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Abstract: This study presents a phytochemical investigation of Lepionurus sylvestris leaf extracts and
their anti-diabetic activities. Traditionally, L. sylvestris leaves were used as vegetables and food in
local recipes, but the root extracts of the plant can also be used in body tonic and erectile dysfunction
treatments. Following a preliminary anti-diabetic activity screening test, the 80% ethanolic leaf extract
exhibited potent anti-alpha glucosidase activity. So, the leaves’ active components were selected for
further investigation. Firstly, the plant was extracted via maceration using lower to higher polarity
solvents such as hexane, ethyl acetate, ethanol, and water, respectively, to obtain the four crude
extracts. Then, the phytochemicals contained in this plant were investigated via classical column
chromatography and spectroscopy techniques. Anti-diabetic activity was evaluated via anti-alpha
glucosidase and insulin secretagogue assays. The results showed that five compounds were isolated
from the fractionated ethanolic leaf extract: interruptin A; interruptin C; ergosterol; diglycerol; and
15-16-epoxy-neo-cleoda-3,7(20),13(16),14-tetraene-12,17:18,19-diolide, a new diterpene derivative
which is herein referred to as lepionurodiolide. Interruptin A and the new diterpene derivative
exhibited the greatest effect on anti-alpha glucosidase activity, showing IC50 values of 293.05 and
203.71 µg/mL, respectively. Then, molecular docking was used to study the sites of action of these
compounds. The results showed that interruptin A and the new compound interacted through
H-bonds with the GLN279 residue, with a binding energy of −9.8 kcal/mol, whereas interruptin A
and C interacted with HIS280 and ARG315 a with binding energy of −10.2 kcal/mol. Moreover, the
extracts were investigated for their toxicity toward human cancer cells, and a zebrafish embryonic
toxicity model was used to determine herbal drug safety. The results indicated that ethyl acetate and
hexane extracts showed cytotoxicity to both Hela cells and human breast adenocarcinomas (MCF-7),
which was related to the results derived from using the zebrafish embryonic toxicity model. The
hexane and ethyl acetate presented LC50 values of 33.25 and 36.55 µg/mL, respectively, whereas the
ethanol and water extracts did not show embryonic toxicity. This study is the first of its kind to report
on the chemical constituents and anti-diabetic activity of L. sylvestris, the leaf extract of which has
been traditionally used in southern Thailand as a herbal medicine and food ingredient.

Keywords: anti-diabetes; anti-alpha glucosidase; insulin secretagogue; Lepionurus sylvestris;
phytochemistry; embryonic toxicity
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1. Introduction

Diabetes mellitus (DM) is a chronic metabolic syndrome which leads to the malfunction
of glucose homeostasis in blood circulation. Abnormalities in the pancreas significantly
reduce insulin, which plays a key role in glucose metabolism. The effects of high-level
glucose concentrations in the bloodstream might cause tissue damage, especially with
respect to blood vessels, the nervous system, and wound healing processes. In 2021,
the International Diabetes Federation reported that 573 million adults around the world
were living with diabetes, and estimates state that the number of patients will increase to
783 million by 2045. The Division of Non-Communicable Diseases of Thailand stated that
the number of diabetic patients in the nation was 0.94 million in 2017; however, figures
seem to be continuously rising. Traditionally, undeveloped and developing countries have
used herbal medicines as alternatives for combatting diabetes for a long time, and various
types of remedies have been prepared based on traditional wisdom. Herbal medicines are
meant to improve one’s health and prevent and reduce the severity of diseases. Prior to
human applications, the efficacy of using of herbal medicines and their mechanisms of
action and toxicity need to be clarified.

The chemicals of natural products are considered notable resources for researching the
biological activities and the benefits and functions of substances that can be used in herbal
medicines. L. sylvestris (Opiliaceae) or “Mak-Mok” (common Thai name) is a plant found
in southern Thailand. In traditional herbal remedies, the root of this plant is used as a body
tonic and for erectile dysfunction treatment. The leaf and stem of this plant can be used in
food and herbal remedies as diuretics and aphrodisiacs, and for the treatment of kidney
stone diseases. Additionally, the aerial part of the plant can be used as an ingredient in
rejuvenating recipes and has demonstrated anti-microbial and anti-oxidant activity in prior
studies [1,2]. Indeed, some articles have reported the biological activities of L. sylvestris leaf
extracts; for example, DPPH radical scavenging assays have shown its anti-oxidant activity,
and it has also been shown to exert anti-bacterial activity on H. pyroli strains. The root
extracts of this plant also reportedly exert anti-oxidant activity and cytotoxic effects on brine
shrimp [3–5]. Despite this, the plant has not been recommended for use in traditional Thai
anti-diabetes medicines, and whether the plant exerts anti-diabetic activity has not been
reported. Due to the fact that a preliminary study on anti-alpha glucosidase activity showed
the potent effect of this plant extract, this plant was selected for further phytochemical
study. Subsequently, after studying the plant’s extracts and isolated compounds, it was
shown that L. sylvestris has the potential to exert strong anti-alpha glucosidase and insulin
secretion activities. Hence, this study on the plant extracts and isolated compounds of
L. sylvestris will be the first scientific report to elucidate the plant’s anti-diabetic activity
and mechanisms of action. The results of this research study will hopefully lead to the
use of this plant in the development of food products and herbal medicines intended for
diabetes prevention.

