and Afsar et al. [182] thoroughly investigated the reno-
protective benefits of PDE5-Is in kidney-related clinical conditions, such as diabetic or
nephrotoxic nephropathy, renal ischemia/reperfusion injury, renovascular hypertension
and chronic kidney disease. Most reported preclinical studies highlighted a promising
potential of PDE5-Is to improve renal function and histopathological changes via collabora-
tive mechanisms, including antioxidative, anti-inflammatory, anti-apoptotic, antifibrotic
pathways along with suppression of DNA damage and improving renal blood flow, NOS
levels, endothelial function and mitochondrial biogenesis. Most recently, tadalafil was
also reported to avert the onset of ureter inflammation and urothelial degeneration in a
unilateral ureteral obstruction animal model via modulation of various histopathologic
and biochemical changes [183].

5.2.5. Cystic Fibrosis

Cystic fibrosis (CF) is a disease that is caused by a mutation in the CF transmembrane
conductance regulator (CFTR) gene “F508del allele” that encodes the main chloride channel
expressed in epithelia, which leads to a reduced transepithelial chloride transport in
multiple organs, such as pancreas, intestine, kidney, liver and most significantly lungs. This
results in abnormal mucociliary clearance and endosomal hyper-acidification along with
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obstruction, infection and excessive proinflammatory responses that progressively damage
the respective organ function and structure [184].

Several preclinical and clinical studies highlighted that PDE5-Is can correct the major-
ity of the known pathological defects in CF, where tadalafil showed the highest efficacy,
while vardenafil granted prolonged effects after a single therapeutic dose [185,186]. The
efficacy of PDE5-Is in CF could be correlated to one or more of the following mecha-
nisms: (i) correction of the mislocalization of the mutant CFTR protein, restoring normal
transepithelial chloride transport [187–189], (ii) normalizing the excessive proinflammatory
responses via downregulation of M1 markers, tumor necrosis factor (TNF)-α and inducible
NOS-2 [190,191], (iii) reversing endosomal hyper-acidification via elevating cGMP lev-
els [192], (iv) improving endothelial function via promoting NOS-3 phosphorylation in
endothelial cells [193], and (v) reducing adhesion of bacterial pathogens to respiratory
epithelial cells [190].

5.2.6. Diabetes

Das et al. have summarized the potential protective roles of PDE5-Is against sev-
eral diabetes-related pathologies including (i) prevention of diabetic neuropathy and
vasculopathy via improving endothelial function, (ii) protection against I/R injury in
diabetic heart via an AMP-activated protein kinase/Sirt1/PGC-1α (AMPK/Sirt1/PGC-1α)
cytoprotective signaling cascade, along with (iii) antioxidant and anti-inflammatory effects
in diabetic hearts [86].

A meta-analysis of randomized controlled trials has also validated PDE5-Is as effective
and safe medications for the treatment of sexual dysfunction in patients with diabetes
mellitus suffering from ED [194].

Most recently, a combination of tadalafil and hydrochloroquine successfully improved
several Type 2 diabetes-related clinical parameters, including a drop in fasting blood
glucose and lipid levels, a rise in plasma insulin and insulin-like growth factor-1 levels
and improved insulin sensitivity. Interestingly, pretreatment with the same combination
showed a potential to diminish the rate and severity of COVID-19 infection in vulnerable
diabetic patients [195].

5.2.7. Miscellaneous Indications

Several studies have demonstrated the efficacy of the combined administration of
sildenafil with selective serotonin reuptake inhibitors (SSRIs), such as paroxetine and
sertraline, for the treatment of premature ejaculation [196]. Moreover, PDE5-Is prompted
penile rigidity and recovery of erections in the post-ejaculatory period [197]. Details of
related preclinical and clinical trials were further elaborated by the reviews [23,198].

Long-term chronic administration of PDE5-Is could also avert the progression of
fibrotic plaques and halt corporal fibrosis in animal models of Peyronie’s disease [199,200].

In addition, prolonged administration of low-dose PDE5-Is exhibited a promising
beneficial effect in the treatment of male infertility. Sildenafil and vardenafil, in particular,
could enhance Leydig cells’ secretory and steroidogenic functions, augmenting sperm
concentration and the percentages of motile and morphologically normal sperm [201–203].
An increase in serum testosterone levels by both inhibitors has been reported as well [204].

Interestingly, tadalafil was proven safe to improve selective fetal growth restriction, a
condition of twin pregnancy in which the development of one fetus is restricted, without
severe side effects in the mothers or neonates [205]. Most recently, Isidori et al. collaborated
evidence possibly linking the NO/cGMP/PDE5 axis to the pathophysiology of coronavirus
disease (COVID-19) and suggested the repurposing of PDE5-Is as a treatment strategy
to halt the progression of COVID-19 via diverse immunomodulatory mechanisms [206].
All reported FDA-approved and emerging uses of PDE5-Is are summarized in Figure 6.
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5.3. Side Effects and Contraindications of PDE5 Inhibitors

The use of PDE5-Is is usually associated with some common side effects, which
include headache, flushing, dyspepsia, visual disturbances, back pain, myalgia, tachycardia,
and nasal congestion [207]. Most of these side effects are due to the inhibition of PDEs other
than PDE5, visual disturbances are associated with PDE6 inhibition and back pain and
myalgia are attributed to the inhibition of PDE11. Nevertheless, these side effects rarely led
to discontinuation of the treatment.

Other less known, seldom encountered serious side effects have been reported con-
comitant to the use of PDE5-Is are highlighted in the following lines.

(i) Although PDE5 is reported as a promising target for anti-cancer therapy, as explained
earlier, the prolonged use of PDE5-Is has been linked to an increased risk of melanoma.
Lie and co-workers reported an association between sildenafil use and an increased
risk of melanoma in a prospective cohort study conducted on 25,848 men [208]. Several
other cohorts and case-control studies have also reported a correlation between the
use of sildenafil and tadalafil and the increased risk of melanoma [209,210]. However,
this association between the prolonged use of PDE5-Is and the development of cancer
was only reported for melanoma; even the risk of other types of skin cancer, such as
squamous cell carcinoma and basal cell carcinoma, was not correlated to the use of
PDE5-Is [211].

(ii) Visual disturbances have been usually reported with the use of PDE5-Is because
of PDE6 inhibition. However, several studies have reported more serious ophthal-
mologic side effects associated with the use of PDE5-Is, which include non-arteritic
anterior ischemic optic neuropathy (NAION), which may eventually lead to vision
loss [212]. Two case-crossover studies have shown a two-fold increase in the risk
of NAION in men using PDE5-Is, and currently, all PDE5Is (Viagra®, Cialis®, Levi-
tra®and Spedra®) mention NAION as a caution in their summary of product charac-
teristics [213,214].

(iii) Moreover, sensorineural hearing loss (SSHL) has been associated with the prolonged
use of PDE5-Is. Two in vivo studies have shown that the prolonged use of sildenafil
could lead to hearing loss in mice and rats [215,216]; in addition, published trials
and pharmacovigilance agencies reported 47 cases of SSHL as a result of prolonged
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administration of sildenafil [217], and more specifically, Maddox et al. reported two
cases of SSHL due to daily use of tadalafil 10 mg and sildenafil 50 mg + tadalafil 10 mg
use where both patients did not recover after a follow-up [218]. Both NAION and
SSHL are of unknown pathophysiology.

(iv) Priapism (prolonged erection of the penis) is another less common side effect reported
with the prolonged use of PDE5-Is, as only a few cases have been reported for priapism
associated with the use of PDE5-Is [219]. The risk of priapism increases in the case of
concomitant use of other ED medications along with the PDE5-Is.

Not only can these side effects potentially restrict the utilization of PDE5-Is, but PDE5-
Is are also contradicted in the presence of various cardiovascular disorders. Given that
approximately one out of every thirteen individuals is estimated to have a cardiovascular
disorder, and considering that there are around 620 million people globally living with
cardiovascular conditions, it becomes evident that this is a significant concern. Clinical
guidelines dictate that the use of PDE5-Is is not recommended in cases of advanced con-
gestive heart failure, unstable or treatment-resistant angina pectoris, recent myocardial
infarction, high-risk arrhythmias, obstructive hypertrophic cardiomyopathy, and severe
valve diseases, particularly aortic stenosis [220].

6. PDE5 Inhibitors

The PDE5 enzyme is a homodimer that includes three main sites [221]: (i) an allosteric
site, which consists of two regulatory GAF domains (GAF-A and GAF-B), both are regarded
as allosteric binding regions for cGMP, (ii) a phosphorylation site (at Ser92) which plays a
role in enzyme activation, and (iii) a catalytic site, which is located at the C-terminal end
of the protein (amino acid residues: 535–860) and contains the divalent metal (Zn2+ and
possibly, Mg2+) and the active site of PDE5.

The catalytic site of PDE11 is the most similar one to that of PDE5 among all other
PDEs, while PDE6 shares a similar amino acid sequence and a secondary structure of the
catalytic site to PDE5; therefore, PDE6 and PDE11 are the two most common off-targets
for PDE5-Is [221]. PDE6 is a key effector enzyme for the phototransduction cascade in the
rod and cone segments of the retina in the mammalian eyes. It has a function in visual
transduction and response to light [221]. As for PDE11, not much information is available
about its physiological functions. However, it is reported to be localized in skeletal muscles,
prostate, and the testes [222].

Prior to 2012, the three most important PDE5-Is were sildenafil, vardenafil and tadalafil.
Sildenafil was discovered based on the optimization of zaprinast (an anti-allergic drug),
which was one of the first PDE5-Is to be reported in the literature; however, it showed
only moderate activity against PDE5 (IC50 = 2000 nM), as well as low selectivity for PDE5
over PDE1 (SI = 4.7). Several rounds of optimization led to the discovery of sildenafil
with a much-improved potency over PDE5 (IC50 = 3.6 nM), higher selectivity for PDE5
over PDE1 than zaprinast (SI = 72.2), and improved solubility and in vivo characteristics
(Figure 7) [223]. Isosteric replacement of the pyrazolopyrimidinone core with an imi-
dazotriazinone scaffold led to the discovery of vardenafil; vardenafil was more potent
(IC50 = 0.7 nM) and selective (SI = 257) for PDE5 over PDE1 than sildenafil (Figure 7) [224].
Both sildenafil and vardenafil were reported to prompt visual disorders, such as functional
blindness, blue (cynopsia), blurred vision and enhanced light sensitivity, all attributed to
the cross-reactivity with the PDE6 catalytic site [225,226].

