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Abstract: Epilepsy is a neurological disease characterized by recurrent seizures that can lead to
uncontrollable muscle twitching, changes in sensitivity to sensory perceptions, and disorders of
consciousness. Although modern medicine has effective antiepileptic drugs, the need for accessible
and cost-effective medication is urgent, and products derived from plants could offer a solution.
For this review, we have focused on natural compounds that have shown anticonvulsant activity in
in vivo models of epilepsy at relevant doses. In some cases, the effects have been confirmed by clinical
data. The results of our search are summarized in tables according to their molecular targets. We
have critically evaluated the data we present, identified the most promising therapeutic candidates,
and discussed these in the text. Their perspectives are supported by both pharmacokinetic properties
and potential interactions. This review is intended to serve as a basis for future research into epilepsy
and related disorders.
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1. Introduction

Epilepsy, one of the most common neurological diseases, affects over 70 million people
worldwide [1]. The International League Against Epilepsy (ILAE) offers the following
practical clinical definition of epilepsy: (1) at least two unprovoked (or reflex) seizures
occurring more than 24 h apart; (2) one unprovoked (or reflex) seizure and a probability of
further seizures similar to the general recurrence risk (at least 60%) after two unprovoked
seizures, occurring over the next 10 years; and (3) the diagnosis of an epilepsy syndrome [2].
Recurrent seizures significantly worsen quality of life and contribute to epilepsy-related
causes of death, such as sudden unexpected death in epilepsy (SUDEP), status epilepticus,
accident, drowning, or suicide [1,3]. Although relatively effective pharmacotherapy is cur-
rently available, treatment with antiseizure medications is frequently associated with side
effects like drowsiness, headaches, or uncontrollable shaking. Furthermore, in some cases,
even appropriately chosen antiseizure drugs do not control seizures. This drug-resistant
epilepsy is currently treated using surgery or neurostimulatory intervention [1]. It is worth
mentioning that mortality caused by epilepsy is generally higher in low-income countries
than in high-income countries, probably due to a lack of access to medical facilities and ther-
apy, including antiepileptic drugs (AEDs) [4]. The affordability of AEDs is also a burning
question due to the fact that total epilepsy costs were estimated to be USD 119.27 billion
per year in 2019 [5]. With populations growing rapidly, especially in developing countries,
the search for cost-effective and accessible medicines is like that for the Holy Grail. Addi-
tionally, exactly here, plant-derived products could be of priceless assistance as they may
offer multiple mechanisms of action, thus overcoming resistance and giving fewer side
effects. In addition, they could also be used in combination with conventional drugs to
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increase their effectiveness. Numerous scientific reports have described the potent anticon-
vulsant activity of plant extracts and the essential oils of various plants in different animal
models of seizures and epilepsy. Unfortunately, a purified form of cannabidiol (CBD, Epid-
iolex/Epidyolex; >99% CBD) used to treat two rare epilepsies, Lennox–Gastaut syndrome
and Dravet syndrome, is the only plant-derived product approved for medical use [6],
although many other natural compounds exert significant anticonvulsant activity in vivo.
This raises the question of why these active substances have not been further investigated.
Can we find more effective anticonvulsants in the plant kingdom than those already used in
clinical practice? Could we reduce the total cost of epilepsy using plant-derived products?
Moreover, many phytoconstituents possess anti-inflammatory or neuroprotective activity
that might also be beneficial. They could, potentially, be administered as adjuvants in
the therapy of epilepsy. Although the antiepileptic activity of natural compounds has
been reviewed several times from different points of view, we have focused more on the
most perspective phytoconstituents to point out their pharmacokinetic properties and
where it is possible, the structure–activity relationships of various groups of compounds
are also mentioned. We have therefore summarized the characteristics of potent natural
anticonvulsants in this review in order to arouse interest, consider their use in clinical trials,
and evaluate their potential use in clinical practice.

2. Data Collection Process

This review results from an in-depth search for scientific papers containing the terms
“epilepsy”, “antiepileptic”, “anticonvulsant”, “antiseizure”, and “seizure”, alone and sub-
sequently also their combinations with the keywords “natural compounds”, “natural prod-
ucts”, “flavonoid”, “terpene”, “terpenoid”, “coumarin”, “phenolic”, or “alkaloid” using
Boolean operator AND. The scientific databases Science Direct, Web of Science, and Google
Scholar were used to collect scientific papers, as was the US database clinicaltrials.gov,
which deals with ongoing clinical trials. Only pure and structurally characterized com-
pounds have been included in this review. Plant extracts, essential oils, and mixtures
of compounds were excluded as these were often not well-defined, and it is difficult to
determine whether the components would be active alone or synergy plays a crucial role
which hinders their potential standardization. We included in the text only compounds af-
fecting molecular targets and excluded those possessing antioxidant and anti-inflammatory
properties as this topic is large enough for a separate review. The anticonvulsant activity of
many natural substances has been reported at doses too high to be applicable in clinical
practice, and we therefore include only compounds reported to be active at doses equal to
or lower than 100 mg/kg, which represents the application of a maximum of 7 g of a drug
in an average 70 kg person.