2. Results
2.1. Phytochemical Investigation from Ethanolic Leaf Extract of L. sylvestris
2.1.1. Interruptin A (1)

The compound (2.40 mg) was obtained as a yellow-white powder dissolved in chlo-
roform. The UV absorption in chloroform exhibited a λmax of 290 nm, as shown in the
Supplementary Materials (Figure S1). The IR spectra of this compound presented peaks at
3361 cm−1 (-OH), 1705 cm−1 (C=O), 1435 cm−1 (-CH2), and 1140 cm−1 (C-O), as shown in
the Supplementary Materials (Figure S2). The molecular ion peak was found at 399.1321
(M-H), as shown in the Supplementary Materials (Figure S3). The 1H NMR (500 MHz in
CHCl3-d) spectrum exhibited δH (ppm) values of 12.90 (1H, s), 7.57–7.62 (2H, m), 7.42–7.48
(1H, m), 7.15–7.30 (3H, m), 5.29 (1H, s), 3.25 (1H, t, J = 7.0 Hz), 2.93 (1H, t, J = 7.5 Hz),
and 2.25 (3H, s), as shown in the Supplementary Materials (Figure S4). The 13C NMR
(125 MHz in CHCl3-d) spectrum showed the δC (ppm) at 206.1, 164.6, 159.4, 157.0, 156.8,
153.2, 141.1, 135.9, 130.6, 130.0, 128.4 (double ratio), 127.5, 126.0, 112.7, 106.9, 99.8, 46.8,
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30.2, and 7.5 as shown in the Supplementary Materials (Figure S5). The correlation of
COSY and HMBC was used to confirm the substitution of the structure, as shown in the
Supplementary Materials (Figures S6 and S7). The chemical shift data were compared to a
previous report on interruptin A, as shown in Figure 1 [6].
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Figure 1. The isolated compounds of L. sylvestris ethanolic leaf extract (1: Interruptin A; 2: Interruptin
C; 3: Ergosterol; 4: Diglycerol; and 5: Lepionurodiolide (the new diterpene derivative; 15-16-epoxy-
neo-cleoda-3,7(20),13(16),14-tetraene-12,17:18,19-diolide))

2.1.2. Interruptin C (2)

The compound (1.30 mg) was obtained as a yellow, amorphous, and clearly dissolved
in chloroform and ethyl acetate. The UV absorption in chloroform exhibited a λmax at
291 nm, as shown in the Supplementary Materials (Figure S8). The IR spectra showed peaks
at 3502 cm−1 (-OH), 2298 cm−1 (C=C), 1698 cm−1 (C-H), 1473 and 1456 cm−1 (-CH2), and
1070 cm−1 (C-O), as shown in the Supplementary Materials (Figure S9). The molecular ion
peak was found at 399.1291 (M-H), as shown in the Supplementary Materials (Figure S10).
The 1H NMR (500 MHz in CHCl3-d) spectrum exhibited the δH (ppm) at 12.97 (1H, s),
7.38–7.46 (9H, m), 7.30–7.34 (2H, m), 6.04 (1H, s), 3.14 (1H, dd, J = 17.5, 4.5 Hz), 2.96 (1H,
dd, J = 13, 3 Hz, and 2.25 (3H, s), as shown in the Supplementary Materials (Figure S11).
The 13C NMR (125 MHz in CHCl3-d) spectrum showed the δC (ppm) at 197.2, 160.8, 160.2,
159.7, 155.7, 138.7, 137.7, 129.0 (double ratio), 128.9 (double ratio), 128.4 (double ratio), 127.7,
113.1, 105.3, 78.8, 43.2, and 7.86, as shown in the Supplementary Materials (Figure S12). The
correlation of COSY and HMBC was used to confirm the substitution of the structure, as
shown in the Supplementary Materials (Figures S13 and S14). The chemical shifts were
compared to a previous report on interruptin C, as shown in Figure 1 [6].

