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Abstract: The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs)
that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system
(ECS) plays a critical role in the regulation of several physiological states and a wide range of
diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor
(CB2R) have gained prominence. Particular attention has been given to selective agonists targeting
the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors.
The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as
inflammatory disorders and immunological conditions, as well as pain management and cancer
treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for
investigating the interactions between ligands and proteins at an exceptional level of spatial and
temporal precision. In this review, we aim to examine the progress made in the development of
fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful
clinical translation of CB2R-based therapies.
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1. Introduction

The G protein-coupled receptors (GPCRs) are a class of over 700 proteins that include
seven transmembrane domains and are produced on the cellular membrane [1]. These
cellular components are responsible for transmitting extracellular signals originating from
many stimuli, including light, peptide hormones, and neurotransmitters [2,3]. This trans-
mission enables intracellular second messenger systems to activate, facilitating cellular
responses to the surrounding environment. G protein-coupled receptors (GPCRs) play a
crucial role in the control of several physiological processes, including vision, behavior,
mood, energy balance, immunology, and inflammation [4–6].

In recent years, research into the endocannabinoid system (ECS) has expanded signifi-
cantly among the scientific community. The endocannabinoid system has been investigated
for its potential role in a variety of pathophysiological disorders due to its wide range of
regulatory effects [7,8]. The cannabinoid receptors, their endogenous lipid ligands (endo-
cannabinoids), and the machinery for their manufacture and metabolism are all parts of
the endocannabinoid system. The cannabinoid receptors CB1 and CB2 have been exten-
sively studied and recognized as prominent members of the cannabinoid receptor family.
These receptors are classified as G protein-coupled receptors (GPCRs), and their primary
function involves coupling with inhibitory G proteins. The primary interaction of CB1 and
CB2 receptors is coupling to inhibitory G proteins (Gi/Go) and activation of the signaling
pathways associated with Gi/Go [9]. These receptors are activated via both exogenous and
endogenous ligands. Apart from being the molecular targets of the exogenous psychoac-
tive component of Cannabis sativa, ∆9-tetrahydrocannabinol (THC), the endocannabinoid
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system is also influenced by naturally occurring endocannabinoids, such as anandamide
(AEA) and 2-arachindonyl glycerol (AEA). The cannabinoid receptors CB1 and CB2 play
an important role in the physiological control of numerous central and peripheral activi-
ties [10]. The CB1 receptor comprises a total of 472 amino acids, is highly expressed in the
central nervous system, and is particularly abundant in various brain regions, including
the hippocampus, cerebellum, cortex, and basal ganglia [11]. Additionally, CB1 receptors
are found in peripheral tissues such as the liver, lung, pancreas, and ileum [12].

The CB2 protein encodes the CNR2 gene (GeneID1269) located in 1p36.11.; it consists
of a total of 360 amino acids [13]. CB2R has been increasingly reported in brain pathologies,
but its highest concentration is found in immune system cells [14,15]. These receptors
play a crucial role in the immunomodulatory effects induced via cannabinoids. The two
cannabinoid receptors exhibited a 44% level of homology and a 68% degree of sequence
similarity inside their transmembrane regions [16].

There are significant variations across species, as demonstrated by the approximately
80% similarity in amino acid sequences between humans and rats. Two isoforms of CB2
have been discovered in humans, namely CB2A and CB2B. CB2A is primarily found in the
testis and is also expressed, albeit to a lesser extent, in certain regions of the brain, such as the
amygdala, caudate, putamen, nucleus accumbens, cortex, hippocampus, and cerebellum.
On the other hand, CB2B is the main isoform found in the spleen and leukocytes, but it is
also present in other peripheral tissues [13,17].

Although CB1R and CB2R have enormous therapeutic promise, very few medicines
that target them are currently available on the market. The similarities between the active-
state orthosteric ligand-binding pockets of CB1R and CB2R make it challenging to develop
selective ligands based on their activation [18–20]. Despite their importance, very little is
known about the signaling processes involved or the patterns of expression in different
tissues. Therefore, a comprehensive knowledge of CB1R and CB2R tissue expressions and
their signaling pathways is critical to avoid off-target or undesired psychotropic effects.
Hence, subtype-selective probes are the most effective means of addressing these prob-
lems. CB2R agonists have shown vast potential, offering directions for future selective
medication development [17,21,22]. Understanding ligand–protein interactions, target
engagement, and the mechanism of action is crucial to the development of novel medica-
tions. GPCR expression in endogenous tissue under physiological conditions is limited,
making it challenging to determine target interactions. The adaptability of proteins when
activated emphasizes this even further. Biomarkers are a valuable tool for determining
target engagement in vivo. Although it has been hypothesized that alterations in the ECS
might be used as a biomarker for psychiatry, there are presently no biomarkers for CB2R,
which explains the necessity of specialized imaging techniques with minimal off-target
interactions [23]. The imaging of CB2R in live cells remains underexplored due to its limited
expression in healthy tissue and the lack of robust pharmacological techniques [24].

Fluorescent compounds have allowed for significant advances in the visualization of
proteins, receptors, and ion channels within and outside of cells. Using these molecules,
researchers have gained insight into the subcellular localization and, in certain cases,
dynamic mobility of a number of membrane-bound proteins. Typically, antibodies or the
overexpression of a fluorescent protein linked to a target protein are employed to mark
membrane-bound proteins [25].

Molecular probes that have been fluorescently tagged have found widespread use
in both in vitro and in vivo settings. Finding an area where chemical modifications may
be made without affecting probe affinity is the primary difficulty in designing fluorescent
probes. Traditional antibodies are unable to see intracellular protein targets, but small-
molecule-derived probes are capable due to the incorporation of cell-permeable fluorescent
dyes. By using them, we may learn about the molecular processes behind pharmacological
responses alongside where and how frequently targets are expressed. To better understand
how ligands interact with their targets, methods such as fluorescent confocal microscopy,
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flow cytometry, and time-resolved Förster resonance energy transfer (TR-FRET) have been
employed [24].