Tadalafil’s development was based on the β-carboline scaffold. The discovery of
tadalafil started from the ethyl β-carboline-3-carboxylate (I) that displayed a moderate
PDE5 inhibitory activity (IC50 = 800 nM) [227]. Reduction of the β-carboline scaffold of cpd.
I to a tetahydrabetacarboline (THβC) and extending the structure with a hydantoin ring
(cpd. II) improved the PDE5 inhibitory activity (IC50 = 300 nM), Figure 8 [227]. Adopting
various substituted phenyls at position 6 of the tetrahydro-β-carboline scaffold of cpd. II
led to the discovery of a highly potent and selective PDE5 inhibitor (cpd. III, Figure 8) with
an IC50 of 5 nM and a selectivity index of more than 2000 for PDE5 over PDEs 1–4, with
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the ability to increase intracellular cGMP levels in rat smooth muscle cells (EC50 = 1 µM).
However, cpd. III displayed poor hypotensive activity in spontaneous hypertensive rats
model after oral administration (30 mg/kg), indicating its poor oral absorption [227]. The
modification of the hydantoin ring of cpd. III to a piperazinedione, as well as incorporating
the 1,3-benzodioxole moiety at position 6 of the THβC scaffold led to the discovery of
tadalafil which displayed higher cellular activity in rat smooth muscle cells (increased
intracellular cGMP with an EC50 of 0.15 µM), and long-lasting blood pressure lowering
activity in the spontaneously hypertensive rat model lasting for 7 h after an oral dose of
5 mg/kg [228].
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Due to these adverse effects reported for sildenafil, vardenafil and tadalafil that are
related mainly to their cross-reactivity with other PDEs, great attention has grown recently
towards the design of more selective PDE5-Is.

In the coming sections, we discuss PDE5-Is reported since 2012, including PDE5-Is
with dual pharmacological activities and those developed for radiodiagnosis.

6.1. PDE5 Inhibitors
6.1.1. Pyrimidinones

Wang et al. applied a structure simplification strategy to sildenafil to produce several
pyrimidine-4(3H)-one derivative as PDE5-Is with a general scaffold (1). Hydrophobic
groups were a much more preferred substitution at R2 than hydrophilic ones, with ethyl
and isopropyl being the best substituents. The introduction of a small aliphatic group or
a halogen atom except fluorine at R1 led to a huge boost in PDE5 inhibitory activity. At
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R3, an n-propyl group was optimum for activity. Compound 2 was the most potent PDE5
inhibitor of the series with an IC50 of 1.6 nM (2.5 times more potent than sildenafil) [229].

Compound 2 was further tested against 11 PDE isoforms to evaluate its selectivity. It
showed no significant inhibition against PDE2, PDE3, PDE4, PDE7A1, PDE8A1, PDE9A2,
and PDE10A2 at 10 µM, and selectivity factors of 2127, 469 and 29 for PDE5 over PDE11A4,
PDE1 and PDE6C, respectively. In comparison to sildenafil, compound 2 showed a slightly
better selectivity profile.

Compound 2 was further evaluated in vivo. Despite having a low oral bioavailability
(23%), which is 10% lower than that of sildenafil, it showed good efficacy in a rat model of
erection. After 30 min of an oral administration of a dose of 10 mg/kg, both intracavernous
pressure and arterial blood pressure were significantly elevated in the rat model [229].

To improve the selectivity of this class of compounds, specifically over PDE6, Gong
et al. focused on structural modifications involving the sulfamide part of the molecule.
Despite being equipotent to compound 2, compound 3 (IC50 = 1.7 nM) was far more selec-
tive for PDE5 over PDE6 with a selectivity factor of 941. However, the in vivo efficacy of
compound 3 was not evaluated [230]. Moreover, Gong et al. explored the different binding
modes of the pyrimidinone scaffold through cocrystal structures of cpds. 4 (PDB: 4I9Z) and
5 (PDB: 4IA0) with the PDE5 active site [230]. See the crystal structures/docking section.
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  6.1.2. Aminopyrimidines

The aminopyrimidine scaffold was extensively explored by Sakamoto et al., aiming to
produce potent and selective PDE5-Is [231,232]. The synthesized derivatives had a general
structure (6), where their potency was tested on a PDE5 enzyme isolated from a canine lung,
their selectivity was evaluated through testing on a light-activated bovine retina PDE6, and
their in vivo efficacy was evaluated through testing their ability to induce relaxant effects
on an isolated rabbit corpus cavernosum [231,232].

The first series of compounds developed by Sakamoto et al. were 5-(3,4,5-
trimethoxybenzoyl)-4-aminopyrimidine derivatives. T-6932 (7) was the standout com-
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pound of the series with a PDE5 IC50 of 0.13 nM and a selectivity factor of 2400 over
PDE6; however, compound 7 had a moderate in vivo efficacy with an EC30 of 53 nM,
which was explained by its high clogP value (4.58). On the contrary, compound 8 was the
most effective in vivo with an EC30 of 3.1 nM (clogP = 3.63). In comparison to sildenafil
(EC30 = 8.7 nM), it is three times more effective in vivo. However, it was 26 times less
potent and four times less selective than 7.
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In the next stage of compound development, Sakamoto et al. focused on improving the
in vivo efficacy of T-6932 by reducing its lipophilicity. This was done by replacing the 3,4,5-
trimethoxyphenyl moiety at R1 with several heteroarylmethylamino and hydroxylamine
groups, as it was proven in the same study that the 3,4,5-trimethoxyphenyl at R1 is not
crucial for PDE5 inhibitory activity. Incorporation of these substituents together with a
2-pyridylmethyloxy group at R2 maintained the potency against PDE5 but had a negative
impact on the selectivity. This was overcome by the introduction of several secondary
amines having hydroxyl groups at R2. The incorporation of an (S)-2-hydroxymethyl-
pyrrolidin-1-yl group at R2 led to the discovery of avanafil (9) with an IC50 of 5.2 nM and a
selectivity factor of 4000 for PDE5 over PDE6. Avanafil had a much more improved clogP
value (2.36) in comparison to T-6932, which could explain its remarkable in vivo efficacy
(EC30 = 2.1 nM) [232].

Avanafil was further tested on the other PDE isoforms, where it showed an excellent
selectivity profile, with a selectivity factor of 121 for PDE5 over trypsin-activated PDE6,
which is higher than that of sildenafil (16) and vardenafil (21) but lower than that of tadalafil
(550). However, avanafil holds the advantage over tadalafil with respect to the selectivity
over PDE11 as it has a selectivity factor of more than 19,231, while tadalafil has a selectivity
factor of only 25. Moreover, avanafil showed a selectivity factor of more than 1000 over all
other PDE isoforms [232].
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Avanafil also demonstrated an excellent pharmacokinetic profile, where it possessed
a faster onset of action than sildenafil, as well as a short duration of action, improving
the tolerability of the drug [232]. The high potency and in vivo efficacy, together with the
excellent selectivity and pharmacokinetic profiles, granted avanafil FDA approval for the
treatment of male ED [232].

6.1.3. Pyrido-Pyrimidines

Sakamoto et al. used the same general structure (6) reported in [231,232] and per-
formed a cyclization between the substituents at positions 4 and 5 of the pyrimidine ring,
thus developing a new series of 8-(3-chloro-4-methoxybenzyl)-8H-pyrido[2,3-d]pyrimidin-
7-one derivatives having the (S)-2-hydroxymethyl-pyrrolidin-1-yl group at R2 similar
to avanafil [233]. The potency, selectivity and in vivo efficacy of the synthesized com-
pounds were evaluated using the same methods described in [231,232]. The standout
compound of this series was compound (10), showing the highest PDE5 inhibitory po-
tency (IC50 = 0.86 nM), the highest selectivity (selectivity factor of 2300 over PDE6) and
the highest in vivo efficacy (EC30 = 0.85 nM) [233].

6.1.4. Pyrazolopyrimidinones

The pyrazolopyrimidinone scaffold is considered a privileged scaffold when it comes
to designing potent PDE5-Is, as sildenafil possesses the same scaffold. However, it retains
the main disadvantage of sildenafil, which is cross-reactivity with PDE6.

Sawant et al. focused on modifying the methyl piperazine part of sildenafil, replacing
it with various open-chain substitutions at the N-terminal of the sulfonamide. Substituents
with an aliphatic side chain having a terminal hydroxy group or a terminal morpholine
group were better than other adopted substituents. Compound 11 was the most potent
PDE5 inhibitor of the series; it was twice as active as sildenafil with an IC50 of 1.5 nM [234].
Upon evaluating compound 11 against PDEs 1–11, it showed a similar selectivity profile to
sildenafil and, most importantly, a poor selectivity over PDE6 [234]. Compound 11 exhib-
ited 1.5 times better in vivo efficacy than sildenafil in a conscious rabbit model, however,
with a poor pharmacokinetic profile (rapid metabolism by mice liver microsomes and six
times higher efflux ratio in a Caco2 permeability model) [234].

In a later study, Sawant and Co. replaced the methyl piperazine moiety of sildenafil
with various substituted piperidine and piperazine moieties. A piperidone moiety was
optimum for PDE5 inhibitory activity, resulting in compound 12 with an IC50 of 0.8 nM
(7 times more active than sildenafil) and a much-improved selectivity than both sildenafil
and cpd. 11, with a selectivity factor of 20 for PDE5 over PDE6 [235].

Compound 12 has revealed similar efficacy to sildenafil in maintaining penile erection
in the rabbit model, with improved efflux ratio, as well as similar metabolic stability against
mice liver microsomes to sildenafil [235].

Rawson et al. made a more extensive exploration of the pyrazolopyrimidines, introduc-
ing structural modifications at different positions of the scaffold, summarized in general
structure 13. The potency of the synthesized derivatives was evaluated using a PDE5
enzyme derived from the human corpus carvernosum, while selectivity was evaluated
through testing against PDE6 derived from a dog’s retina [236].

At R3
, an ethyl group was optimum for PDE5 inhibitory activity. Different substituents

with variations in size and chain length were all well tolerated at R1. However, the best
substituents were either a methoxyethyl or a morpholinoethyl group. Several substituents
were also well tolerated at R2, but using a cyclopropylmethyl moiety at R2 produced the
most potent PDE5 inhibitor of the series (14) with an IC50 of 0.26 nM. Compound 14 was the
most potent but not the most selective compound of the series. Cyclizing the N2 alkyl and
the C3 to form a 3rd ring fused to the pyrazolopyrimidinone scaffold was the key structure
modification to boost the selectivity for PDE5 over PDE6. Compound 15 held the highest
selectivity factor over PDE6 (490) among all the synthesized analogs, with a PDE5 inhibitory
activity of 1.96 nM [236]. However, it showed a relatively low oral bioavailability (18%)
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upon testing its pharmacokinetic properties in dogs. Compound 16 (PDE5 IC50 = 1.23 nM)
showed the best pharmacokinetic profile among the other tested PDE5-Is with an oral
bioavailability of 61%, 55% and 34% in rats, dogs and humans, respectively [236].
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6.1.5. Tetrahydro-β-Carbolines (THβCs)

THβCs have been extensively explored as a prominent scaffold for PDE5-Is, inspired
and guided by the discovery of the FDA-approved tadalafil [237]. Abadi and co. re-
ported the synthesis of tadalafil analogs with a tetrahydro-β-carboline-imidazolidinedione
and tetrahydro-β-carboline-piperazinedione scaffolds, having different substituents at
the nitrogen of the terminal ring, as well as different pedant aryl moieties at C5/C6 of
the scaffold. The synthesized derivatives were tested against recombinant human PDE5
enzyme [238,239].