2.1.3. Ergosterol (3)

The compound (1.25 mg) was obtained as a white crystal dissolved in chloroform and
ethyl acetate. The UV absorption in chloroform exhibited a λmax at 254 nm (Supplementary
Materials (Figure S15)) and presented a blue fluorescent spot under UV at 366 nm in thin-
layer chromatography. The IR spectra showed peaks at 3503 cm−1 (-OH), 2932 cm−1 (C-H),
and 1699 cm−1 (C=O), as shown in the Supplementary Materials (Figure S16). The 1H
NMR (500 MHz in CHCl3-d) spectrum exhibited the characteristics of the steroid structure
by showing the δH (ppm) at 0.61 (3H, s, H-18), 0.84 (3H, d, J = 7.0 Hz, H-26), 0.85 (3H, d,
J = 7.0 Hz, H-27), 0.92 (3H, d, J = 7.0 Hz, H-28), 0.94 (3H, s, H-19), and 1.01 (3H, d, J = 6.6 Hz,
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H-21); an oxygenated proton signal at δ 3.62 (1H, m, H-3); and olefinic proton signals at
5.15 (2H, m, H-22), 5.36 (1H, dd, J = 16.0, 7.5 Hz, H-23), and 5.55 (1H, dd, J = 5.7, 2.5 Hz, H-6),
as shown in the Supplementary Materials (Figure S17). The chemical shifts were compared
to a previous report on ergosterol, as shown in Figure 1 [7].

2.1.4. Diglycerol (4)

The compound (1.50 mg) was obtained as a white needle dissolved in DMSO. The
IR spectra presented peaks at 3399 cm−1 (-OH), 2970 cm−1 (-CH), 2902 cm−1 (-CH2), and
1080 cm−1 (C-O), as shown in the Supplementary Materials (Figure S18). The 1H NMR
(500 MHz in DMSO-d6) spectrum exhibited the δH (ppm) at 4.37 (1H, d, J = 5.5 Hz), 4.28
(1H, t, J = 5.5 Hz), 4.11 (1H, d, J = 7 Hz), 3.50 (1H, t, J = 7.5 Hz), and 3.35 (1H, dt, J = 5.5,
11 Hz), as shown in the Supplementary Materials (Figure S19). The 13C NMR (125 MHz in
DMSO-d6) spectrum showed the δC (ppm) at 71.49 (double ratio), 69.88, and 64.00 (double
ratio), as shown in the Supplementary Materials (Figure S20). The chemical shifts were
compared to a previous report on diglycerol, as shown in Figure 1 [8].

2.1.5. The New Diterpene Derivative: 15-16-epoxy-neo-cleoda-3,7(20),13(16),14-tetraene-12,
17:18,19-diolide (Lepionurodiolide) (5)

The new compound (5.15 mg) was obtained as a light-yellow power dissolved in
chloroform. The UV absorption in chloroform exhibited a λmax at 286 nm, as shown in
the Supplementary Materials (Figure S21). The IR spectra presented peaks at 3502 cm−1

(-OH), 2953 (C-H), 2298 cm−1 (C=C), 1758 cm−1 (C=O), 1508 and 1436 cm−1 (-CH2), and
1153 cm−1 (C-O), as shown in the Supplementary Materials (Figure S22).

The 1H NMR (500 MHz in CHCl3-d) spectrum showed the characteristic of the furan
proton by exhibiting the δH (ppm) at δ 6.33 (1H, dd, J = 1.9, 1 Hz, H-14), 7.38 (1H, broad
d, J = 1 Hz, H-15), and 7.37 (1H, t, J = 1 Hz, H-16), and showed the methylene proton at
4.25 (1H, d, J = 9.1 Hz, H-19) and 4.21 (1H, dd, J = 9.1, 1 Hz, H-19). The chemical shifts of
the methine proton linked the furan ring and the 6-membered lactone ring at δ 5.51 (1H,
dd, J = 1.5, 1 Hz, H-12). The other signals showed the characteristic of the alicyclic proton
at 1.78 (1H, m, H-1), 1.36 (1H, m, H-1), 2.43 (1H, m, H-2), 2.18 (1H, m, H-8), 2.08 (1H, m,
H-10), 2.19 (1H, m, H-2), 2.36 (1H, m, H-6), 2.25 (1H, m, H-6), 2.55 (1H, m, H-9), 2.36 (1H, m),
2.75 (1H, dd, J = 13.7, 8.6 Hz, H-11), 2.56 (1H, m, H-11), and 6.67 (1H, dd, J = 2.3, 1 Hz, H-3),
and those of the methylene proton in the 6-membered lactone ring at δ 5.01 (1H, d, J = 1.7,
1 Hz, H-20) and 4.78 (1H, d, J = 1.1, 1 Hz, H-20), as shown in the Supplementary Materials
(Figure S23). The correlation between protons (Figure 2) in the structure was observed via
1H-1H COSY spectrometry, as shown in the Supplementary Materials (Figure S24).
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The 13C NMR (125 MHz in CHCl3-d) spectrum revealed 20 carbon signals. It exhibited
the δC (ppm) assignable to six methylene at 21.4 (C-1), 27.7 (C-2), 26.4 (C-6), 53.4 (C-11),
73.4 (C-19), and 113.2 (C-20); eight methines at δ 133.7 (C-3), 43.6 (C-8), 44.0 (C-9), 32.5
(C-10), 71.5 (C-12), 108.4 (C-14), 140.0 (C-15), and 144.0 (C-16); four quaternary carbons at δ
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137.0 (C-4), 48.8 (C-5), 147.3 (C-7), and 124.7 (C-13); and two lactone carbonyls at δ 176.7
(C-17) and 169.4 (C-18). The analysis of these 13C NMR data indicated the characteristic
signals for a neo-cleodane diterpenoids of two quaternary carbons at δ 48.8 (C-5) and
44.0 (C-9); a methine at 32.5 (C-10); an oxygenated methylene at δ 73.4 (C-19); and a
substituted furan ring at 124.7 (C-13), 108.4 (C-14), 140.0 (C-15), and 144.0 (C-16), as shown
in the Supplementary Materials (Figure S25). The correlation between protons and carbons
(Figure 2) in the structure was observed via 1H-13C HMBC spectrometry, as shown in the
Supplementary Materials (Figure S26).