Recent efforts to investigate CB2R expression at the tissue level have relied on positron
emission tomography (PET) tracers; however, this approach lacks the necessary cellular
resolution. PET probes need a reduced nanomolar affinity in order to be suitable for imaging
applications, sometimes leading to false-positive outcomes [26,27] Fluorescent imaging
probes, on the other hand, have recently emerged as powerful instruments for studying
the subcellular localization, structure, dynamics, and function of proteins and GPCRs in
live cells. Such probes also have the potential to provide high-throughput data on binding
kinetics and equilibrium without the use of radioactive materials. Fluorescence is often used
in the investigation of small molecule–target interactions, facilitated via techniques such
as fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy
transfer (BRET), which are widely utilized in this field. Both the bioluminescence resonance
energy transfer (BRET) and fluorescence resonance energy transfer (FRET) techniques
have been used in the viewing of various G protein-coupled receptors (GPCRs), therefore
illustrating the suitability of both approaches for ligand–protein imaging. As a result, the
precise evaluation of CB2R pharmacology in live cells is still hampered by the limited robust
antibodies, the reversible high-affinity probe with desirable fluorescence features, and the
requisite specificity for CB2R. Phytocannabinoid-derived CB2R ligands, which are typically
used as starting points for probe development, present significant challenges due to their
highly lipophilic nature. When combined with the usage of highly lipophilic dyes, this
may have a synergistic effect that reduces the dyes’ overall characteristics and makes them
less useful for a wide range of applications. Furthermore, the fluorescent probe should not
have any interspecies variations between rodent and human CB2Rs to provide excellent
translatability of preclinical pharmacological animal data to the clinic and perhaps deploy
a CB2R fluorescence probe for dosage selection in humans [27–31].

2. CB2 Receptor: Molecular Characterization and Spatial Distribution

Cannabinoids have an influence on almost all physiological systems in the human body.
Unsurprisingly, extensive research has shown the presence of CB receptors throughout
the human body. The first categorization assigned reactions inside the central nervous
system (CNS) to the CB1 receptor, whereas those occurring in the peripheral regions were
attributed to the CB2 receptor. As previously mentioned, the CB2 receptor was first cloned
from a human leukocyte cell line, and it has been shown that the CB2 receptor is expressed
in peripheral blood leukocytes to variable degrees [10,32].

The most prominent manifestation is seen on B-cells, with natural killer (NK) cells
exhibiting a similar level of expression in close proximity. Myeloid cells have moderate
levels of receptor expression, whereas resting T cell subsets show low levels of receptor
expression. It is not unexpected that certain components of the immune system, including
the tonsils, spleen, thymus, and lymph nodes, have significantly elevated levels of CB2
receptor mRNA expression. A comprehensive investigation has provided more evidence
that the CB2 receptor is present in distinct areas of the brain, spinal cord, and dorsal root
ganglia, as well as the gastrointestinal (GI) tract, liver, bone, and reproductive systems
(Figure 1) [33,34].

The comprehensive understanding of the CB2 receptor’s existence and function inside
the central nervous system remains inadequate. Initially, there was a prevailing belief that
the expression of CB2 receptors was absent in nonimmune cells of the central nervous
system. This belief stemmed from the findings of Munro et al., who, during their cloning of
the receptor, failed to locate CB2 receptor mRNA in any region of the brain [10]. However,
many studies have recently shown that CB2R plays a functionally relevant role in the
central nervous system and various pathologies associated with the brain [34–37].
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Figure 1. CB2 receptor expression in human physiological system.

The CB2 receptors located in peripheral tissues and cells, including those of the
immune system, hematopoietic cells, bone, liver, peripheral nerve terminals, and ker-
atinocytes, play a crucial role in the suppression of cytokine/chemokine secretion, as well
as the migration of neutrophils and macrophages. Additionally, they contribute to the
deceleration of persistent inflammatory mechanisms and the regulation of chronic pain [38].
The limited dependability of the antibodies used in immunochemistry investigations to
study CB2R receptor expression underscores the need for further investigation to enhance
our understanding of the participation of the CB2 receptor in the central nervous system
and neuroinflammation. Numerous CB2 ligands have been synthesized, and their receptor
function has been studied in detail (Figure 2); however, drugs solely targeting CB2 have
not yet made it to the clinic [16,17,22].

The therapeutic potential of CB2 and its role in various pathologies have been exten-
sively reviewed [17,21,39–42]. Our focus here is to review the imaging probes that were
developed to study CB2 expression and function, as well as to highlight challenges and
opportunities to guide future improvements.
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3. Fluorescent Probe Design Principles

Numerous CB2 agonists have been documented in the scientific literature, and an
in-depth investigation of patents revealed the existence of several CB2 receptor modulators
now undergoing clinical development at varying stages [22,43]. To study the brain CB2
receptors effectively, the ligand must demonstrate the capability to effectively penetrate the
blood–brain barrier, enabling it to exercise its intended effects on activated microglia [28].
Furthermore, for its effective clinical translation, it must undergo rigorous testing with the
right patient cohort [42].

The CB2 receptor has garnered significant interest as a promising candidate for the
noninvasive detection of neuroinflammation due to its reported upregulation in resident
microglial cells after cerebral ischemia, injury, and other neuroinflammatory disorders.
When creating small-molecule fluorescent ligands, it is essential to consider many parame-
ters. The successful interaction between the ligand and the fluorophore is crucial for both
specific binding to the desired target and the generation of a strong fluorescence signal,
enabling effective imaging of the receptor. The pharmacophore must possess high potency
and selectivity while also accommodating chemical functionalization by coupling to a linker
and fluorophore. Functionalization may be included in the system via chemical methods in
certain cases. The determination of spacer length should ideally be derived from an opti-
mization procedure. However, limited research is available that has provided a systematic
review of the length of the spacer used for the fluorescent probe being investigated [44,45].

Based on an extensive review of the existing literature, it is evident that spacers are
composed of a minimum of six atoms [46]. Extended linkers have been used to accom-
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modate larger fluorophores, such as near-infrared fluorophores (NIRF) or quantum dots
(QDs) [47]. The physicochemical parameters of the fluorescent probe may be influenced
by the chemical composition of the linker. Multiple investigations have posited that the
presence of elevated lipophilicity could play a role in the nonspecific binding of some
fluorescent probes [48,49].