With a 5-bromo-2-thienyl substituent at C5/C6, the hydantoin scaffold was superior
to the piperazinedione; the N-ethyl substitution was the best among all tried N-alkyl
moieties, with S configuration at C5 essential for PDE5 inhibitory activity. The most potent
compound of this series (17) was 53 times less potent than tadalafil (IC50 = 160 nM) [238],
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with higher selectivity than tadalafil for PDE5 over PDE11) selectivity factor of 49 vs. 13 for
tadalafil) [238].

In a later study, Zheng et al. explored the use of different substituted thienyl and furyl
moieties other than the 5-bromo-2-thienyl group at C5 of the THβC imidazolidinedione
scaffold while keeping the other structural features of compound 17 (an S-configuration at
C5 and an ethyl substituent at the terminal nitrogen), the 5-ethyl-2-furyl group in compound
18 showed the highest activity with equal potency to tadalafil (IC50 of 2.92 nM). Compound
18 was more selective than both compound 17 and tadalafil for PDE5 over PDE6 and PDE11
with selectivity factors of 43 and >342, respectively. As for the other PDEs, 18 showed no
inhibition towards PDE1-3, PDE4 and PDE7-10 at screening doses of 20 µM, 10 µM and
3 µM, respectively [240].

In the same study, Zheng et al. employed various substituted thienyl and furyl
moieties at the C6 of the THβC-piperazinedione scaffold while keeping an S-configuration
at C6, and a methyl substituent at the terminal nitrogen of the piperazinedione ring, the
5-ethyl-thienyl group granted the most PDE5 inhibitor of the series (19) with an IC50 of
3.87 nM (equipotent to tadalafil). 19 was more selective than tadalafil, 17 and 18 for PDE5
over PDE6 with a selectivity factor of >258, but less selective than 18 for PDE5 over PDE11
with a selectivity factor of 70, which is still higher than both tadalafil and 17. Similar to
18, 19 showed no inhibition towards PDE1-3, PDE4 and PDE7–10 at screening doses up to
20 µM [240].

The in vitro vasorelaxant activities of 18 and 19 were evaluated in a rat 3rd order
mesenteric arteries pre-contracted by 20 µM norepinephrine; both compounds showed a
stronger vasodilatory effect than tadalafil (EC50 = 78 nM) with EC50 values of 30 and 63 nM,
respectively [240].

SAR of the THβC derivatives was altered when a 4-chloro or a 4-bromo substituent
was employed at C5/C6 of the scaffold; the piperazinedione scaffold was found to be
superior to the hydantoin scaffold, the ethyl and butyl groups were the best among the
other tried N-alkyl moieties, and an R configuration at C6 was essential for PDE5 inhibitory
activity [241,242].

Abadi and co. explored the effect of adding a terminal amino or a hydroxyl group
to the N-ethyl and N-butyl moieties of the 4-chloro and 4-bromo THβC analogs, but the
attempted structural modification led to a huge reduction in PDE5 inhibitory activity. The
most potent compound of the series (20) (IC50 = 100 nM) was 11 times less potent than its
N-n-butyl congener (IC50 = 9 nM) [241] and 33 times less potent than tadalafil [239].
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6.1.6. Quinazolines

The quinazoline scaffold has been used by several researchers to obtain PDE5-Is, such
as the 4-substituted variants of Watanabe [243] and the 2 & 4-substituted variants of Lee
et al. [244] Gleeson and co. reported the synthesis of N2 and N4-diaminoquinazolines as
PDE5-Is. At the N2 amino group, several substituted phenyls were employed, mainly
a sulfonamide or an N-methylpiperazine-1-sulfonamide at either the meta or the para
positions. On the N4 amino group, the substituents were either a benzyl, a substituted
piperidyl or an alkyl group [245,246].
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The best compound of the series(21) showed moderate PDE5 inhibitory potency with
an IC50 of 72 nM (36 times less active than sildenafil) [246]. However, it showed good
selectivity over PDE1, with a selectivity factor of 164 [245], as well as good efficacy when
tested in an ex vivo vasodilatation model with an EC50 of 1.63 µM [246]. In addition to its
moderate PDE5 potency, major drawbacks could be highlighted for 21; its selectivity for
PDE5 over PDE6 was less than that of sildenafil with a selectivity factor of only 4.61, besides
showing high cytotoxicity in human alveolar basal epithelial cell line (ATCC CCL-185) with
an IC50 of 11.1 µM [246].

Later, Chatturong et al. evaluated the PDE5 inhibitory potency of derivatives possess-
ing the same scaffold against HEK293-extracted PDE5. Compounds 22 and 23 were the two
most potent PDE5-Is with an IC50 value of 5 nM (2.5 times less potent than sildenafil) [247].
Both compounds showed a good vasorelaxant effect against isolated intrapulmonary ar-
teries with EC50 values of 0.94 and 1.03 µM, respectively. Despite showing a less potent
vasorelaxant effect than sildenafil (EC50 = 0.05 µM), their vasorelaxant effect was more
selective for pulmonary arteries over the thoracic aorta. Both compounds potentiated
the vasorelaxant effect of sodium nitroprusside in endothelium-denuded pulmonary ar-
teries, and the vasorelaxant effect of both compounds was reduced upon treatment with
a guanylyl cyclase inhibitor (ODQ); both results confirm that the vasorelaxant effect of
both compounds is related to their PDE5 inhibitory activity. The hepatotoxicity of both
compounds was evaluated in rat hepatocytes where more than 80% of the cells were viable
at a test concentration of 10 µM for both compounds [247].
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6.1.7. Quinazolinedihydro-β-Carbolines

Rutaecarpine (24) is a quanzolinocarboline alkaloid reported to have vasodilation,
anti-inflammation, and neuroprotective effects. Huang et al. introduced rutaecarpine
(PDE5 IC50 = 1.23 µM) [248] as a lead for the development of PDE5-Is for the treatment of
AD. Structural modifications were aimed at the indole part of the scaffold, with compound
25 showing the highest PDE5 inhibitory activity (IC50 = 86 nM). Twenty-five showed a
better selectivity profile than sildenafil, as it showed a selectivity factor of 500 folds for
PDE5 over PDE6, as well as showing no inhibition against PDE2, 4 and 9 at 500 µM. The
in vivo efficacy of 25 was tested in scopolamine-induced cognitive deficit mice, where it
showed relief in the learning and memory defects at a dose of 5 mg/kg [248].
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6.1.8. Pyrroloquinolones

Zheng et al. succeeded in modulating the THβC scaffold into novel pyrroloquinolones
with different substituted furyl and thienyl moieties at C3. The two most potent inhibitors
were compounds (S)-26 and (S)-27 with IC50 values of 0.52 and 0.39 nM, respectively [249].

Both compounds showed acceptable to good oral bioavailability values (F = 24% and
66%, respectively). Moreover, both compounds showed superior in vitro vasorelaxant
effects at a dose of 1 µM, as both induced almost complete relaxation in an isolated rabbit
thoracic aorta contracted by norepinephrine [249]. In vivo studies in an anesthetized
male New Zealand rabbits’ model showed the ability of both compounds to increase the
intracavernosal pressure of electrically stimulated rabbits with ED50 values of 21.68 and
24.21 µg/kg, respectively, which are comparable to that of sildenafil (14.25 µg/kg) [249].
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6.1.9. Quinolines

Fiorito et al. reported the synthesis of 4-(3-chloro-4-methoxybenzylamino) quinoline
derivatives as potent and selective PDE5-Is for the treatment of AD. All the synthesized
analogs had a hydroxymethyl at C3, a benzylamino at C4 and a cyano group at C7 of
the quinoline scaffold, all essential for PDE5 inhibitory activity. The PDE5 potency was
evaluated using PBS PDE assay kits. The two most potent derivatives were compounds 28
and 29 with IC50 values of 0.27 and 0.4 nM, respectively [250]. Both compounds showed
excellent selectivity profiles, showing a selectivity factor of 1256 and 12,750 over PDE6,
respectively, and showing no inhibition against the other PDEs (PDE1-PDE11) at a screening
dose of 10 µM [250].

Compound 28 was then chosen to be further evaluated in vivo. Upon testing com-
pound 28 in a male BALB/c model, it exhibited a good pharmacokinetic profile, reaching
the maximum plasma concentration in 30 min, besides showing a fast distribution to the
brain as the Tmax values in the brain and plasma were similar. Compound 28 was able
to elevate the cGMP levels in the hippocampus of adult mice after administration of a
3 mg/kg dose followed by a foot shock after 30 min. Moreover, 28 was tested in mice
treated with oligomers of Aβ42 that are known to induce loss in memory and hippocampal
long-term potentiation and were found to restore the long-term potentiation effect, as well
as treating the behavioral defects in mice caused by the loss of memory [250].
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6.1.10. Tetrahydrobenzo[b][1,6]Naphthyridine 

In a later study, Fiorito et al. further optimized their quinoline derivatives to improve 
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6.1.10. Tetrahydrobenzo[b][1,6]Naphthyridine

In a later study, Fiorito et al. further optimized their quinoline derivatives to im-
prove their water solubility. The next scaffold was obtained by locking the rotatable
bonds of the hydroxymethyl group of compounds 28 and 29 into a ring to give tetrahy-
drobenzo[b][1,6]naphthyridine scaffold [251]. This rigidification strategy led to the discov-
ery of compound 30, which elicited higher potency against PDE5 (IC50 = 0.056 nM) and
improved aqueous solubility. Additionally, compound 30 exhibited more than 500-fold
selectivity for PDE5 vs. PDE6. However, the selectivity profile vs. other PDE isoforms,
especially PDE11, was not presented. In a mouse model of AD, 30 improved learning
and memory impairments by raising cGMP levels in the hippocampus. The very low
microsomal metabolic stability was one of the major drawbacks of this very potent class of
compounds that needs further optimization [251].

6.1.11. Chromenopyrrolones

Luo group reported the synthesis of chromeno [2,3-c]pyrrol-9(2H)-ones as PDE5-Is
with a general structure (31) [252]. From the inhibitory activity data of the compounds, the
following SAR could be concluded: PDE5 inhibition is hugely affected by the substitution
at R3 and R4; at R3, using 5-membered heterocycles was preferred to substituted phenyl
moieties, biphenyl, and naphthalene rings while the best substitution at R4 was a p-hydroxy
benzyl moiety. The two most potent inhibitors were compounds 32 and 33, with IC50s of
17 and 18 nM, respectively, against PDE5 [252].

Compound 32 was further tested against PDE1, 4, 7, 8, 9 and 10. Despite showing good
selectivity for PDE5 over the tested kinases (IC50s > 750 nM), its overall selectivity couldn’t
be judged as its activity against the two most common off-targets, PDE6 and PDE11 was
not evaluated. One drawback of compound 32 is the relatively weak pharmacokinetic
properties with an oral bioavailability of 4.9% [252].