ESI-negative mass spectroscopy was used to confirm the structure; the molecular ion
peak at m/z 339.1238 [M-H] (calcd. 339.1240) established the molecular formula C20H20O5,
as shown in the Supplementary Materials (Figure S27). The interpretation of the compound
was significantly clarified as a new compound of diterpenoids derivative via the detailed
analysis of 1H-1H COSY, HMBC, and NOESY as 15-16-epoxy-neo-cleoda-3,7(20),13(16),14-
tetraene-12,17:18,19-diolide. The stereochemistry of the new compound was proven via
NOESY spectrometry, as shown in the Supplementary Materials (Figure S28). The C-10 that
resonated at 32.5 ppm indicated that H-10 is β-H. The NOESY spectrum H-10 resonated
at 2.08 ppm, showing a correlation with H-9, which resonated at 2.55 ppm. H-9 showed a
correlation, resonating at 2.18 ppm (H-8) and 5.51 ppm (H-12). All data suggested that H-10,
H-9, H-8, and H-12 are β-H, as shown in Figures 1 and 2. The compound was named using
the IUPAC rule as 15-16-epoxy-neo-cleoda-3,7(20),13(16),14-tetraene-12,17:18,19-diolide,
also called “lepionurodiolide”.

2.2. Total Phenolic and Total Flavonoid Contents

The phenolics and flavonoids contents of L. sylvestris leaf extracts with hexane, ethyl
acetate, ethanol, and water were determined, as shown in Figure 3. The ethanolic extract
exhibited the highest total phenolic and total flavonoid compounds, followed by ethyl
acetate, hexane, and water extracts, respectively.
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2.3. Anti-Alpha Glucosidase and Mechanism of Action

The plant extracts were screened on anti-alpha glucosidase at the concentration of
2 mg/mL to discover the most effective extract, which will be used for further investigating
its phytochemistry and mechanism of action. The result presented that the ethanolic leaf ex-
tract was the only sample exhibiting a potent alpha glucosidase inhibition of 95.77 ± 0.63%,
while the frontrunner was water extract, with 57.99 ± 1.42%, which was compared to the
positive control, acarbose, with 88.18 ± 0.53% (Table 1).

The mechanism of action of those two effective extracts was evaluated via
Michaelis–Menten and Lineweaver–Burk kinetic plots, which are graphically exhibited
in Figure 4. The result indicated that the ethanolic extract inhibited the enzyme activity
through an uncompetitive reaction, whereas the water extract inhibited it via a competitive
mechanism. The Ki of water extract was calculated as 0.91 mM and compared to that of
acarbose, which was 0.23 mM.
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Table 1. Anti-alpha glucosidase activity of L. sylvestris extracts and their isolated compounds.

Part Extract Alpha Glucosidase Inhibition
at 2 mg/mL

IC50
µg/mL

Leaf

Hexane 13.27 ± 2.40 10,620

Ethyl acetate 39.89 ± 1.51 2630

Ethanol 95.77 ± 0.63 30

Water 57.99 ± 1.42 1460

Acarbose 88.18 ± 0.53 210

Sample Compound Alpha Glucosidase Inhibition
at 400 µg/mL

IC50
µg/mL (mM)

Isolated
compounds

Interruptin A 30.31 ± 1.17 478.73 (1.085)

Interruptin C 58.17 ± 0.83 293.05 (0.732)

Diglycerol 6.23 ± 1.84 2052.80 (12.341)

Ergosterol 18.63 ± 1.42 971.50 (2.449)

The new diterpene
(Lepionurodiolide) 58.48 ± 0.48 203.71 (0.598)

Acarbose 62.14 ± 0.37 237.08 (0.367)
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2.4. Computer Molecular Docking of the Effective Compounds