The best selection of a fluorophore should prioritize characteristics such as high flu-
orescence intensity, photostability, and compatibility with the available microscope and
the specific system under investigation. Commonly used fluorophores for fluorescence
imaging include fluorescein, coumarin, dansyl, cyanine, rhodamine derivatives, and NBD,
as previously indicated. When selecting an appropriate fluorophore, it is crucial to ensure
that the excitation and emission wavelengths do not fall within the spectral range where
cells demonstrate significant amounts of autofluorescence and light scattering. It is essential
to exercise caution in order to prevent interference from pre-existing fluorescent signals
inside the target cells, including those associated with a GFP-tagged protein [50]. The
fluorescent ligand’s modular design approach, as previously described by Gazzi et al., en-
compassed three primary components: (i) a recognition element (pharmacophore) capable
of accommodating subsequent chemical functionalization while retaining its affinity and
selectivity towards the target; (ii) a suitable fluorescent dye; and (iii) a linker that serves
to separate these two functionalities. This enables the positioning of the dye in the extra-
cellular area, external to the receptor. The incorrect escape vector provided via the linker
attachment, when combined with a big and charged fluorescent dye that is typically larger
than the recognition element, results in a significant disruption of the interaction between
the receptor and the ligand and may even cause a total loss of binding affinity. Hence,
the careful identification of optimal linker attachment sites, together with the subsequent
optimization of linker length and composition, is of utmost importance in order to prevent
any adverse interactions with the receptor [25,51,52].

4. CB2R Targeting Fluorescent Probes

Even though CB2R expression is significantly increased in pathological conditions, no
particular drugs targeting receptors have been introduced to the market despite its obvious
relevance. This knowledge gap is largely due to a lack of understanding of receptor biology,
particularly in the context of tissue and disease. The problem is made worse by very low
expression levels in native cells, a dearth of authorized chemical probes, and a paucity of
tailored antibodies [53–56].

Given the aforementioned problems, researchers have been diligently endeavoring to
produce chemical tools that may address the unresolved questions in CB2R pharmacology.
This effort aims to optimize and facilitate the creation of effective medications targeting
CB2R. Previous literature exists in which authors have documented advancements in the
development of selective CB2R ligands that have been refined for use as pharmacologi-
cal and imaging instruments, such as positron emission tomography (PET), fluorescent,
photochromic, and covalent chemical probes [27].

These probes are expected to enhance our perception of the receptor’s activities and its
role in regulating the physiological processes and pathophysiological pathways associated
with various diseases. This, in turn, will contribute to the advancement of our imaging
techniques and knowledge of the receptor’s behavior. The focus of research has been on
enhancing the progress of developing specific fluorescent ligands for CB2R. This is because
the current techniques used to study CB2R, such as radioligands and antibodies, have
certain limitations [57].

Fluorescent ligands are powerful tools for visualizing receptor dynamics in living cells,
and they are compatible with methods like confocal microscopy, fluorescence resonance
energy transfer, and flow cytometry [29].

The use of the identified CB2R fluorescent ligands as imaging tools has been im-
peded in the past due to the presence of significant nonspecific binding at membranes.
The lipophilicity of cannabinoids and their pharmacophore makes it challenging to de-
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velop fluorescent ligands that are devoid of nonspecific binding. Despite these challenges,
researchers aim to strike an equilibrium between pharmacological selectivity and physic-
ochemical properties through linker modifications connecting the pharmacophore with
fluorescent dyes [58].

4.1. Fluorescent Indole Derivatives

Indoles have been extensively used as fluorescent ligands among the CB2 receptor
pharmacophores. This is mostly due to the presence of the indole moiety in many CB2R
reference ligands, including JWH-015 (1) and WIN 55, 212-2 (6). JWH-015 is a very potent
agonist of the cannabinoid receptor characterized by the presence of a naphthoylindole
scaffold (Figure 3). It has about 28 times more of an affinity for the CB2 receptor compared
to the CB1 receptor. The first development of fluorophores for cellular imaging was the
invention and synthesis of a molecule that incorporated the fluorescent dye nitrobenzo-
furazan (NBD), owing to its notable selectivity. The NBD fluorophore was conjugated to
the naphthalene moiety via a brief amide linkage in order to inhibit the formation of a
nonfluorescent molecule with PET activity. The affinity of CB2R of 7 was assessed using
a displacement test against [3H]-CP 55,940 in CHO cells that were engineered to express
CB2R. The novel compound NBD JWH-015 (7) exhibited a displacement rate of just 25%
at a concentration of 10 µM. Unfortunately, the generated probe exhibited a significant
decrease in CB2R affinity, exceeding a 250-fold reduction compared to the untagged ligand.
Consequently, its suitability as a selective CB2R fluorescence instrument was compromised.
Upon visualization using a confocal microscope, it was seen that the majority of the flu-
orescence was concentrated inside the cytoplasm. This localization may be attributed
to the compound’s lipophilic nature, which facilitated its quick absorption via the cells.
The compound’s precursors were discovered to retain CB2R activity; however, this aspect
was not further investigated. Instead, subsequent studies have shown that indole com-
pounds mostly exhibit tolerance for fluorophores at position C-7 despite their antagonistic
properties [59].
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The reduced affinity prompted the use of a powerful CB2R antagonist scaffold, namely
the 6-methoxy-N-pentyl isatin acylhydrazone, which was then linked with the NBD dye
(Figure 3) [60]. The synthesis of NMP6 (8) was carried out through a two-step process,
wherein NBD was used to bind to the sizable hydrophobic pocket, hence potentially enhanc-
ing CB2R affinity. In the competitive binding experiment conducted on Chinese hamster
ovary (CHO-K1) cells, NMP6 (8) exhibited a Ki value of 387 nM when tested against
[3H]-CP 55,940. The excitation and emission wavelengths of NMP6 (8) in acetonitrile were
measured to be 470 nm and 530 nm, respectively. NMP6 continued to exhibit nanomolar
affinity and good selectivity for CB2R, therefore prompting further evaluation in CB2R
cellular imaging experiments. NMP6 (8) demonstrated its ability to detect CB2R via the use
of confocal microscopy in nontransfected cells and cytometric analysis in B lymphocytes.
The binding of CB2R was seen to be impeded in competition experiments or when preincu-
bated with GW842166X, a selective CB2R agonist. These findings provide evidence of the
selectivity of NMP6 (8) towards CB2R. Although the scaffold has shown a consistent affinity
for CB2R, there has been a lack of exploration about the use of other analogs incorporating
the isatin scaffold for CB imaging [61].