In a later study, 32 was further optimized using the structure-based approach, where
the thiophane ring at C1 was converted to thiazole, aiming at establishing a key bidentate
H-bond interaction with Gln817 involving the thiazole nitrogen and the NH of pyrrole
(colored in blue). This successfully led to compound 34 with an IC50 of 5.4 nM. It is
worth mentioning that the other six and five-membered heterocycles at C1 did not lead
to the same improvement in potency. In order to improve the metabolic stability and PK
properties, the 4-hydroxybenzyl group in 34 was replaced with benzodioxole moiety to give
compound 35 with a highly improved PK profile (F = 63.4%). In addition, 35 exhibited good
drug-like properties, such as human liver microsomal stability, low cytochrome inhibition,
low hERG inhibition, and pharmacological safety. When tested in the PAH in vivo model,
35 exhibited higher efficacy than sildenafil. Generally, 35 exhibited good isoform selectivity
for PDE5. However, it had only selectivity indices of 10 and 27 for PDE6 and PDE10A,
respectively, while selectivity against PDE11 was not presented by the authors [253]. Finally,
the Luo group crowned their efforts in developing this class by further synthesis of nineteen
analogs, which all showed IC50 values towards PDE5 of less than 10 nM [254]. In these
analogs, compound 35 was further optimized on two stages, (i) through adding mono/di
substituents at positions 5, 6, 7 and 8, yielding several more potent compounds like
compounds 36 and 37 (IC50 = 1.41 and 1.05 nM, receptively). (ii) cocrystal of 34 with
PDE5 catalytic domain (PDB code 5ZZ2, see binding modes section)) has guided the
synthesis of compound 38 with a sub-nanomolar IC50 against PDE5 (0.32 nM). Thirty-eight
exhibited a high selectivity index (SI) vs. many other PDE isoforms; however, compared
to compound 35, the SI for PDE5 vs. PDE6 was compromised from 10 to 4 (comparable
to sildenafil), while SI vs. PDE11 was disclosed to be 122 (SI of tadalafil = 20). Similar
to compound 35, 37 exhibited good drug-like properties; the higher in vitro potency was
correlated to a higher pharmacodynamic effect in vivo than 33 and sildenafil in the PAH
model [254].
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6.1.12. Azepinoindolones

Based on the structures of tadalafil and the chromenopyrrolone derivative 35, Luo and
co-workers used a free energy perturbation-guided scaffold hopping strategy to identify
39; a 2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indol-1-one derivative with a PDE5 inhibitory
activity of 55 nM. Structural modifications on 39 led to the discovery of 40, a potent PDE5
inhibitor with an IC50 of 8.3 nM. 40 showed a 20 folds better selectivity for PDE5 over
PDE11 than tadalafil, but almost the same selectivity for PDE5 over PDE6 as sildenafil. No
significant inhibition was observed against other PDEs [255].

The in vivo efficacy of 40 was evaluated using a monocrotaline-induced pulmonary
arterial hypertension rat model. Treatment of rats with a 2.5 mg/kg intraperitoneal dose of
40 for three weeks gave an effect comparable to that produced upon oral administration of
a 10 mg/kg dose of sildenafil citrate for the same period. Furthermore, no acute toxicity
was observed on the first day upon oral administration of a 1.5 mg/kg dose of 40 in male
rats [255].
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6.1.13. Pyridopyrazinones

Pyridopyrazinone-based derivatives have a wide spectrum of biological activities,
such as CRF-R1 (corticotropin-releasing factor receptor 1) antagonists, PI3K inhibitors
and antiproliferative agents [256]. In 2009, Pfizer Global R&D reported a new series
of tri-substituted pyridopyrazinone derivatives as PDE5-Is [257,258]. This encouraged
Amin et al. to evaluate their previously reported anti-cancer agents bearing a mono-
substituted pyrido[2,3-b]pyrazinone scaffold against PDE5. In silico studies and in vitro
biological testing disclosed compound 41 as the most potent PDE5 inhibitor, with an IC50
of 18.13 nM (9 times less potent than sildenafil). Selectivity testing against other members
of the PDE family and in vivo studies were not reported for 41 [256].

6.1.14. Thienopyrimidines

Abadi and coworkers reported a series of 4-substituted thienopyrimidines fused to
cyclopentene or cycloheptene. Several amnio substituents were tried at position 4, includ-
ing aryl/acetyl/methyl piperazino groups, cyclohexlmethyl amino and arylhydrazones.
Among more than 50 presented analogs, compounds 42 and 43 showed submicromolar
potency against PDE5 with IC50 values of 0.42 and 0.19 µM, respectively. Selectivity was
only presented vs. PDE7 and PDE9, where the two compounds weakly inhibited both
enzymes at 25 µM [259].
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6.1.15. PDE5 Allosteric Inhibitors

Targeting non-active site regions, which are less conserved, may offer a better chance
to obtain selective PDE5-Is. This will be discussed in the next section.

Evodiamine Derivatives
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Evodiamine (44) is a natural product that was shown to inhibit PDE5 with an IC50
of 2.1 µM. In their efforts to discover PDE5 allosteric inhibitors with improved selectivity
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profiles, the Luo group characterized allosteric pockets 468 Å3 on the PDE5 catalytic domain
using Allofinder [260]. After virtual screening of their natural product library followed
by in vitro enzyme assay, compound 45 and its S enantiomer were identified as PDE5-Is
with IC50 values of 340 and 110 nM, respectively, with 5–10 fold better selectivity profile vs.
PDE6 than sildenafil. A small library of compounds was synthesized guided by molecular
docking to reduce synthetic efforts. Regarding the chiral center at position 7a, the activity
of the S isomer was higher than the racemate, while the R enantiomer was much less active.
At R1, the methoxy > hydroxy > hydrogen regarding the potency. Having a 2nd methoxy
group at R2 or R3 further increased the potency to yield compounds 46 and 47 with IC50
values of 35 and 42 nM, respectively. However, 47 exhibited better oral bioavailability (14%)
compared to 46 (1%).

Enzyme kinetics revealed non-competitive behavior for 46; this is unlike all the previ-
ously reported PDE5-Is, which were shown to be substrate-competitive. Additionally, a
cocrystal of 46 with PDE5 catalytic domain (PDB 6VBI) showed that the compound binds
to a novel allosteric pocket on the catalytic domain, designated as EVO pocket. (See the
crystal structures/docking section). Due to their allosteric nature, 46 and 47 exhibited
excellent selectivity profiles with more than 570-fold selectivity over other PDEs except for
PDE10 (20–30 folds). Compound 47 exhibited comparable in vivo efficacy to sildenafil in
the pulmonary hypertension mouse model.

Trisubstituted Pyrazolines

Celecoxib (48), the selective COX-2 inhibitor, was shown to have an off-target activity
towards PDE5 with an IC50 of 37 µM. Unlike the approved PDE5-Is, its PDE5 inhibitory
activity was found to be against the full-length enzyme but not the PDE5 catalytic domain,
indicating that its activity is strictly dependent on the presence of PDE5 regulatory domain,
giving promise to develop a class with higher selectivity than the conventional PDE5-
Is [261]. Abdel-Halim et al. reported a selective optimization of side activities (SOSA)
approach to enhance the PDE5 inhibitory activity of celecoxib and abolish the COX-2
inhibition. The major structural variations introduced to celecoxib were (i) the replacement
of the sulfonamide group with a carboxylic acid group, (ii) using the non-planar pyrazoline
core instead of the pyrazole, (iii) using the t-Bu instead of the trifluoromethyl group and
(iv) trying different substituents at the 5-phenyl. This resulted in compound 49 with an IC50
of 2 µM against PDE5 and diminished activity against COX-2 [261]. Further structure-based
optimization via systematic modifications for 49 led to compounds 50 and 51 with an IC50
of 4 and 1 nM, respectively. Incorporation of the carboxylic acid functional group in an
amide bond with methyl piperazine and difluorination at meta or ortho and meta positions of
the 5-phenyl were key changes that achieved this huge boost in PDE5 inhibition. Fifty-one
exhibited an unprecedented selectivity profile, almost approaching 15,000 fold toward all
PDE isoforms, including PDE6 and PDE11 [261]. Similar to celecoxib, 51 was only active
against the PDE5 full-length enzyme and not the PDE5 catalytic domain, justifying the
unprecedented selectivity profile. Until now, only the PDE5 catalytic domain could be
crystalized with several inhibitors. Thus, a cocrystal of 51 with a PDE5 full-length enzyme
was not yet feasible. As expected, the study of PDE5 enzyme kinetics with 51 ruled out the
competitive mode of inhibition, with no clear tendency towards a non- or uncompetitive
mode of inhibition. The authors suggested that, presumably, 51 has a mixed mode of
inhibition, with a preferred binding to the apoenzyme or to the substrate-bound form. As
for the binding site, it might be located in the interface between the active site of PDE5
and the GAF-B domain, or it might be an allosteric binding to the regulatory domain with
allosteric modulation of the active site. Keeping in mind that till now, the full-length PDE5
enzyme could not be crystallized, it remains an important question to be answered: Where
do these intriguing pyrazolines exactly bind?
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6.2. PDE5 in the Context of Dual Inhibitors 

6.2.1. Compounds with Dual PDE5 and HDAC Inhibitory Activities 

PDE5 and HDAC (histone deacetylase) were reported as therapeutic targets in AD. 
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6.2. PDE5 in the Context of Dual Inhibitors
6.2.1. Compounds with Dual PDE5 and HDAC Inhibitory Activities

PDE5 and HDAC (histone deacetylase) were reported as therapeutic targets in AD.
Oyarzabal and Co. aimed at designing dual PDE5 and HDAC inhibitors as multitar-
get directed ligands for the treatment of AD, where the complex etiology of the disease
suggests higher efficacy than the classical ‘one molecule-one target approach’. Despite
accumulated evidence that targeting HDAC6 specifically is beneficial for treating AD,
Oyarzabal and co. designed three classes of inhibitors with different HDAC inhibitory
profiles: class A, having a pan-HDAC inhibitory activity; class B, having selectivity for
HDAC6 over class I HDACs; and finally, class C, having selectivity for class I HDACs
over HDAC6. For these inhibitors to be successful, they were planned to have moderate
inhibition for HDAC class I (HDAC1, 2, 3 and 8) to avoid the possible toxicity but potent
PDE5 inhibition to provide the synergistic effect needed for a cellular and an in vivo func-
tional response, as well as CNS-penetration. In their studies, structural modifications were
made to replace the piperazine sulfonamide part of sildenafil and vardenafil with groups
that have a terminal zinc binding group ZBG (a hydroxamic acid or an ortho-aminoanilide
moiety), which is essential for HDAC inhibition. They also employed similar modifications
at the piperidinedione nitrogen of tadalafil [262–265].

In their first report, Oyarzabal and Co. focused on developing class A inhibitors using
the sildenafil core, together with a wide range of substituents having a terminal hydroxamic
acid group (a ZBG essential for HDAC inhibitory activity) and linked to the 5′position of
the phenyl ring of sildenafil via a carbon, nitrogen, or an oxygen atom [262].

Despite being a 7-fold less potent PDE5 inhibitor than sildenafil, compound 52
(CM-414) was the best pan-HDAC inhibitor. The cytotoxicity of 52 was evaluated in
THLE-2 cells and primary neuronal cultures of glia cells and showed moderate cytotoxicity
in THLE-2 cells and low cytotoxicity in glia cells, with an LC50 of 7.2 µM and 17.7 µM,
respectively [262].