Molecular docking of the new diterpene derivative (Figure 5D) was performed to
investigate its mechanisms of action. The results presented that the H-bond of the new
compound interacted with GLN279 residue with a binding energy of −9.8 kcal/mol.
Interruptin A and C bound to HIS280 and ARG315 at the carbonyl group position with
the same binding energy, −10.2 kcal/mol. In addition, interruptin B, the structure related
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to interruptin A and C, was graphically computed to compare its binding energy with
the isolated compounds. The result indicated that the three structures of interruptin
compounds significantly bound to the same site of the enzyme at HIS 280, where they
interacted with the catalytic pocket of alpha glucosidase, playing an important role in the
hydrolysis of the glycosidic bond, as shown in Figure 5.
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2.5. Insulin Secretagogue Activity

The isolated compounds of L. sylvestris were screened on insulin-secreting rat insuli-
noma (INS-1E) cells to evaluate the insulin secretion at a concentration of 100 µg/mL. The
results indicated that these compounds significantly stimulated insulin secretion activity
from the beta cells compared to the control. Interruptin A, interruptin C, ergosterol, and
diglycerol potentially promoted the insulin secretion, and we calculated the total insulin
secretion at 102.52, 102.05, 102.45, and 102.21 µg/L, respectively, whereas the new diterpene
compound slightly induced the secretory activity at 52.06 µg/L. Glibenclamide was used
as the positive standard in this experiment, which induced the activity at 104.57 µg/L, and
we compared it to the negative control (2.5 mM glucose in RPMI-1640 medium), as shown
in Figure 6.
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Figure 6. The insulin secretion activity of isolated compounds from L. sylvestris calculated using
one-way ANOVA (Dunnett, ****, p value < 0.001).

2.6. Cytotoxic Effect on Human Cancer Cells and Toxicity in Zebrafish Model

In this study, cytotoxic activity was determined, at a concentration of 25 µg/mL, on
three human cancer cell lines, A549 (human lung adenocarcinoma), MCF-7 (human breast
adenocarcinoma), and Hela (human cervix adenocarcinoma), and one normal human cell,
HGF (human gingival fibroblast). The most effective extract on cytotoxic activity was
ethyl acetate extract, which potentially inhibited the proliferation of MCF-7 and HeLa. In
contrast, all extracts of L. sylvestris presented slightly cytotoxic activity on the A549 cell
line. So, from these results, it seemed that L. sylvestris extracts affected the cancer cell lines.
However, due to ISO 10993-5, the non-cytotoxic agents should provide a cell viability above
80%. So, those compounds that presented activity of 80–60%, 60–40% and below 40% of
the cell viability on the normal cell line (HGF) were generally considered weak, moderate,
and strong cytotoxic substances, respectively [9]. Hence, the hexane and ethyl acetate
extracts were formally categorized as moderate cytotoxic extracts, while the ethanol and
water extracts exhibited weak cytotoxic activity on the HGF cells. The results are shown
in Table 2.

In addition, the toxicity of L. sylvestris leaf extracts on an animal model was evaluated
using a zebrafish embryonic model, to which we administered the median lethal concentra-
tion (LC50). In brief, the zebrafish embryos were treated with hexane, ethyl acetate, ethanol,
and water extracts with different concentrations, and DMSO was used as a negative control.
The LC50 values of hexane, ethyl acetate, and ethanol extracts were graphically calculated as
33.26, 36.55, and 345.9 µg/mL, respectively. The water extract showed an LC50 greater than
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1000 µg/mL, which was estimated to be a non-toxic extract. Thus, the hexane and ethyl
acetate extracts potentially exhibited embryonic toxicity on the zebrafish model, which is
related to cytotoxic effects on human cancer cells, as shown in Table 3 and Figure 7.

Table 2. The cytotoxic activity on human cancer cells and normal cells from L. sylvestris leaf extracts
at 25 µg/mL.

Part
Cytotoxic Effect at 25 µg/mL (% Inhibition) ± SD

A549 MCF-7 HeLa HGF

Hexane 15.40 ± 2.75 53.54 ± 1.81 83.89 ± 4.31 48.23 ± 2.96

Ethyl acetate 8.61 ± 1.33 72.72 ± 1.05 91.94 ± 0.07 52.19 ± 1.81

Ethanol 25.34 ± 0.26 33.41 ± 2.86 78.51 ± 2.87 13.46 ± 3.25

Water 28.23 ± 1.68 10.59 ± 3.65 74.05 ± 2.79 9.78 ± 2.83

Camptothecin 87.74 ± 1.78 92.95 ± 0.33 85.20 ± 1.23 7.35 ± 1.34

Table 3. The L. sylvestris leaf extract embryonic toxicity on the zebrafish embryonic model.

Solvent Extract
Embryonic Toxicity on Zebrafish

LD50 (µg/mL)

Hexane 33.26
Ethyl acetate 36.55

Ethanol 345.9
Water >1000
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Figure 7. The LD50 of the embryonic toxicity from L. sylvestris leaf extracts on the zebrafish
embryonic model.