The functionalization of the other locations on the indole ring was also examined
in order to produce fluorescent ligands. The results of N1 functionalization experiments
indicate that linkers longer than a hexamethylene chain are not well tolerated. However,
further investigation into the C5-7 positions using various linkers has yielded promising
compounds. Notably, a consistent pattern has emerged: C5-substituted indoles exhibit ago-
nistic activity, while the C7-substituted derivatives demonstrate inverse agonistic activity as
observed in a cAMP assay. The use of positions 5 and 7 of the indole moieties was employed
for the purpose of the prospective attachment of linkers and fluorophores. Following a
structure–activity relationship (SAR) investigation of the indole scaffold, Cooper et al.
discovered ligands for the CB2R receptor that exhibited a nanomolar affinity [61]. Notably,
these ligands had bulky substituents at either position 1 or 3 of the indole scaffold, such
as ethyl morpholine, methoxyphenyl, or methyl tetrahydropyran. However, the binding
between CB2R and the linkers was significantly impeded when decorated with BODIPY
630/650-X fluorescent tags in both places. Regrettably, the conjugation of both these indole
derivatives with the fluorophore BODIPY 630/650-X in either the C5 or C7 positions via
alkylene, PEG, or dipeptide linkers, respectively, yielded fluorescent ligands lacking an
affinity for CB2R (Ki > 10,000 nM). This outcome indicates that only smaller substituents are
permissible at these specific locations. In light of the commitments made via the C5 or C7
functionalized indole derivatives, it is possible to explore the same sites using fluorescent
tags other than BODIPY.

4.2. Pyrazole-Based Fluorescent Probes

The subclass of fluorescent CB2R ligands is derived from various fluorophore en-
hancements included in the biarylpyrazole framework of SR 144528 (5). In 1998, Rinaldi-
Carmona et al. developed the first selective CB2R antagonist with a high affinity (Ki
CB2R = 0.6 nM), which was later shown to act as an inverse agonist [62].

Nevertheless, although it possesses a pharmacological profile that is very desirable, it
is deficient in functional groups that would facilitate convenient fluorophore conjugation.
In the year 2008, the compound MBC94 (9) was first produced, whereby a benzyl bromide
group was substituted for a methyl group to enhance its coupling capabilities. The com-
pound has a terminal amino group that may be readily conjugated to imaging scaffolds,
resulting in a modest decrease in affinity by a factor of 15 (Ki = 15 nM) [63,64].

The coupling of the near-infrared (NIR) dye IRDye 800CW NHS ester to MBC94 (9)
resulted in the formation of NIRmbc94 (10). This compound represents the first instance of
a CB2R selective probe and is among the earliest fluorescent ligands for CB2R, exhibiting a
high affinity in the nanomolar range (Ki = 260 nM). The probe has favorable photophysical
characteristics, demonstrating a peak absorbance at 779 nm and emitting light at 797 nm
when placed in a water medium. The NIR microscopy studies exhibited favorable imaging
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capabilities, as shown by a signal-to-noise ratio (S/N) of 1.6. Moreover, it demonstrated
an intriguing pharmacological profile due to its absence of nonspecific binding and its
excellent selectivity in competitive binding studies with SR144528 as the displacing ligand.

CB2-expressing DBT cells derived from a mouse astrocytoma cell line were labeled
with NIR-mbc94 (10), but no signal was seen when the NIR dye was incubated in the cells.
The fluorescence signal exhibited a decrease in intensity when cells lacking CB2R expression
were subjected to incubation with an equivalent dose. All the experimental results provided
support for the possible use of NIR-mbc94 (10) in conducting the high-throughput screening
(HTS) of chemical libraries including compounds that bind to CB2R. An initial evaluation
of chemicals was conducted, confirming the validity of this theory and indicating potential
new discoveries. Nevertheless, there are several drawbacks associated with NIR-mbc94
(10), mostly stemming from the use of its fluorophore, IRDye 800CW. This particular dye is
known for its high cost and notable stability concerns. Zhang et al. successfully addressed
these challenges by selecting NIR760 as a novel probe for conjugation with MBC-94 (9) [65].

The recently developed fluorophore, NIR760, has comparable characteristics to IR
Dye 800CW, although with a different linker location relative to the pharmacophore. The
absorbance of the novel fluorescent probe is measured at a wavelength of 766 nm, while its
fluorescence emission occurs at 785 nm, exhibiting a quantum yield of 15.2%. The recently
developed compound NIR760-mbc94 (11) exhibited a high level of affinity in the nanomolar
range, as seen in its dissociation constant (Kd) of 26.9 nM. Additionally, it demonstrated
a considerable degree of specific binding, as indicated by a 40% drop in fluorescence
intensity following a 30-min pretreatment with 10 µM of SR144528, as depicted in Figure 4.
Significantly, the CB2R fluorescent probe NIR760-mbc94 (11) was used as the first agent
for in vivo testing in a CB2-mid DBT murine tumor model with the aim of evaluating its
viability as a tool for cancer imaging. The maximal absorption of the tumor was seen
24 h after intravenous injection, but NIR760-mbc94 (11) exhibited the highest ratio of the
tumor area to the normal area (T/N) after 72 h, progressively rising over time. This finding
provides evidence of a prolonged half-life. The fluorescent CB2R probe NIR760-mbc94 (11)
was subjected to testing for inflammatory imaging both in vitro and in vivo. The novel
fluorescent ligand was used in the in vivo tests to investigate an inflammatory mouse
model generated via a complete Freund’s adjuvant (CFA). An evaluation of specific binding
at the cellular level was conducted on ordinary RAW-264.7 (mouse macrophages) and
LPS-activated cell lines. The antagonist SR144528 was used, resulting in decreases in the
fluorescence signal of 36% in ordinary cells and 23% in activated cells. The use of in vivo
imaging in a mouse inflammation model revealed a progressive enhancement in image
contrast over time, specifically in the fluorescence identified in an inflamed paw compared
to an uninflamed paw. This finding serves to validate the previously observed metabolic
stability and indicates a peak blockage of 30% occurring at the 36-h mark. The use of
immunofluorescence labeling on frozen slices of paw tissue confirmed prior findings while
also reiterating the modest level of specific binding shown by NIRmbc94 (10) [66].

The authors propose that the net negative charge of the NIR760 probe may be re-
sponsible for certain limitations. To address this issue, they have made advancements by
creating a zwitterionic CB2R NIR probe named ZW760-mbc94 (12). This new probe retains
a similar structure to NIR760 but substitutes alkyl sulfonic acid groups with trimethyl
amine cations. The compound ZW760-mbc94 has a strong binding affinity to the CB2R
receptor with a measured dissociation constant (Kd) of 53.9 nanomolar (nM). As antici-
pated, the introduction of ZW760-mbc94 (12) to CB2-mid DBT cells was hindered by about
50% when 4-quinolone-3-carboxamide (4Q3C), a specific CB2R blocking agent, was used.
This inhibition was greater than the earlier outcome seen with NIR760-mbc94. In an ex-
perimental study using an in vivo mouse model, CB2-mid DBT tumor cells were injected
subcutaneously. The fluorescence intensity of ZW760-mbc94 (12) was shown to be greater
in comparison to animals that were pre-injected with 4Q3C to block certain receptors.
Notably, ZW760-mbc94 (12) exhibited significant absorption in the liver and kidneys, which
are organs involved in metabolism. In the ex vivo biodistribution research, a discernible
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inhibitory impact of around 47% was only found in the cancer cells. This finding suggests
that ZW760-mbc94 (12), in comparison to its precursor chemical NIR760-mbc94 (11), has
enhanced and targeted binding capabilities at both the cellular and animal levels [67].