52 was further studied in vivo, where it increased the acetylation of histone by 98%
and increased the phosphorylation of CREB by 148% in the hippocampus of mice 30 min
post a 40 mg/kg intraperitoneal injection [262]. It was reported in another related study
that chronic treatment of Tg2576 mice with 52 resulted in a huge decrease in the brain Aβ
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and pTau levels through favoring the inactive form of GSK3β, reverted the decrease in
dendritic spine density on hippocampal neurons, and reversed the memory impairment
in mice through inducing the expression of genes related to synaptic transmission [266].
Furthermore, 52 succeeded in decreasing the expression of fibrogenic markers and collagen
deposition in Mdr2-KO mice (a clinically relevant model of liver inflammation and fibrosis),
impeding the progression of chronic liver disease in this type of mice [267].

Despite showing a good functional response both in vitro and in vivo, some drawbacks
of 52 could be highlighted: its moderate PDE5 potency in comparison to other synthesized
derivatives; it was highly potent against PDE6 (IC50 = 2.6 nM), and finally, its poor in vitro
pharmacokinetics, attributed to its low permeation (Pe value = 15.7 nm/s in a PAMPA
assay), as well as its high efflux ratio (41.3 in a Caco-2 permeability assay) [262].

The vardenafil-matched pair of 52 was reported in another study carried out by
Oyarzabal and co [263]. Despite being a more potent PDE5 inhibitor than 52, compound
53 showed moderate cytotoxicity upon its evaluation in THLE-2 cells, primary neuronal
cultures of glia cells and peripheral blood mononuclear cells (PBMCs) with LC50 values of
9.37 µM, 6.1 µM and 6.2 µM, respectively. It can be thus concluded that 53 has a narrow
therapeutic window, given the fact that 400 nM was needed to elicit a significant in vitro
cellular response. Moreover, 53 showed poor in vivo efficacy, producing only a 25% increase
in the levels of phosphorylated CREB in the hippocampus of mice after 1 h of a 40 mg/kg
intraperitoneal injection [263].

Following this study, Oyarzabal and co. focused on developing inhibitors of class
B, using both the sildenafil and vardenafil cores. Different phenyl, substituted phenyl,
thienyl and furyl moieties linked to a terminal hydroxamic acid group were employed at
the 5′position of the phenyl ring of the core. Compound 54 was the most potent HDAC6
inhibitor, with excellent selectivity over class I HDACs, in addition to having potent PDE5
inhibition. Fifty-four showed moderate cytotoxicity in THLE-2 cells and low cytotoxi-
city in primary neuronal cultures of glial cells, with an LC50 of 6.81 µM and 46.3 µM,
respectively [265].
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Despite showing a good functional response in vitro, 54 was able to increase the
level of phosphorylated CREB by only 48% in the hippocampus of mice after 30 min of a
40 mg/kg intraperitoneal injection. In addition, no significant improvement in the memory
of Tg2576 mice was observed following a two-week treatment with 54 [265].

Finally, Oyarzabal and co. aimed at designing inhibitors of class C, using both the
sildenafil and vardenafil cores. A wide range of phenyl and cycloalkyl substituents were
employed with an ortho-aminoanilide moiety as the ZBG instead of the hydroxamic acid
group, a structural modification that led to the masking of the HDAC6 inhibitory activity.
Compound 55, having a vardenafil core, was the most potent dual PDE5/class I HDAC
inhibitor [263]. The second-best class I HDAC inhibitor was compound 56, which, de-
spite having a moderate PDE5 inhibitory activity, was the compound of choice for further
in vivo testing [264]. Fifty-six showed a low cytotoxicity profile, with an LC50 of 11,700 nM
in THLE-2 cells, while no effect was observed in PBMCs at a screening dose of 100 µM.
Despite showing an excellent pharmacokinetic profile, with a Pe value of 82.9 nm/s in the
PAMPA assay and a low efflux ratio (0.86), 56 failed to produce a significant reversing effect
for the memory impairment of Tg2576 mice after administration of a 20 mg/kg dose for
two weeks [264].
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Upon comparing the three classes of inhibitors reported by Oyarzabal and co., in-
hibitors of class A employed on a sildenafil core provided the best pharmacological profile
needed for AD treatment, as it was the only inhibitors class whose stand-out compound,
despite having poor pharmacokinetics, showed memory restoration in mice AD model.

A few substituents were employed by Oyarzabal and Co. on the tadalafil core, specif-
ically on the terminal nitrogen of the piperazinedione ring of tadalafil. The reported
compounds were either inactive or much less active than their sildenafil and vardenafil
matched pairs [263,264].

As an anticancer agent, tadalafil is usually not used solely but rather in combination
with other chemotherapeutic agents to enhance its cytotoxicity against numerous types
of cancer cells [76]. HDAC inhibitors could be regarded as one of the most important
chemotherapeutics that could be used in combination with tadalafil for cancer treatment.
Noteworthy, pan-HDAC inhibitors like vorinostat (SAHA), belinostat and panobinostat
were approved by the FDA for the treatment of some types of hematological cancers [268].

As mentioned previously, the incorporation of a terminal amino or a hydroxyl group
to the N-ethyl and N-butyl moieties of the 4-chloro and 4-bromo THβC analogs by Abadi
and co. led to a sharp decrease in the PDE5 inhibitory activity [239]. Therefore, in a
more recent study, Abdel-Halim and co. incorporated a terminal ZBG (carboxylic acid or
a hydroxamic acid group) instead and manipulated the spacer length between the nitrogen
of the piperazinedione and the terminal ZBG. Inhibitors with a terminal carboxylic acid
group were only active against PDE5, while those with a stereochemistry of 6S and 12aS
were only active against HDAC. The most potent dual inhibitor was compound 57, with an
IC50 of 46.3 against PDE5 and a pan-HDAC IC50 of 14.5 nM [269].
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Fifty-seven had a moderate in vitro cellular potency against three types of colon
cancer cell lines (HT-29, HCT-116 and SW-620), with GI50 values of 12.35, 7.19 and 11.79 µM,
respectively. 57 was also tested against several types of cancer cell lines, showing a high
cellular potency (<3 µM) against Molt 4 (acute lymphoblastic leukemia), Sup-T1 (T-cell
lymphoblastic lymphoma), K562 (chronic myelogenous leukemia), as well as T47D (breast
cancer cells), where it could induce apoptosis in Molt-4 cells. NCI-60 human tumor cell line
screen showed a high selectivity of 57 for leukemia and solid tumor cell lines. Fifty-seven
showed a good therapeutic window, as it did not show any significant inhibitory effect in
the non-cancer cell line CCD966SK with a GI50 of 28.2 µM [269].
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6.2.2. Compounds with Dual PDE5 and AchE Inhibitory Activities

Four of the clinically approved drugs against AD are AchE inhibitors. AchE inhibi-
tion has been shown to improve memory and cognitive functions in AD patients; therefore,
designing MTDLs towards AchE and another target involved in AD pathology would
produce a more significant reduction in AD symptoms. Mao et al. reported the synthesis of
tadalafil analogs with varying substituents at the nitrogen of the terminal piperazinedione
ring as dual AchE/PDE5-Is for the treatment of AD [270].

The two most interesting compounds of the series (58 and its diastereomer 59) were
the most potent derivatives against aChE with IC50s of 36 and 32 nM with PDE5 inhibitory
IC50s of 150 and 1530 nM, respectively. Further evaluation of 58 and 59 revealed their ability
to cross the BBB upon testing them in a parallel artificial membrane permeation assay. 58
and 59 could inhibit PDE5 in vivo as they significantly enhanced the phosphorylation of
CREB. Finally, at a dose of 10 mg/kg, 59 was more effective than 58 at improving the
cognitive functions of scopolamine-induced cognitive deficit mice [270].
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6.2.3. Dual PDE5 Inhibitor and NO Donor

Topical or systemic application of sildenafil has been shown to be beneficial for
wound healing through increasing cGMP levels. The significant role of NO in wound
repair has been clearly observed in mice deficient for inducible or endothelial NO synthase,
where they showed delayed wound closure and impaired angiogenesis. The in vitro and
in vivo effects of NO donors and PDE5-Is on the different cell types involved in wound
repair, as well as the potential additive effect of NO supplementation and PDE5 inhibition,
were not tested until Greenwald et al. reported the synthesis of TOP-N53 (60), a dual-acting
NO donor and PDE5 inhibitor, having wound healing effects in both normal mice and mice
with diabetes mellitus [271].

Sixty showed a PDE5 inhibitory potency of 1.6 nM, and it significantly increased the
levels of NO in human keratinocytes after 24 h from the treatment with a 10 µM dose of 60
and up to 72 h [271].

The wound healing effects of 60 were tested in both healthy mice and mice with
diabetes mellitus. Treatment with 60 led to the closure of 26% of the wounds in normal mice
on the 5th day of treatment, where it induced keratinocyte proliferation, angiogenesis, and
collagen maturation in wounded skin without enhancing the normal wound inflammatory
response. A similar effect was seen in mice with diabetes mellitus, where 60 promoted
re-epithelization, as well as angiogenesis, without enhancing the normal inflammatory
response [271].
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6.2.4. Compounds with Dual PDE5 and Topoisomerase 2 Inhibitory Activities

Abadi and co. tried to combine the anticancer properties of PDE5 and Topoisomerase
II inhibitors in a single molecule through the synthesis of several 9-benzylaminoacridine
derivatives. They presented dual PDE5-Topoisomerase 2 inhibition as a potential strategy
against colorectal cancer. The most potent PDE5 inhibitor of the series 61 (IC50 = 0.83 µM)
exhibited lower growth inhibitory activity against colorectal cells (HCT-116). On the
other hand, the three most potent topoisomerase two inhibitors, 62, 63 and 64, showed
low micromolar PDE5 inhibitory activity and significant growth inhibitory effects against
HCT-116 cells. However, 64 was shown to have less selective anticancer activity, where it
showed a relatively high growth inhibition against the non-malignant dermal fibroblast
CCD-966SK cells (IC50 = 4.67 µM) [272].
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6.3. PDE5 Inhibitors for Radiodiagnosis

Positron emission tomography (PET) is one of the most sensitive in vivo molecular
imaging modalities that are based on utilizing radiotracers labeled with short-lived positron-
emitting radionuclides [273]. Lately, there is growing interest in the design and biological
evaluation of PDE5-specific PET radiotracers, which would facilitate the non-invasive
evaluation of PDE5 expression levels in vivo. Using PDE5 radiotracers with optimal
pharmacokinetic profiles in combination with high accuracy would likely address multiple
issues facing clinical investigators, such as (i) providing valuable diagnostic information
regarding the localization, extent and severity of impairments and/or deregulation of the
cGMP/PDE5 pathway, thus permitting an early identification of patients that would benefit
from treatment with PDE5-Is, (ii) quantification of changes in PDE5 expression during
disease progression, and (iii) assessment of occupancy by PDE5-Is in target tissues enabling
physicians to tailor optimal dose and dosage regimens on an individual basis [274–276].