The physical appearances of zebrafish embryonic model are graphically exhibited
in Figure 8. The hatching rate 48 h after the fertilization of the embryos was calculated
using the larva viability, which was tested using different concentrations of L. sylvestris
leaf extracts (10–1000 µg/mL). The result indicated that the increase in the concentration
significantly declined the hatching rate. The hexane and ethyl acetate extracts inhibited the
hatching rate by less than 50% at the concentration of 50–1000 µg/mL, compared to control
group, which inhibited the rate by approximately 80, while ethanol extract potentially
decreased the hatching rates at a concentration of 400 µg/mL. Additionally, the water
extract significantly presented the highest hatching rate and also decreased the rate at
800 µg/mL. The malfunction and abnormality of larvae were monitored by measuring
their length from head to tail and their heart rate. The result showed that all extracts of
L. sylvestris showed a slight difference in the result in each concentration when compared
to the normal control and negative control, and we also did not find any abnormalities in
the high-concentration groups, as shown in Figure 8.
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3. Discussion

The extracts of L. sylvestris leaves were investigated for anti-diabetic activity, and
several experiments were carried out to support their biological activities. The ethanol leaf
extract and its anti-diabetic activities were the focus of the phytochemical investigation
due to its preliminary result on the anti-alpha glucosidase enzyme. The result indicated
that ethanol and water extracts significantly inhibited the activity of the alpha glucosidase
enzyme via uncompetitive and competitive mechanisms, respectively. The Ki of the mech-
anism being moderately higher than that of acarbose that could be explained by the fact
that these extracts interacted with low affinity to the enzyme. The activity of the ethanol
extract presented a very low IC50 value, which could be caused by the phenolic compounds
in the extract.

The isolated compounds exhibited as enzyme inhibitors were categorized as flavonoid
and diterpenes groups. The flavonoids, which were characterized as quercetin, showed
the best anti-alpha glucosidase activity, compared to the other flavonoid structures [10].
The substitutions played a key role to reduce or enhance the activity of the inhibitors;
in particular, hydroxylation in the structure played a powerful role in enhancing the
performance of the inhibitors. Methylation or methoxylation affected the activity depending
on the situation, but most of the methylation and methoxylation slightly declined the
activity. The glycosylation of the flavonoids reduced the performance of the inhibitor via the
substitution sites and the class of sugar molecules. The reduction in anti-alpha glucosidase
activity after glycosylation was caused by the increase in molecular mass and polarity,
and the transfer to the nonplanar compound. After the hydroxyl group was replaced by
a sugar molecule, steric hindrance took place, which created a weak binding interaction
between the flavonoids and the alpha glucosidase enzyme [11]. The in vitro study on
anti-alpha glucosidse activity of the effective compounds was confirmed through molecular
docking experiments. The result predicted that these effective compounds (interruptin A,
B, and C) interacted with HIS280 and ARG315, which was specified as catalytic pocket
of alpha glucosidase with binding energy at −10.2 kcal/mol. This site played a key role
in the hydrolysis of the glycosidic bond of the polysaccharide chain, whereas the new
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diterpene derivative created a H-bond in the GLN279 and ARG315 with binding energy at
−9.8 kcal/mol. The binding energy was related to the IC50 of these compounds; the new
diterpene was the most effective compound, with a low binding energy. The stimulation of
insulin secretion activity is a combination mechanism of anti-diabetic treatment that has
already been tested in this study. The isolated compounds significantly induced insulin
secretion from beta cells more than the control and the positive standard. The mechanism
of these compounds had not been investigated.

The cytotoxic effect on human cancer cells and embryonic toxicity on the zebrafish
model were used to predict the benefit and drug safety of L. sylvestris. The results suggested
that the hexane and ethyl acetate extracts should be used to further study on anti-cancer
agents, due to their high toxic effects on some cancer cell lines, whereas the ethanol and
water extracts exerted anti-diabetic activity, with non-toxic effects and malfunction in the
embryonic toxicity model.

Unfortunately, these isolated compounds appeared in a trace amount; they were not
abundant enough for further study in other anti-diabetic models. However, most traditional
uses of this plant are in the form of food ingredients or water extraction. Hence, further
studies using this plant extracts are still interesting. So, the future research plan of this
plant will be focused on diabetic zebrafish models using crude extracts and some isolated
compounds available from commercial trading.

4. Materials and Methods
4.1. Plant Material and Extraction Method

L. sylvestris was collected from Rattaphum district, Songkhla province, Thailand. The
plants were identified by Mrs. Pranee Rattanasuwan, the scientist, and deposited at the
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Prince of Songkla University, Thailand, specimen number SKP No. 131 12 19.