The previously mentioned research team successfully developed a novel photother-
apeutic alternative, known as IR700DX-mbc94 (13), using the near-infrared (NIR) probe
IR700DX. This innovative approach shows promise in targeting tumor cells that exhibit
high levels of CB2R expression (Figure 5) [68].
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The compound exhibited absorbance and emission wavelengths of 682 and 690 nm,
respectively, when dissolved in methanol. The nontoxicity of IR700DX-mbc94 (13) was
established by the absence of irradiation in both CHO-K1/CB2 and CB2-mid DBT cells.
The chemical had a dissociation constant (Kd) of 42.0 ± 19.6 nM and indicated cytotoxic
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and inhibitory effects on CB2 positive cells upon irradiation, contingent upon its binding
to CB2R. Research was conducted to investigate targeted phototherapy in vivo utilizing
IR700DX-mbc94 (13). The results of this investigation demonstrated the production of
singlet oxygen (1O2) and free radicals under irradiation, leading to a kind of cell death
resembling necrosis [69].

The IR700DX-mbc94 (13) compound has promising characteristics as a possible agent
for selective phototherapy in cancer cells. It demonstrates little cytotoxicity prior to ir-
radiation and exhibits a preference for CB2 + cells. The IR700DX-mbc94 (13) compound
was subsequently altered to include a dimethyl thioketal moiety inside the linker region.
The recently discovered probe IR700DX-TK-mbc94 (14) exhibited a high affinity in the
nanomolar range for displacing [3H]-CP55,940 from hCB2R, similar to the affinity seen with
IR700DX-mbc94 (13) (Figure 5). In the CB2R+ animal model of a delayed brain tumor, CB2-
mid DBT cells treated with IR700DX-TK-mbc94 (14) showed a significant 59% reduction in
cell viability after irradiation. In contrast, IR700DX-mbc94 (13) treatment resulted in little
cell death. The observed increase in cell mortality when exposed to IR700DX-TK-mbc94
(14) was constant across all incubation durations and concentrations.

The analysis of structure–activity relationships (SARs) revealed that the chromenopy-
razole scaffold exhibits tolerance towards N-pyrazole aromatic and alkyl substituents.
However, this tolerance leads to the development of high-affinity ligands that are selective
for CB1R, selective for CB2R, or nonselective [31,69]. The study documented the enhance-
ment of CB2R selectivity via the phenolic alkylation of chromenopyrazole. Nevertheless,
the presence of both the N-phenyl and O-alkyl groups in the same ligand resulted in a
reduction in CBR affinity.

Several CB2 fluorescent probes were produced, and wide-field fluorescence microscopy
imaging tests were conducted to assess the capability of probe 18 in identifying CB2R at the
individual cell level. The fluorescent ligand with the greatest affinity was Cy5-containing
(18) (hCB2R pKi = 7.38 ± 0.05, Ki = 41.8 ± 4.5 nM at hCB2R; 5857 ± 1265 nM at hCB1R),
exhibiting a selectivity of 131-fold over CB1R (Figure 6). In the context of a cAMP BRET
experiment, compound 18 exhibited strong potency as an inverse agonist for the CB2R
receptor [31]. The HEK-293 cells expressing CB2R were subjected to incubation with a
concentration of 1 µM of the fluorescent ligand 18. This resulted in evident labeling on
the cell surface, but no noticeable accumulation was seen inside the cells. The specific
binding of compound 18 to the CB2R receptor was shown by the little fluorescence detected
when the cells were co-incubated with a high affinity, nonfluorescent CB2R inverse agonist,
SR144528 (30 µM), and compound 18. The specific binding of CB2R was further confirmed
by the little fluorescence produced when incubating 18 with HEK-293 cells that were
transfected with an empty vector, indicating the absence of CB2R. Given that 18 functions
as an inverse agonist, the probability of receptor internalization is deemed exceedingly
improbable. Moreover, considering the physical attributes of 18, such as its substantial
molecular weight and extensive polar surface area, the ease of cellular permeability seems
implausible. In the imaging experiments, surface CB2R-restricted labeling was observed,
which was confirmed by the presence of clear colocalization with cell surface CB2R. This
colocalization was detected using a non-cell-permeable primary antibody that specifically
targeted an extracellular epitope tag on the receptor. Furthermore, it became apparent that
there was an absence of intracellular labeling despite the established knowledge that CB2R
is expressed intracellularly in the absence of ligand activation. Fluorescent ligand 18 has
a high affinity for CB2R, demonstrating selectivity and powerful inverse agonist action.
Additionally, it possesses excellent imaging capabilities. Consequently, it is anticipated
that this ligand will prove to be a significant tool for in vitro and ex vivo investigations,
particularly in the context of examining CB2R expression in whole-cell binding applications.
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4.3. Fluorescent Oxoquinoline Derivatives

The use of oxoquinolines has been extensively employed in the acquisition of highly
specific and powerful CB2R ligands [70].

Consequently, a substantial number of comprehensive SARs have been documented
for this particular subclass, enabling the development of fluorescence instruments based
on oxoquinoline with notable affinity and selectivity. In the first instances of success, the
fluorophore, namely NIR760, was inserted directly into the aromatic moiety using an
appropriate linker. The pyrazolo [1,5-a]pyrimidin-7-one moiety has been shown to have a
strong affinity for CB2R binding and selectivity while also possessing the advantageous
characteristic of being highly tolerant to chemical modifications at the C2 position [71].