Despite the availability of many specific and high-affinity PDE5-Is, only a few radio-
tracers have been evaluated for PET imaging of this enzyme until now. The first PDE5
radiotracers were reported by Chekol et al., who developed the carbon-11 (65) and fluorine-
18 labeled (66) vardenafil-based PDE5 radioligands [274]. Both radiotracers exhibited high
retention in the lungs, and their specific inhibition of PDE5 was proven via a pre-blocking
study in mice by tadalafil. However, none of those ligands demonstrated significant brain
uptake [274]. A later report by the same group revealed that a pyridopyrazinone based
18F-labeled derivative (67) exhibited the highest PDE5-specific retention in the lungs of
wild-type mice and in the myocardium of transgenic mice with cardiomyocyte-specific
PDE5 over-expression. Although (67) readily entered the brain, its radioactivity uptake was
found not specific toward the PDE5 [275]. More recently, a 4(3H)-pyrimidinone compound
(2) developed for the treatment of PAH was 11C-radiolabeled at the N-methyl of its piper-
azine ring. However, the authors did not perform a biodistribution study or an in vitro
assessment of tracer inhibitory activity to ensure that the radiotracer’s binding ability to
PDE5 was unaffected [277]. Very recently, a 14C-radiolabeled derivative of (2) was used to
assess its pharmacokinetics where (2) exhibited rapid absorption in humans (Tmax = 0.67 h)
and t1/2 of 9.9 h, besides extensive metabolism into 22 metabolites in human plasma, urine
and feces [278].

Several studies by the research group of Liu, Wenzel and coworkers have focused
on the development of fluorinated quinoline derivatives as brain-specific PDE5 tracers.
However, all promising candidates showed high non-specific retention in the brain besides
their fast metabolism in vivo, forming brain penetrable radio metabolites [273,276,279].
The challenging design of PDE5-specific radiotracers in the brain is likely attributed to the
substantially low PDE5 expression in the brain with only nanomolar density. Accordingly,
a radioligand with at least sub-nanomolar PDE5 potency is needed for the quantification
of brain PDE5 [280]. This belief guided Dong et al. to 11C-radiolabel the O-methyl of the
previously reported picomolar potent PDE5-Is (28 and 30) for the treatment of AD. However,
neither good brain penetration of those radiolabeled tracers nor their specific PDE5 binding
in vivo was validated by authors, requiring further preclinical investigations [280].

In 2022, avanafil (9) was successfully labeled with iodine-125 via an electrophilic
substitution reaction of its methoxy-activated aromatic ring. An in vitro stability study
and evaluation of the tracer’s PDE5 inhibitory activity, in addition to biodistribution and
clearance studies in rat models of ED, have verified the applicability of radiolabeled avanafil
as a promising tracer for ED [281].
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5. The Lid region consists of Tyr664, Met816, Ala823 and Gly819. 
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7. Binding Modes of PDE5 Inhibitors
7.1. The PDE5 Active Site

The catalytic domain of PDE5 has three helical subdomains: an N-terminal cyclin-fold
region, a linker region, and a C-terminal helical bundle. The active site of PDE5 is located
at the center of the C-terminal helical bundle domain, and it can be divided into five
subsites: [241,282]

1. A metal-binding site (M site) that contains Zn+2 and Mg+2 ions, together with several
aspartate and histidine residues.

2. A core pocket (Q pocket) lined by Gln817, Phe820, Val782, and Tyr612.
3. A hydrophobic pocket (H pocket).
4. The Q2-pocket, which is lined by Phe786, Phe787, Leu804, Ile813, Met816.
5. The Lid region consists of Tyr664, Met816, Ala823 and Gly819.

A deep insight into the X-ray cocrystal structures of PDE5 enzyme with inhibitors
resolved to date provides comprehensive data about the key interactions involved in in-
hibitors binding and reveals that inhibitors binding to PDE5 active site mainly adopt either
a sildenafil/vardenafil-like binding mode or a tadalafil-like binding mode (summarized in
Table 1).

Table 1. Summary of the reported cocrystal structures for PDE5 inhibitors and their key interactions
with the PDE5 active site.

Scaffold and
Compound No.

PDB
Code Cocrystal Structure Key Ligand Interactions with the PDE5

Active Site

Pyrimidinone, Cpd. 2 4G2W

 

2 

Scaffold and 
Compound No. 

PDB  
Code 

Cocrystal Structure Key Ligand Interactions with the PDE5 
Active Site 

Pyrimidinone, Cpd. 2 4G2W 

 
Sildenafil-like 

The pyrimidinone core is anchored through; a 
bidentate hydrogen bond with Gln817, CH-pi 
stacking with Phe820, Val782 and Phe786, in 
addition to a hydrogen bond with Met816  

M816

Q817

V782

F820

Q775

A783
F786

I768
A767

Sildenafil-like
The pyrimidinone core is anchored
through; a bidentate hydrogen bond with
Gln817, CH-pi stacking with Phe820,
Val782 and Phe786, in addition to
a hydrogen bond with Met816
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Table 1. Cont.

Scaffold and
Compound No.

PDB
Code Cocrystal Structure Key Ligand Interactions with the PDE5

Active Site

Pyrimidinone, Cpd. 4 4I9Z

 

3 

Pyrimidinone, Cpd. 4  4I9Z 

 
Sildenafil-like 

The pyrimidinone core is anchored through; a 
bidentate hydrogen bond with Gln817,  
π-π stacking with Phe820, a CH-pi interaction 
with Val782, in addition to a hydrogen bond 
with Met816 

Pyrimidinone, Cpd. 5 4IAO 

 
Tadalafil-like 

The pyrimidinone core is anchored through; a 
monodentate hydrogen bond with Gln817, π-
π stacking with Phe820, a CH-pi interaction 
with Val782, in addition to a hydrogen bond 
with Met816  

V782

M816

Y612

F820
Q817

G819

L725

F786

L765

V782

M816

I813

Y612

F820

Q817 L725

L765

D764

T723

Sildenafil-like
The pyrimidinone core is anchored
through; a bidentate hydrogen bond with
Gln817,
π-π stacking with Phe820, a CH-pi
interaction with Val782, in addition to
a hydrogen bond with Met816

Pyrimidinone, Cpd. 5 4IAO

 

3 

Pyrimidinone, Cpd. 4  4I9Z 

 
Sildenafil-like 

The pyrimidinone core is anchored through; a 
bidentate hydrogen bond with Gln817,  
π-π stacking with Phe820, a CH-pi interaction 
with Val782, in addition to a hydrogen bond 
with Met816 

Pyrimidinone, Cpd. 5 4IAO 

 
Tadalafil-like 

The pyrimidinone core is anchored through; a 
monodentate hydrogen bond with Gln817, π-
π stacking with Phe820, a CH-pi interaction 
with Val782, in addition to a hydrogen bond 
with Met816  

V782

M816

Y612

F820
Q817

G819

L725

F786

L765

V782

M816

I813

Y612

F820

Q817 L725

L765

D764

T723

Tadalafil-like
The pyrimidinone core is anchored
through; a monodentate hydrogen bond
with Gln817, π-π stacking with Phe820, a
CH-pi interaction with Val782, in addition
to a hydrogen bond with Met816

Pyrimidine,
Cpd. 9 (Avanafil)

6L6E

 

4 

Pyrimidine,  
Cpd. 9 (Avanafil) 

6L6E 

 
Sildenafil-like 

The pyrimidine core is anchored through; a 
bidentate hydrogen bond between the 
terminal hydroxy group on the pyrrolidine 
ring and Gln817, π-π stacking with Phe820, in 
addition to a CH-pi interaction with Leu725, a 
hydrogen bond with Gln775 and Leu804, as 
well as a halogen bond with Ala779 

Chromenopyrrolones  
Cpd. 32 

4MD6 

 
Tadalafil-like 

The chromenopyrrolone core is anchored 
through; a monodentate hydrogen bond 
between the pyrrole ring and Gln817, π-π 
stacking with Phe820 and three CH-pi 
interactions with Val782 

Q817

L725

Q775

F820

A779

V782

L804
F786

A783

I768
A767

M816

Q817

V782

F820

I813

I768

A767

Sildenafil-like
The pyrimidine core is anchored through;
a bidentate hydrogen bond between the
terminal hydroxy group on the
pyrrolidine ring and Gln817, π-π stacking
with Phe820, in addition to a CH-pi
interaction with Leu725, a hydrogen bond
with Gln775 and Leu804, as well as
a halogen bond with Ala779
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Table 1. Cont.

Scaffold and
Compound No.

PDB
Code Cocrystal Structure Key Ligand Interactions with the PDE5

Active Site

Chromenopyrrolones
Cpd. 32

4MD6

 

4 

Pyrimidine,  
Cpd. 9 (Avanafil) 

6L6E 

 
Sildenafil-like 

The pyrimidine core is anchored through; a 
bidentate hydrogen bond between the 
terminal hydroxy group on the pyrrolidine 
ring and Gln817, π-π stacking with Phe820, in 
addition to a CH-pi interaction with Leu725, a 
hydrogen bond with Gln775 and Leu804, as 
well as a halogen bond with Ala779 

Chromenopyrrolones  
Cpd. 32 

4MD6 

 
Tadalafil-like 

The chromenopyrrolone core is anchored 
through; a monodentate hydrogen bond 
between the pyrrole ring and Gln817, π-π 
stacking with Phe820 and three CH-pi 
interactions with Val782 

Q817

L725

Q775

F820

A779

V782

L804
F786

A783

I768
A767

M816

Q817

V782

F820

I813

I768

A767

Tadalafil-like
The chromenopyrrolone core is anchored
through; a monodentate hydrogen bond
between the pyrrole ring and Gln817, π-π
stacking with Phe820 and three CH-pi
interactions with Val782

Chromenopyrrolones,
Cpd. 36

5ZZ2

 

5 

Chromenopyrrolones,  
Cpd. 36 

5ZZ2 

 
Sildenafil-like 

The chromenopyrrolone core is anchored 
through; a bidentate hydrogen bond with 
Gln817, π-π stacking with Phe820, three CH-
pi interactions with Val782, in addition to; a 
CH-pi interaction with Phe786, and a 
hydrogen bond between the benzodioxole 
moiety and Gln817 

Azepinoindolone, Cpd. 
39 

7FAQ 

 
Tadalafil-like 

The tetrahydro-1H-azepinoindolo-1-one core 
is anchored through: a monodentate 
hydrogen bond with Gln817, π-π stacking 
with Phe820, and two CH-pi interactions with 
Val782 

M816

Q817

V782

F820

I813

F786

I768

Q817

M816

F820Q775

I813

V782
Y612

Sildenafil-like
The chromenopyrrolone core is anchored
through; a bidentate hydrogen bond with
Gln817, π-π stacking with Phe820, three
CH-pi interactions with Val782, in
addition to; a CH-pi interaction with
Phe786, and a hydrogen bond between the
benzodioxole moiety and Gln817

Azepinoindolone,
Cpd. 39

7FAQ

 

5 

Chromenopyrrolones,  
Cpd. 36 

5ZZ2 

 
Sildenafil-like 

The chromenopyrrolone core is anchored 
through; a bidentate hydrogen bond with 
Gln817, π-π stacking with Phe820, three CH-
pi interactions with Val782, in addition to; a 
CH-pi interaction with Phe786, and a 
hydrogen bond between the benzodioxole 
moiety and Gln817 

Azepinoindolone, Cpd. 
39 

7FAQ 

 
Tadalafil-like 

The tetrahydro-1H-azepinoindolo-1-one core 
is anchored through: a monodentate 
hydrogen bond with Gln817, π-π stacking 
with Phe820, and two CH-pi interactions with 
Val782 

M816

Q817

V782

F820

I813

F786

I768

Q817

M816

F820Q775

I813

V782
Y612

Tadalafil-like
The tetrahydro-1H-azepinoindolo-1-one
core is anchored through: a
monodentate hydrogen bond with Gln817,
π-π stacking with Phe820, and two CH-pi
interactions with Val782
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Table 1. Cont.