Fresh L. sylvestris leaves were cleaned with water and dried at 50 ◦C for 72 h. Dried
leaves were coarsely ground and macerated 3 times with various polarity solvents. Initially,
powdered leaves (4616 g) were macerated by soaking in hexane solution for 3 days; then,
the solution was filtered and evaporated with a rotary evaporator at 55 ◦C to obtain the
hexane extract. Afterward, the marc was macerated with hexane another 2 times to increase
the amount of extract. Next, the marc, after hexane extraction, was further extracted with
ethyl acetate and ethanol, respectively, following the same procedure of hexane extraction.
Finally, the dried residue of the leaves was boiled in hot water at 80 ◦C for 8 h, and
the solution was evaporated to obtain the water extract. The four solvent extracts were
obtained from lower to higher solvent polarity as shown in Scheme 1. The crude extracts of
L. sylvestris obtained from these solvents were calculated for extraction yield, followed by
hexane extract (71.03 g, 1.53 % w/w), ethyl acetate extract (41.23 g, 0.89% w/w), ethanol
extract (281.03 g, 6.08% w/w), and aqueous extract (279.76 g, 6.05% w/w), respectively.
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4.2. Phytochemical Investigation and Structure Elucidation Techniques

The phytochemical compositions of the plant extracts were separated using classical
column chromatographic techniques. Then, the isolated compounds were elucidated via 1H
and 13C Nuclear Magnetic Resonance spectrometry (1D and 2D NMR) monitoring with a
Fourier Transform NMR Spectrometer (1H-NMR 500 MHz and 13C-NMR 125 MHz), model
UNITY INNOVA, Varian (Scientific Equipment Center, Prince of Songkla University). The
UV spectra were obtained using a Spectronic Genesys 6 UV-Visible Spectrometer, Thermo
Scientific, Thermo Electron Corporation, and IR (KBr disc) spectra were obtained using a
Perkin Elmer FT-IR Spectrum One Spectrometer (Department of Pharmaceutical Chemistry,
Faculty of Pharmaceutical Sciences, Prince of Songkla University).

4.3. Total Phenolics and Total Flavonoids Content

Total phenolics and total flavonoids assays were obtained via Folin–Ciocalteu’s and
aluminum chloride colorimetric methods, which were used to evaluate the chemical com-
position in the crude extracts [12,13]. Technically, the total phenolic content was obtained
by mixing of 100 µL of samples, 500 µL of 10% v/v Folin–Ciocalteu’s reagent, and 400 µL
of 1 mM sodium bicarbonate. Then, the reaction was incubated at room temperature for
30 min, and we measured the color with the UV spectrometer at 765 nm. Gallic acid
was used to create the standard calibration curve for total phenolic content evaluation.
The determination of the total flavonoid content was tested using the aluminum chloride
colorimetric method, which was composed of 100 µL of 10% w/v of aluminum chloride,
100 µL of 1 M potassium acetate, 1500 µL ethanol, and 500 µL of samples. Then, the reac-
tion was incubated for 30 min, and we measured the color with the UV spectrometer at
415 nm. Quercetin was used to create the standard calibration curve for total flavonoid
content evaluation.

4.4. Anti-Alpha Glucosidase Activity and Mechanism of Action

The anti-alpha glucosidase activity was determined by following Phoopha et al.’s
method [14]. The assay evaluated the yellow product of N-para-nitrophenol, which was
hydrolyzed by the alpha glucosidase enzyme at 405 nm. The reaction was prepared
using a phosphate buffer (pH 7.0), sample (was dissolved in DMSO), N-para-nitrophenol as
substrate, and alpha glucosidase enzyme solution. The test was evaluated by measuring the
velocity of the reaction per minute. Afterward, the effective samples were evaluated for the
IC50 and mechanism of action to figure out the inhibitory function using Michaelis–Menten
and Lineweaver–Burk kinetic plots [15].

4.5. Molecular Docking

The structure of alpha glucosidase (PDB ID: 3A4A) was obtained from the RCSB
Protein Data Bank. The X, Y, and Z centers of the grid maps were 21.275, −0.741, and 18.635,
respectively. The molecular binding interaction of the isolated compounds with alpha glu-
cosidase was performed using AutoDock Vina (version 1.1.2). The 3D structure of the new
isolated compound was created via ChemDraw Ultra 12.0 and Open Babel GUI. Discovery
Studio 2019 was used for removing ligands and water molecules. Hydrogen atoms and
charges were then added using the AutoDock tool. The grid maps were generated with
a default spacing of 0.375 Å and a 50 × 50 × 50 grid box size. The molecular bonds of
the isolated compound were set to rotatable. All torsions were also allowed to rotate. The
interactions of molecular docking were analyzed using Discovery Studio 2019. The lowest
binding energy was selected as the best affinity of the molecular interaction [16,17].

4.6. Insulin Secretagogue Activity

The experiment was slightly modified from previous reports. In brief, the insulin secre-
tion was determined by testing insulin-secreting rat insulinoma (INS-1E) cells, supported
by Prof. Dr. Michael Wink, Institute of Pharmacy and Molecular Biotechnology (IPMB),
University of Heidelberg, Germany. The cells were cultured in RPMI-1640 liquid medium
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and supplementary nutrients for cell culture under the condition of a 37 ◦C humidified
incubator containing 5% CO2. The cells were seeded into 24-well plates at 2 × 105 cells.
Later, the cells were treated with glucose-free culture media to stop energy consumption
in the cell metabolism. Afterward, the minimum concentration of glucose in RPMI-1640
was added to the samples for 24 h. Finally, the insulin secretion was measured for insulin
releasing by ELISA technique [18].