NIR760-XLP6 (20) was synthesized by attaching NIR760 to the pyrazolo [1,5-a]pyrimidin-
7-one core using a 4 aminohexylphenylamide linker (Figure 7) [72]. The study demonstrated
the significant affinity and selectivity of CB2R (with a dissociation constant, Kd, of 169.1 nM)
in the relevant DBT-CBR cells. This was supported by the presence of nonspecific bind-
ing, which was validated using in vitro fluorescence imaging. Both the binding test and
biodistribution investigation yielded further data supporting the favorable and specific
binding of NIR760-XLP6 (20) to CB2R. Significantly, the measured tumor-to-normal (T/N)
ratio reached a maximum value of 7.9 in the DBT-CB2 tumor at 72 h after intravenous
administration. The preference of NIR760-XLP6 (20) for CB2R over CB1R in a tumor mouse
model was supported by in vivo and ex vivo optical imaging, indicating a moderate CB2R
specific binding. The fluorescent probe NIR760-XLP6 (20) was assessed for its potential as
an imaging tool for pancreatic duct adenocarcinoma (PDAC). The evaluation showed that
the probe achieved a good level of imaging contrast in both xenograft tumor and PDAC
lymph node metastasis models. Additionally, the study confirmed the overexpression of
CB2R in this kind of tumor. During the investigation, a substantial quantity of nonspecific
binding of NIR760-XLP6 (20) was found. This is a typical difficulty in the creation of CB2R
fluorescence probes [73].

The NIR760 fluorophore was used in conjunction with a selective CB2R quinolone
structure at position 6 via a triazole-PEGylated linker to produce NIR760-Q (22) [74].

In this instance, the binding affinity and targeting specificity of CB2R were assessed
in Jurkat cells, which inherently express CB2R. The NIR760-Q (22) compound has a high
affinity in the nanomolar range, with Kd = 75.51 nM (Figure 7). Additionally, it demonstrates
moderate specific binding, which aligns with the observed pattern seen in other charged
NIR fluorescent dyes [74]. In comparison to the CB2R probe that was previously published,
namely NIR760-mbc94 (11), NIR760-Q (22) exhibits improved absorption and emission
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properties while maintaining similar binding affinity and specificity. This study made
the first use of optical imaging targeting CB2R in human tumor cells that endogenously
express CB2R. The aggregated data suggest that NIR760-Q (22) exhibits promise as an
imaging probe for the targeted imaging of CB2R, with potential applications in translational
investigations.
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In recent times, there has been an exploration of the potential attachment points for
fluorescent dyes, specifically focusing on positions N1 and C3 of the oxoquinoline core [61].
Cooper et al. synthesized a collection of derivatives of 1,8-naphthyridin-2-(1H)-one-3-
carboxamide, including the fluorophore BODIPY630/650-X at certain locations [75].

In comparison to previously known CB2R scaffolds, the naphthyridine moiety exhibits
more hydrophilicity, which is expected to be advantageous in preventing undesired non-
specific binding. Regrettably, it has been observed that all fluorescent ligands connected
to the N1 position have shown little affinity for CB2R. However, the derivative 21, which
is coupled to the C3 position and utilizes a glycine bridge, has demonstrated a signifi-
cant affinity and selectivity for CB2R (pKi = 6.33). This derivative functions as an inverse
agonist [75].

Compound 21 has a noteworthy characteristic as it belongs to the category of infre-
quent CB2R ligands that demonstrate enhanced affinity following the incorporation of
a fluorophore. Notwithstanding these favorable premises, it was shown that ligand 21
exhibited suboptimal imaging characteristics for CB2R in cellular contexts, which might be
attributed to its pronounced membrane association and nonspecific intracellular accumula-
tion [75].

In a recent structure–activity relationship (SAR) study focused on 4-oxo-1,4-dihydroquinoline
analogs, a fluorescent CB2R ligand was successfully synthesized with attachment at the N1
position [70,76].
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Spinelli et al., in a recent study, reported the synthesis of a comprehensive collection of
CB2R fluorescent ligands. This was achieved by attaching 4-DMAP, NBD, and fluorescein
cores to the N-adamantyl-4-oxo-1,4-dihydroquinoline-3-carboxamide pharmacophore. The
lead drug, which contains a 4-DMAP fluorophore and a hexamethylene linker, had a
favorable binding affinity towards the CB2R receptor (Ki = 130 nM) and exhibited a low
level of radioligand displacement compared to the CB1R subtype (Figure 7). The researchers
have introduced derivative 23 as an innovative candidate for the use of fluorescent-based
competition binding tests and the identification of CB2Rs in certain cell types, as assessed
using fluorescence-activated cell sorting (FACS) analysis. The obtained results from a
preliminary competitive binding assay were used to measure the IC50 of two reference
compounds, namely WIN55,212-2 and GW405833. Additionally, a saturation binding
assay was conducted on CB2R-HEK293 cells, using GW405833 as the reference compound
and [3H]-CP55,940 as the radioligand. Compound 7 was used as the fluo-ligand at a
concentration of 100 nM with an incubation time of 90 min. The results obtained were
found to be comparable to the Ki values reported in the existing literature [76].

Furthermore, experiments including saturation and binding tests were conducted in
tumor cells that naturally express CB2Rs, providing further support for findings that have
been previously documented for cells that have been genetically modified. Additional
immunofluorescence tests were conducted using compound 23 at a concentration of 15
µM as a fluorescent probe for seeing CB2R in cells. These results demonstrated the sig-
nificant specificity and reliability of compound 23 as a viable alternative to conventional
radioligand assays.

4.4. Miscellaneous Fluorescent Probes

Since the presence of the original tetrahydrocannabinol (THC) core or analogs is often
associated with a lack of CBR subtype selectivity and interference with other targets of the
ECS, finding selective ligands harboring this moiety among all the CB2R functionalized
probes is not frequent. Because of its unusual biological features and the fact that CBR
subtype selectivity may be obtained via strategic substitutions, the tricyclic cannabinoid
scaffold has recently received a great deal of interest. A series of fluorescent ligands was
produced and physiologically tested, beginning with the bioisostere chromenopyrazole
core [53].