Scaffold and
Compound No.

PDB
Code Cocrystal Structure Key Ligand Interactions with the PDE5

Active Site

Azepinoindolone,
Cpd. 40

7FAR

 

6 

Azepinoindolone, Cpd. 
40 

7FAR 

 
Tadalafil-like 

The tetrahydro-1H-azepinoindolo-1-one core 
is anchored through: a monodentate 
hydrogen bond with Gln817, π-π stacking 
with Phe820, three CH-pi interactions with 
Val782, a CH-pi interaction with Phe786 and a 
hydrogen bond with His613 

Indolopyrazinoquinaz
olinone,  
Cpd. 46 

6VIB 

 
Allosteric Inhibitor 

The compound is anchored in the allosteric 
site through; four hydrogen bonds with 
Asp563, a hydrogen bond with His617 and 
two CH-pi interactions with Arg616 and 
Ala767 

Q817

M816

F820

Q775

V782

A783

F786

H613
Y612

D563

F564

I774

I778Y612

A611

N614

H617

R616

A767

Tadalafil-like
The tetrahydro-1H-azepinoindolo-1-one
core is anchored through: a
monodentate hydrogen bond with Gln817,
π-π stacking with Phe820, three CH-pi
interactions with Val782, a CH-pi
interaction with Phe786 and a hydrogen
bond with His613

Indolopyrazinoquinazolinone,
Cpd. 46

6VIB

 

6 

Azepinoindolone, Cpd. 
40 

7FAR 

 
Tadalafil-like 

The tetrahydro-1H-azepinoindolo-1-one core 
is anchored through: a monodentate 
hydrogen bond with Gln817, π-π stacking 
with Phe820, three CH-pi interactions with 
Val782, a CH-pi interaction with Phe786 and a 
hydrogen bond with His613 

Indolopyrazinoquinaz
olinone,  
Cpd. 46 

6VIB 

 
Allosteric Inhibitor 

The compound is anchored in the allosteric 
site through; four hydrogen bonds with 
Asp563, a hydrogen bond with His617 and 
two CH-pi interactions with Arg616 and 
Ala767 

Q817

M816

F820

Q775

V782

A783

F786

H613
Y612

D563

F564

I774

I778Y612

A611

N614

H617

R616

A767

Allosteric Inhibitor
The compound is anchored in the
allosteric site through; four hydrogen
bonds with Asp563, a hydrogen bond with
His617 and two CH-pi interactions with
Arg616 and Ala767

Sildenafil is stabilized in the active site of the PDE5 through (a) a bidentate hydrogen
bond with the amide group of Gln817, (b) hydrophobic interactions of the pyrazolopy-
rimidinone core with the side chains of Val782, Leu785, Tyr612, and Phe820, including
a face-to-face pi–pi interaction with the phenyl ring of Phe820. In addition, the N2 of
the pyrazole forms water-mediated interactions with the Zn+2 in the M site and the side
chain of Tyr612. Moreover, the ethoxyphenyl group of sildenafil fits into the Q2 pocket,
and finally, the methylpiperazine group of sildenafil is embedded in the L-region [282].
Vardenafil shows a very similar binding mode to sildenafil where no extra interactions
are observed for the ethylpiperazine of vardenafil in comparison to the methylpiperazine
moiety of sildenafil [282].

The binding mode of tadalafil shows some similarities to that of sildenafil, where
the beta-carboline core of tadalafil forms CH-pi interactions with Phe820 and Val782, as
well as hydrophobic interactions with Val782 and Tyr612. Moreover, the benzodioxole
moiety resides in the Q2 pocket, similar to the ethoxyphenyl group of sildenafil, showing
interactions with the residues lining the pocket (mainly Phe786 and Leu804). However,
three major differences could be highlighted between the binding modes of sildenafil and
tadalafil: (a) tadalafil binds to the conserved Gln817 residue via a monodentate hydrogen
bond; (b) tadalafil shows no interactions with the M site; (c) tadalafil shows no interactions
with the L-region [241,282].
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7.2. The Evo Pocket

Zhang et al. identified a novel site for the binding within the catalytic domain of
PDE5 other than the competitive binding site targeted by sildenafil, vardenafil and tadalafil,
designated as the EVO pocket. The EVO pocket is located at the back of the active site and
is isolated from it by Tyr612, His 613, His617, and Leu781. It is composed of a hydrophobic
wall (Phe564, Ile778, Leu781, and Tyr612), a polar wall (Asp563, Arg616, and Asn620), and
a polar bottom (Asp764 and His617) [260].

Compound 46 reported by Zhang et al. as a potent allosteric inhibitor for PDE5 with
an IC50 of 0.035 µM was co-crystallized with the PDE5 enzyme (PDB ID: 6VIB), and it was
shown to be anchored in the EVO pocket via (i) three H-bonds with the side chains of
Asp563, Asn614, and His617, (ii) a water-mediated H-bond with Ala767 and Asp764, in
addition to (iii) numerous van der Waals interactions with residues Ile778, Leu781, and
Phe564 (Table 1) [260].

8. Recent Update on Clinical Trials Involving PDE5 Inhibitors

A plethora of preclinical and clinical studies were conducted over the past 20 years
to evaluate the role of PDE5-Is either as a single treatment or in combination therapy for
various FDA-approved or emerging clinical conditions. These studies have been extensively
discussed in several previous reviews [17,23,76,122,123,283–287]; thus, we herein present
an update of the clinical trials status of PDE5-Is in the past five years (summarized in
Table 2). Focus was mainly directed to registered trials in ClinicalTrials.gov (accessed on
1 August 2023) that are complete with published results. Moreover, a summary of clinical
trials that are currently open (recruiting or soon to commence recruitment) or ongoing is
presented in Table S1 (Supplementary Materials), providing a comprehensive overview
of the current status of drug discovery efforts involving PDE5 as a therapeutic target. It
is worth noting that current clinical trials assessing PDE5-Is in CVS diseases are mainly
focused on right ventricular dysfunction, congenital heart disease, or cystic fibrosis, so
further trials are yet needed to explore the efficacy of PDE5-Is on cardiac outcomes in
myocardial infarction, coronary artery disease, heart failure, and ventricular arrhythmia.
Similarly, the potential utility of PDE5-Is as reno-protective agents in AD or in non-ED
urological diseases requires further support by carefully designed dose-dependent and
time-course animal and clinical studies. On the other hand, a plausible number of ongoing
trials are investigating the effects of PDE5-Is in unconventional clinical conditions, such
as obesity, retinitis, scleroderma, liver fibrosis, depression, Duchenne muscular dystrophy
and fetal hypoxia Table S1 (Supplementary Materials). Accordingly, revealing novel clinical
applications for PDE5-Is could be anticipated in the near future.

Table 2. Recent clinical trials investigating the effects of PDE5 inhibitors in various diseases.

Identifier Phase Intervention No. of Subjects Targeted Disease Main Finding(s) Ref.

NCT02277132 II/III Sildenafil 25 mg
TID vs. placebo

216
(108 sildenafil
and 108 placebo)

Severe early-onset
fetal growth
restriction in pregnant
women

Antenatal maternal sildenafil
administration did not reduce the risk
of perinatal mortality or major
neonatal morbidity. The trial was
terminated due to increased risk of
neonatal pulmonary hypertension.

[288]

NCT02951429 II Pirfenidone
801 mg TID +
20 mg TID
sildenafil or
placebo

177
(88 sildenafil and
89 placebo)

Advanced
idiopathic pulmonary
fibrosis and risk of
pulmonary hyperten-
sion

No difference in the proportion of
patients with disease progression over
52 weeks between the sildenafil and
placebo groups.
Similar treatment-emergent adverse
events and/or mortality were reported
in patients in both groups.

[289]

ClinicalTrials.gov
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Table 2. Cont.

Identifier Phase Intervention No. of Subjects Targeted Disease Main Finding(s) Ref.

NCT01178073 III Tadalafil +
ambrisentan
(COMB) vs.
monotherapy of
either agent
(MONO)

216
(117 COMB and
99 MONO)

Connective tissue
disease-associated
pulmonary
arterial hypertension
and
systemic
sclerosis-pulmonary
arterial hypertension

The risk of clinical failure was lower
with COMB vs. MONO (risk
reduction: CTD-PAH 51.7%, SSc-PAH
53.7%), particularly in patients
with haemodynamic parameters
characteristic of typical PAH without
signs of left heart disease and/or
restrictive lung disease at baseline.

[290]

NCT03238365 Early
I

Nivolumab
240 mg IV on
days 1 and 15
followed by
surgery on day 28
+ tadalafil
10 mg orally once
daily for 4 weeks
or placebo

50 Resectable Head and
Neck Squamous Cell
Carcinoma

After 4 weeks of treatment,
preoperative nivolumab and tadalafil
combination was found safe and more
than 50% of the patients showed at
least 20% treatment response.
Posttreatment specimens showed
augmentation of the immune
microenvironment (B- and natural
killer cell gene sets in the tumor and
effector T cells in the periphery) with
the addition of tadalafil.

[291]

NCT01553721 II Udenafil 50 mg
BID vs. placebo

63 Pulmonary Arterial
Hypertension

Udenafil improves exercise capacity
among the patients with a history of
endothelin receptor antagonist therapy.
There were no significant differences
in the Borg dyspnea score and time to
clinical worsening between groups.

[292]

NCT04489446 I/II Sildenafil 25 mg
orally TID for
seven days vs.
placebo

40
(20 sildenafil and
20 placebo)

COVID-19 in patients
showing perfusion
abnormalities

Sildenafil led to significantly shorter
median length of hospital stay than the
placebo group (9 IQR 7–12 days vs. 12
IQR 9–21 days, p = 0.04). No
statistically significant differences
were found in the oxygenation
parameters (PaO2/FiO2 ratios and A-a
gradients).

[293]

NCT01970176 I/II 20 mg tadalafil vs.
placebo, repeated
after 12 weeks

20
(13 tadalafil and 7
placebo)

Pre-Heart Failure Long-term tadalafil did not improve
glomerular filtration rate (median
increase of 2.0 mL/min in the tadalafil
group versus 13.5 mL/min in the
placebo group; p = 0.54). There was no
difference in urinary sodium or cGMP
excretion with tadalafil following
short-term saline loading.

[294]

NCT01484431 I/II Tadalafil 2.5, 10,
20, or 40 mg
orally, once daily

19 Pediatric Patients
with Pulmonary
Arterial Hypertension

Plasma tadalafil concentrations in
pediatric patients aged 2 to <18 years
were similar to those in adults at
similar doses in a previous trial and
confirmed that dosing of 40 mg once
daily in pediatric patients with a
bodyweight ≥ 40 kg, and a dose of
20 mg once daily in patients with a
body weight < 40 kg and aged ≥ 2
years are suitable for phase III
evaluation.