4.7. Cytotoxic Effects on Human Cancer Cells and Toxicity in Zebrafish Model

The toxicity in human cancer cells was tested on a human breast carcinoma cell line
(MCF-7), human cervix adenocarcinoma cell line (HeLa), and human lung carcinoma
cell line (A549), which were compared to a human gingival fibroblast cell line (HGF)
as the normal cells. These cells were cultured in DMEM liquid medium, supporting
supplementary nutrients for cell culture. The cells were raised in the same conditions
as INS-1E. A sulforhodamine B assay was used to evaluate the cytotoxic effects of the
samples, following a previous report [19]. In brief, the cancer cells were seeded into 96-well
plates at 5 × 103 cells and incubated for 24 h. Later, we added the test samples at the final
concentration of 25 µg/mL and left the experiment in the incubator for 72 h. After that, the
cancer cells were fixed with cold 10% trichloro acetic acid for an hour and then we washed
the acid with water. The dried plate was dyed with 0.4% SRB in 1% acetic acid for 30 min,
and we washed the color with 1% acetic acid 4 times. The SRB color was dissolved in the
cancer cells by adding 10 mM tris-base and measuring with a microplate reader at 492 nm.

The in vivo toxicity was examined in a zebrafish model following Ko et al.’s method [20].
This experiment was performed at the Graduate School of Biotechnology, Department of
Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Republic
of Korea (ethical certificate number KHGASP-21-230), following OECD TG 236 for the
Fish Embryo Acute Toxicity (FET) test [21]. In brief, the fertilized embryos of zebrafish
were collected and raised for testing with samples at a concentration between 10 and
1000 µg/mL, which was dissolved in DMSO. The result of healthy and dead fish was
observed under a microscope. LC50 values were calculated via non-linear regression using
statistical software.

5. Conclusions

The anti-diabetic activity of L. sylvestris leaf extracts was evaluated in in vitro, in vivo,
and in silico experiments, which were used to clarify the anti-diabetic activity and safety of
L. sylvestris. The results showed that the fractionated ethanolic leaf extracts of L. sylvestris
strongly exhibited an effective anti-alpha glucosidase activity through an uncompetitive
mechanism. Interruptin C and the new diterpene compounds which were investigated
from fractionated ethanolic extracts also inhibited enzyme activity. Moreover, their isolated
compounds, interruptin A, interruptin C, ergosterol, and diglycerol, significantly stimulated
insulin secretion from beta cells of the INS-1E cell line. The information on the herbal
drug safety was predicted from the abnormality and malfunction of a zebrafish embryonic
model, which did not present any malfunction or deformities in the larvae.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16081132/s1, Figure S1. UV-Visible spectrum of interruptin A in
chloroform; Figure S2. IR spectrum of interruptin A in KBr disc; Figure S3. ESI-Mass spectrum from
LC-MS/MS of interruptin A; Figure S4. 1H-NMR of interruptin A (500 MHz in CHCl3-d); Figure S5.
13C-NMR of interruptin A (125 MHz in CHCl3-d); Figure S6. 1H-1H COSY of interruptin A; Figure S7.
HMBC of interruptin A; Figure S8. UV-Visible spectrum of interruptin C in chloroform; Figure S9. IR
spectrum of interruptin C in KBr disc; Figure S10. ESI-Mass spectrum from LC-MS/MS of interruptin
C; Figure S11. 1H-NMR of interruptin C (500 MHz in CHCl3-d); Figure S12. 13C-NMR of interruptin
C (125 MHz in CHCl3-d); Figure S13. 1H-1H COSY of interruptin C; Figure S14. HMBC of interruptin
C; Figure S15. UV-Visible spectrum of ergosterol in chloroform; Figure S16. IR spectrum of ergosterol
in KBr disc; Figure S17. 1H-NMR of ergosterol (500 MHz in CHCl3-d); Figure S18. IR spectrum
of diglycerol in KBr disc; Figure S19. 1H-NMR of diglycerol (500 MHz in DMSO-d6); Figure S20.
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13C-NMR of diglycerol (125 MHz in DMSO-d6); Figure S21. UV-Visible spectrum of the new diterpene
in chloroform; Figure S22. IR spectrum of the new diterpene in KBr disc; Figure S23. 1H-NMR of
the new diterpene (500 MHz in CHCl3-d); Figure S24. 1H-1H COSY of the new diterpene; Figure S25.
13C-NMR of the new diterpene (125 MHz in CHCl3-d); Figure S26. HMBC of the new diterpene;
Figure S27. ESI-Mass spectrum from LC-MS/MS of the new diterpene; Figure S28. NOESY of the
new diterpene.
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