Carreira and colleagues recently developed a series of fluorescent CB2R probes (24a–f)
using NBD, DY-480XL, Alexa647, Alexa488, and AttoThio12 dyes (Figure 8, Table 1). The
selection of fluorescent molecules was based on many criteria, including a significant Stokes
shift, absorption and emission maxima that are red-shifted, a high molar extinction coeffi-
cient, appropriateness for Förster resonance energy transfer (FRET), and the possibility of
use in ultra-high-resolution microscopy. Among all the synthetic molecules synthesized, a
specific agonist, 24f, has shown exceptional imaging characteristics and a remarkable bind-
ing affinity with the CB2 receptor with Ki = 4.7 nM and a notable selectivity (Ki CB2/CB1
ratio = 228). CB2R-selective fluorescent probes with unique photophysical characteristics
were designed by attaching fluorescent dyes to amine building blocks through short linkers.
The researchers used a previously reported high-recognition component that combines the
characteristics of two CBR ligands, namely HU-308 and AM841. The docking simulations
conducted on the DY-480-XL-carrying fluorescent azide derivative 24c provided insights
into the localization of the fluorescent tag in the extracellular region. Additionally, it was
observed that the azide moiety forms a hydrogen bond with Leu191, which is likely a
key factor contributing to the strong binding affinity exhibited by the two most effective
azide derivatives as compared to their alkane counterparts. It is interesting to note that
only changing the fluorescent dye moiety resulted in different efficacy (partial agonism for
the molecule with AttoThio12 and agonism for the molecule attached with DY-480XL), all
while maintaining extremely high functional selectivity over hCB1R. The efficacy of their
probe showed it to be a valuable instrument in several experimental settings, including
competition studies, flow cytometry, and the time-resolved confocal imaging of both human
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macrophages and mouse cells. In addition, the researchers assessed the kinetic binding
characteristics using a newly developed TR-FRET-based assay, which is well suited to
conducting high-throughput screening. Perhaps the most important point is that synthetic
probes make it feasible to identify and monitor CB2R in cells that naturally express the
receptor, which is not achievable with existing antibody technology [53].
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Table 1. Binding affinity (Ki) and selectivity values of the THC-based CB2 selective fluorescent probe.

Ki (nM) EC50 (nM)

Compound Dye hCB2R hCB1R mCB2R hCB2R hCB1R mCB2R

24a NBD 4.2 >10,000 n.d. n.d. >10,000 n.d.
24b DY-480XL 99 4031 1986 >10,000 >10,000 >10,000
24c DY-480XL 21 2378 1459 171 2152 118
24d Alexa647 2565 >10,000 >10,000 25 2565 370
24e Alexa488 268 >10,000 1204 n.d n.d. n.d.
24f Atto Thio12 4.7 1075 1.1 5.6 >10,000 17

Fluorescent imaging probes have been recognized as very sensitive technologies that
provide a significant level of spatiotemporal resolution. In order to provide a reliable and
verified translational pathway from preclinical pharmacological animal data to clinical
applications, the Carreira research group endeavored to design a novel series of pyridine-
based fluorescent probes for CB2R [54].

In a previous study, a set of fluorescent probes using a phytocannabinoid as the foun-
dation was developed [53]. However, these probes exhibit suboptimal pharmacokinetic
properties, limiting their potential for practical applications in translational research. Con-
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sequently, more progress was made using a reverse-design methodology, starting with
a pharmacologically proven in vivo active compound class. This strategy aimed to meet
many essential criteria, including affinity, potency, selectivity, chemical stability, water
solubility, and membrane permeability. A ligand, denoted as 25, has a preferential bind-
ing affinity in the picomolar range for both human and mouse CB2R receptors, and it
demonstrates complete agonistic efficacy in the picomolar range (Figure 9) [77,78].
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To facilitate the attachment of a fluorophore, a conjugation handle was necessary,
based on the aforementioned lead. Initially, the use of docking research was employed to
identify a potential linker and attachment site for the pharmacophore inside selective CB2R
ligands based on pyrazine and pyridine [54].

A variety of fluorescent ligands were synthesized, whereby dyes were attached to the
geminal diethyl group of the appropriately substituted pyridine moiety through a PEG
linker. The process of optimizing the probes and selecting appropriate dyes was facilitated
by conducting a thorough assessment of the absorption and emission spectra in a buffer
solution. From the conducted investigations, it was discovered that all probes exhibited
water solubility and did not demonstrate any inclination to form aggregates. A wide
variety of lipophilicity values, ranging from 5.3 to 10.6, were detected for compound 26A–C
(Figure 9). This observation suggests that compound 26C, which has an Alog p value of 10.6
and lacks negative charges according to its design, exhibits high permeability. These ligands
were then subjected to in vitro biological evaluation. Among the derivatives examined,
derivative 26A emerged as the most effective ligand in terms of its potency, selectivity,
and agonist functional features. However, due to the superior imaging characteristics of
their respective dyes, only compounds 26B and 26C were subjected to further testing via
fluorescence imaging. Overexpressing hCB2R-CHO cells and endogenously expressing
native cells from human macrophages and mouse splenocytes were used with fluoroprobe
26C for live-cell imaging of intracellular CB2R distribution using super-resolution confocal
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microscopy. During the FACS investigation, it was shown that both derivatives 26B and
26C exhibited a high degree of target specificity with little unspecific binding. Furthermore,
probe 26C was effectively used for the purpose of visualizing hCB2R in viable cells via the
application of confocal imaging techniques. When injected intravenously, 26C was shown
to have a low toxicity profile in zebrafish larvae. It floated about the circulatory system for
a while before it finally found its way to CB2R-expressing macrophages. This highlights
the probe’s in vivo use and related issues, including biosafety, biodistribution, and cellular
uptake. By providing a high-specificity, low-nanomolar-affinity probe for CB2R with full
agonist efficacy, probe 26C provides researchers with a novel and useful platform to study
this receptor in a variety of relevant biological and pharmacological contexts [54].

Additional research and investigation into the development of a fluorescent probe that
specifically targets CB2 receptors are needed. The Carriera group successfully pioneered
the first ligand-directed covalent (LDC) labeling of CB2R using an innovative synthetic
approach and the implementation of platform reagents. The affinity labeling technique,
sometimes referred to as ligand-directed covalent (LDC) chemistry, enables the precise and
selective fluorescent labeling of proteins that are naturally expressed within intricate and
multifaceted systems. The LDC alteration facilitates the imaging and examination of CB2R
while also preserving its capacity to bind various ligands at the orthosteric location. The use
of in silico docking and molecular dynamics simulations is employed to provide guidance
in the design of probes and evaluate the viability of tagging the CB2R with LDC. The study
showcased the use of fluorogenic O-nitrobenzoxadiazole (O-NBD)-functionalized probes
(27a–e) in a TR-FRET experiment to label the peripheral lysine residue of CB2R selectively
and covalently (Figure 10). The confirmation of proof-of-concept was conducted rapidly
using O-NBD probes, which subsequently led to the inclusion of advanced electrophiles that
are appropriate for experimentation in living cells. In pursuit of this objective, innovative
methodologies were devised to synthesize N-sulfonyl pyridone (NSP) and N-acyl-N-
alkyl sulfonamide (NASA) LDC probes. These procedures facilitated the introduction of
fluorophores via covalent bonding, making them ideal for cellular investigations. The LDC
probes underwent characterization via the radioligand binding and TR-FRET assays.