[295]

NCT02832570 III Sildenafil 100 mg
oral single dose

14 Arterial claudication Maximal walking time was
significantly improved during the
sildenafil period compared with the
placebo period (300 s [95% CI 172
s–428 s] vs. 402 s [95% CI 274 s–529 s] p
< 0.01). Sildenafil had no significant
effect on pain-free walking time or
skin tissue oxygenation during
exercise.

[296]
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Table 2. Cont.

Identifier Phase Intervention No. of Subjects Targeted Disease Main Finding(s) Ref.

NCT03049540 III Tadalafil 20 mg
once daily vs.
placebo

100 Congenital heart
disease with systemic
right ventricles

Right ventricular systolic function,
exercise capacity and neuro-hormonal
activation remained stable over a
3-year follow-up period where no
significant treatment effect of tadalafil
was observed.

[297]

NCT03566914 II Tadalafil 10 mg
daily vs. placebo
for 12 weeks

140
(70 tadalafil and
70 placebo)

Erectile dysfunction
in patients with
cirrhosis

More patients in tadalafil group
achieved > 5 points increase in the
erectile function domain of the
International Index of Erectile
Function when compared with the
placebo group [44(62.9%) vs. 21(30%),
p < 0.001]. Patients receiving
tadalafil had significantly more decline
in the scores of GAD-7 (assessing
anxiety) and PHQ-9 (assessing
depression).

[298]

NCT02741115 III Udenafil 87.5 mg
oral BID

386
(191 udenafil and
195 placebo)

Single ventricle heart
disease

Udenafil group had significantly
improved between baseline and 26
weeks visits compared to placebo
group in myocardial performance
index (p = 0.03), atrioventricular valve
inflow peak E (p = 0.009), and A
velocities (p = 0.034), and annular
Doppler tissue imaging-derived peak
e’ velocity (p = 0.008). There were no
significant differences in change in
single ventricle size, systolic function,
atrioventricular valve regurgitation
severity, or mean fenestration gradient.

[299]

NCT04283240 Early
I

Sildenafil 20 mg
single oral dose
vs. placebo as
add-on to
conventional
therapy

20
(10 sildenafil and
10 placebo)

Acute
intermediate-high risk
pulmonary embolism

Sildenafil did not improve cardiac
index compared to baseline (0.02 ±
0.36 l/min/m2, p = 0.89) and neither
did placebo (0.00 ± 0.34 l/min/m2, p =
0.97). Sildenafil lowered mean arterial
blood pressure (−19 ± 10 mmHg, p <
0.001) which was not observed in the
placebo group (0 ± 9 mmHg, p = 0.97).

[300]

NCT01720524 III Sildenafil IV
(loading:
0.1 mg/kg, over
30 min;
maintenance:
0.03 mg/kg/h) vs.
placebo, for 14
days

59
(29 sildenafil and
30 placebo)

Persistent pul-
monary hypertension
of newborn (receiving
iNO)

Treatment failure rates did not differ
with sildenafil (27.6%) vs. placebo
(20.0%; p = 0.4935). Mean time on iNO
was not different with sildenafil (4.1
days) vs. placebo (4.1 days; p = 0.9850).

[301]

NCT02057458 II Sildenafil 20 mg
TID for 4 weeks

19 Cystic fibrosis 4 weeks of sildenafil improved skeletal
muscle O2 utilization during exercise
to similar values observed in healthy
individuals.

[302]

9. Conclusions

The evidence presented in this review underscores the pivotal role of PDE5-Is as
disease-modifying agents, not only in the treatment of erectile dysfunction and pul-
monary hypertension but also in the treatment of a wide array of other diseases, ranging
from cognitive impairments to immune disorders and beyond. Most of the emerging uses
of PDE5-Is arise from their abilities to modulate the level of the universal cellular secondary
messenger cGMP with its implication in various pathological and physiological conditions.
This is expected to provide new approved and off-label uses for this class of medications.

The primary challenge in the development of PDE5-Is as potential drug candidates
isn’t necessarily their potency. Instead, various other obstacles impede this progress. These
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include insufficient specificity for PDE5 compared to other PDEs, unfavorable pharmacoki-
netics, limited in vivo effectiveness, and a lack of well-defined safety profiles for many of
the inhibitors reported.

The recent advancements in reporting novel chemical scaffolds as allosteric PDE5-Is
with high potency and isozyme selectivity represent an exciting avenue for further research
and optimization of their therapeutic benefits. Regardless of the limitations, the balance
between benefits and risks highly favors the advantageous utilization of PDE5-Is, and
their use continues to rise. Although non-selective targeting of isozymes could result in
undesired side effects, the existence of PDE5-Is with dual impacts on factors contributing
to the same pathological condition, particularly multi-factorial diseases, could potentially
offer an advantage over the traditional single target-one disease approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16091266/s1, Table S1: Current on-going clinical trials investi-
gating the effects of PDE5 inhibitors in various diseases.
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Abbreviations

ABC: ATP-binding cassette; Ach: Acetylcholine; AChE: Acetylcholine esterase; AD:
Alzheimer’s disease; Ala: Alanine; AMP: Adenosine monophosphate; AMPK: AMP-
activated protein kinase; APP: Amyloid precursor protein; Arg-1: Arginase 1; ASCs:
Adipose stem cells; ATP: Adenosine triphosphate; BBB: Blood brain barrier; Bcl-2: B-cell
lymphoma 2; Bcl-xL: B-cell lymphoma extra-large; BDNF: Brain-derived neurotrophic fac-
tor; BID: twice a day; BPH: Benign prostatic hyperplasia; BTB: Blood tumor barrier; cAMP:
Cyclic adenosine monophosphate; CDK5: Cyclin-dependent kinase 5; CF: Cystic fibrosis;
CFTR: CF transmembrane conductance regulator; cGMP: Cyclic guanosine monophosphate;
CNS: Central nervous system; COVID-19: Coronavirus disease of 2019; COX: Cyclooxyge-
nase; CREB: cAMP response element-binding element; CRF-R1: Corticotropin-releasing
factor receptor 1; CRPC: Castration-resistant prostate cancer; CVS: Cardiovascular sys-
tem; DNA: Deoxyribonucleic acid; dox: Doxorubicin; EC30: 30% of maximal effective
concentration; EC50: Half maximal effective concentration; ED: Erectile dysfunction; EMEA:
European Medicines Agency; EPC: Endothelial progenitor cell; ER: Endoplasmic reticulum;
ERK: Extracellular signal-regulated kinase; FDA: Food and Drug Administration; GABA:
Gamma-aminobutyric acid; Gln: Glutamine; GLUT1: Glucose transporter 1; GRP: Glucose
regulated protein; GSK3β: Glycogen synthase kinase 3β; HDAC: Histone deacetylase;
HEK293: Human embryonic kidney cells 293; HER2: Human epidermal growth factor
receptor 2; HF: Heart failure; Hgf: Hepatocyte growth factor; HIF-1α: Hypoxia-inducible
factor 1-alpha; His: Histidine; HR: Homologous recombination; HSP90: Heat shock protein
90; I/R: Ischemic and reperfusion; IC50: Half maximal inhibitory concentration; IPPS: Inter-
national Prostate Symptom Score; JNK: Jun N-terminal kinase; Kg: Kilogram; LC50: Half
maximal lethal concentration; Leu: Leucine; LUTS: Lower urinary tract symptoms; LV: Left
ventricular; MAPK: Mitogen-activated protein kinase; MDR: Multidrug resistance; MDSCs:
Myeloid-derived suppressor cells; MEKK1: Mitogen-activated protein kinase kinase kinase
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1; Met: Methionine; MetS: Metabolic syndrome; mg: Milligrams; MI: Myocardial infraction;
mRNA: Messenger ribonucleic acid; MS: Multiple sclerosis; MTDLs: Multitarget-directed
ligands; mTOR: Mammalian target of rapamycin; NFAT: Nuclear factor of activated T-cells;
NFκB: Nuclear factor-κB; NHEJ: Non-homologous end joining; NIHL: Noise-induced hear-
ing loss; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptors; NO:
Nitric oxide; NOS: Nitric oxide synthase; NSAID: Non-steroidal anti-inflammatory drug;
NSC: Neural stem cells; PAH: Pulmonary arterial hypertension; PAMPA: Parallel Artificial
Membrane Permeability Assay; PARP: Poly (ADP-ribose) polymerase; PBMCs: Periph-
eral blood mononuclear cells; PBS: Phosphate buffer saline; PCSCs: PC3-derived cancer
stem cells; PDE: Phosphodiesterase; PDE5-Is: Phosphodiesterase 5 inhibitors; PGC-1α:
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha: Phe: Phenylalanine;
PI3K: Phosphoinositide 3-kinase; PK: Pharmacokinetic; PKC: Protein kinase C; PKG: Pro-
tein kinase G; PS1: Presenilin-1; R&D: Research and development; ROS: Reactive oxygen
species; SAR: Structure activity relationship; sGC: Soluble guanylyl cyclase; SI: Selectivity
index; Sirt3: Sirtuin-3; SLE: Systemic lupus erythematosus; SMR: Smooth muscle relaxation;
SOSA: Selective optimization of side activities; SS: Sulindac sulfide; SSc: Scleroderma;
SSRIs: Selective serotonin reuptake inhibitors; TAZ: Tafazzin; TID: three times daily; TGF-
β1: Transforming growth factor beta 1; THβC: Tetrahydro-beta-carbolines; TNF: Tumor
necrosis factor; Tyr: Tyrosine; Val: Valine; VEGFA: Vascular endothelial growth factor A;
Vegfa: Vascular endothelial growth factor; ZBG: Zinc binding group.
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long-term sildenafil administration on rat inner ear. Am. J. Otolaryngol. 2012, 33, 667–672. [CrossRef] [PubMed]

217. Khan, A.S.; Sheikh, Z.; Khan, S.; Dwivedi, R.; Benjamin, E. Viagra deafness—Sensorineural hearing loss and phosphodiesterase-5
inhibitors. Laryngoscope 2011, 121, 1049–1054. [CrossRef]

218. Maddox, P.T.; Saunders, J.; Chandrasekhar, S.S. Sudden hearing loss from PDE-5 inhibitors: A possible cellular stress etiology.
Laryngoscope 2009, 119, 1586–1589. [CrossRef]

219. Broderick, G.A.; Kadioglu, A.; Bivalacqua, T.J.; Ghanem, H.; Nehra, A.; Shamloul, R. Priapism: Pathogenesis, epidemiology, and
management. J. Sex. Med. 2010, 7, 476–500. [CrossRef]

220. Nehra, A.; Jackson, G.; Miner, M.; Billups, K.L.; Burnett, A.L.; Buvat, J.; Carson, C.C.; Cunningham, G.R.; Ganz, P.; Goldstein, I.
The Princeton III Consensus recommendations for the management of erectile dysfunction and cardiovascular disease. Mayo Clin.
Proc. 2012, 87, 766–778. [CrossRef]
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