The tendency of 27a–e to bind more strongly to hCB2R than the mouse ortholog may
be explained by the pattern of molecular interactions shown in MD simulations. This may
be because of the amino acid substitutions Val261 6.51 Ala, Ser90 2.60 Asn, and Asn93 2.60

Ile that occurred during the evolution from humans to mice. The mouse ortholog with
an alanine residue lacks the Val261 6.51 side chain’s hydrophobic interactions with the
dimethyl group of the azidoheptyl substituent on the arene, which stabilize the molecule.
Both the 27a and 27c probes produced weaker signals than 27b. Similar to probe 27b, both
probes 27d and 27e were effective in covalently labeling their targets. Therefore, probes
27b, 27d, and 27e were the most suited candidates for further research because of their
high affinity and selectivity for CB2R in the radioligand assay and their robust signal in the
TR-FRET test. The shorter, less lipophilic linker of 27b was regarded as preferable to the
linkers of 27d and 27e in this group due to its anticipated benefits in target selectivity and
overall physicochemical qualities, most notably decreased lipophilicity.

Furthermore, the probes were used for the explicit purpose of visualizing CB2R in
conventional and imaging flow cytometry, as well as in confocal fluorescence microscopy,
using both overexpressing and endogenously expressing microglial live cells.

A significant improvement in labeling yields was seen when the incubation period of
other sets of synthesized probes (28a–e) was prolonged to 20 h (Figure 11). Significantly,
after a 20-h incubation period, 28e exhibited a comprehensive covalent transfer of its fluo-
rophore, as shown by the FRET experiment. Upon doing the experiment under conditions
that mimicked physiological temperatures (namely, 37 ◦C), it was observed that the rate
of cargo transfer was significantly increased. Namely, after a duration of 120 min, the
cargo transfer reached a level of 53.5% ± 9.6%, indicating a substantial enhancement in
the process. In the TR-FRET test, 119-fold selectivity for CB2R over CB1R was established
via the measurement of saturation binding. The plasma membrane of the cells exhibited
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a strong DY-480XL signal, together with intracellular puncta that may indicate the pres-
ence of internalized receptors. The signal seen demonstrated colocalization between the
SNAP-dye signal in the far-red range and the signal of interest. This colocalization provided
confirmation that the tagging of SNAP tagged CB2Rs was effective using compound 29 [79].
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5. Future Perspective and Critical Discussion

Small-molecule fluorescent ligands for use as tags for GPCRs have been in develop-
ment throughout the last two decades. Innovation in chemical biology tools has been crucial
to fostering this development. For instance, the last decades have seen significant progress
in organic dye production, which is very helpful for the development of fluorescent ligands
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for GPCRs. Among the factors that drove the discipline out of its “comfort-zone” of radioli-
gand substituents and into biochemical applications are the aforementioned advancements.
This review delves into the use of fluorescence imaging techniques to study CB2 recep-
tor expression, contributing to the advancement of our existing knowledge of CB2R and
its therapeutic applications. Additionally, it sheds light on novel discoveries that have
emerged from these investigations. The activation of CB2 has been shown extensively to
suppress proliferation and promote autophagy and cell death, making it a promising target
for therapy for cancer and other diseases [17,80]. According to the Drugs database of Global
Data’s Pharma Intelligence Center, cannabinoid receptors have gained significant atten-
tion as a promising therapeutic target for the development of cannabis-based medications
aimed at managing pain, neurological diseases, and inflammation. In the coming decade,
one can expect a significant increase in the study of cannabinoid receptors to maximize
their therapeutic potential. Cannabinoids based on CB2R have significant potential for
the treatment of inflammation and pain management since they demonstrate quantifiable
qualities of antipruritic, antinociceptive, and anti-inflammatory effects. It is anticipated
that the systematic availability of more clinical data will facilitate the exploration and
use of this intriguing collection of phyto- and synthetic cannabinoids. Many of the CB2
ligands suffer from poor pharmacokinetic properties, including high lipophilicity, low
solubility, tight plasma protein binding, high in vivo clearance, and low oral bioavailability.
In addition, residual CB1 agonism in subselective ligands further limits their application.
Clearly, a balance must be established between excellent pharmacokinetic properties and
high activity and selectivity for CB2R. An enhanced understanding of the kinetics involved
in the binding of ligands to their respective targets, as well as the mechanisms behind
biased signaling and allosterism in the CB2R receptor, together with the availability of
more structural information pertaining to both antagonist- and agonist-bound CB2R, is
expected to facilitate the development of more targeted approaches to drug design. The
findings of this study have the potential to generate renewed optimism about the thera-
peutic capabilities of CB2R and contribute to a more comprehensive understanding of the
endocannabinoid system (ECS). The application of AI and machine learning techniques
may further enable the design and expeditious synthesis of smart ligands for bespoke
applications in the immediate future.
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Abbreviations

GPCRs = G protein-coupled receptors; ECS = endocannabinoid system; CB1R =
Cannabinoid type 1 receptor; CB2R = Cannabinoid type 2 receptor; hCB1R = Human
Cannabinoid type 1 receptor; hCB2R = Human Cannabinoid type 2 receptor; THC = tetrahy-
drocannabinol; AEA = Arachidonoyl Ethanolamide/Anandamide; CNS = central nervous
system; FRET = Förster resonance energy transfer; TR-FRET = time-resolved Förster res-
onance energy transfer; PET = positron emission tomography; BRET = bioluminescence
resonance energy transfer; NK cells = natural killer cells; NBD = nitrobenzoxadiazole; CHO-
K1 cells = Chinese hamster ovary cells; cAMP = Adenosine-3′, 5′-cyclic monophosphate,



Pharmaceuticals 2023, 16, 1235 20 of 23

or cyclic AMP; SAR = structure-activity relationship; PDAC = pancreatic duct adenocar-
cinoma; DMAP = 4-Dimethylaminopyridine; FACS = fluorescence-activated cell sorting;
PEG = Polyethylene glycol; LDC= ligand-directed covalent; NIRF = near-infrared fluo-
rophores; QDs = quantum dots; DBT = delayed brain tumor; SI = Selectivity index; NASA
= N-acyl-N-alkyl sulfonamide; NSP = N-sulfonyl pyridone.
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