3. Conventional Therapy

Modern pharmacotherapy of epilepsy is based on an individual-patient-oriented ap-
proach. The choice of AED is therefore based on the conditions of the individual patient,
including demographic and physiological conditions, comorbidities, and psychosocial
environment. Generally, monotherapy with the most appropriate drug is started. Poly-
therapy is initiated only after three drugs, tried individually, have failed. Naturally, AEDs
with diverse mechanisms of action are usually combined in the hope of achieving possible
synergistic effects [7].

AEDs have traditionally been categorized based on their mode of action and especially
the frequency and seriousness of any adverse effects. The first-generation drugs affect
mostly the voltage-gated Na+ channels and escalate GABAergic transmission. Modern
AEDs exhibit distinct mechanisms of action directed to specific receptors or specific receptor
subunits. These unique mechanisms eliminate most of the side effects that occurred with
the older generation AEDs. Based on their mechanism of action, we can divide AEDs
into three main groups: (1) AEDs that reduce the presynaptic excitability and release of
neurotransmitters by affecting voltage-gated Na+ channels (e.g., carbamazepine, phenytoin)
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and Ca2+ channels (e.g., gabapentin, pregabalin) and acting on presynaptic vesicular
SV2A protein (e.g., levetiracetam, brivaracetam); (2) AEDs that potentiate GABAergic
transmission by prolonging or increasing the frequency of opening of the chloride channel
of the GABAA receptor, or by inhibiting the degradation or transport of GABA from the
synapse (e.g., clonazepam, phenobarbital, tiagabine, vigabatrin); and (3) AEDs that reduce
the postsynaptic excitability by affecting AMPA or NMDA receptors (e.g., perampanel).
Some AEDs have multiple mechanisms of action (e.g., valproate, lamotrigine, topiramate),
and for others, the exact mode of action is not fully understood [8,9].

New drugs are emerging. Although none provide better anticonvulsant potency than
conventional therapy, they usually have fewer side effects and better pharmacokinetic
profiles. Older generation AEDs (e.g., phenobarbital, primidone, and benzodiazepines)
are characterized by a sedative effect ranging from mild drowsiness or tiredness to pro-
found lethargy; severe idiosyncratic reactions may sometimes occur (e.g., carbamazepine,
phenytoin), whereas modern AEDs are often associated with adverse psychiatric effects
(e.g., topiramate, vigabatrin, zonisamide) [10]. As can be seen, no AEDs without adverse
effects are known to exist, and the hunt for new medications should therefore be directed
towards natural products which do not frequently exert adverse effects.

Studies available to date suggest that natural products show mechanisms of action
similar to those of clinically used drugs. Some may also have multiple effects, including neu-
roprotective and anti-inflammatory activity. This complex activity along with having fewer
side effects and interactions represents the main advantage of natural anticonvulsant drugs.

4. Molecular Targets of Natural Products and Experimental Models of Epilepsy

As mentioned above, the therapy of epilepsy involves a complex approach, and
various AEDs affect distinct molecular targets. The same is true for natural substances.
Based on the selected experimental model and seizure-inducing agent, we can predict the
target protein (Figure 1). Currently, several animal models have become well-established
for evaluating the anticonvulsant activity of plant-derived compounds.
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Antiepileptic activity is tested primarily on mice and rats, where the inhibition of
convulsions can be observed according to the seizure-inducing agent used. Neurons can
also be removed from epileptic rodents and histopathological alterations studied ex vivo.

Several alternatives have been introduced into epilepsy research to replace mammalian
models of seizures. The simplicity of the roundworm Caenorhabditis elegans enables it to
serve as a basic model for understanding how genes specify the development of the nervous
system. However, its small neural circuit limits comparison with humans [11,12]. Other
non-mammalian models used in the study of epilepsy are Xenopus laevis oocytes and
tadpoles. Xenopus oocytes represent a valuable tool to identify the types of ligand-gated
ion channels present in different neuronal systems. Proteins can rapidly and easily be
expressed and analyzed; thus, oocyte assays are predominantly used to identify GABAA
receptor subunits influenced by substances under study. However, the Xenopus oocytes
model has disadvantages. Its membrane and intracellular organization differs from that
of mammalian neurons and the optimum temperature (18–22 ◦C) maintained during the
analysis of oocytes is approximately half the normal mammalian body temperature [12].

The zebrafish Danio rerio is currently widely recommended for testing neurobiological
disorders because its genes are similar to human genes. Zebrafish have homologs for at
least 85% of the recognized epilepsy genes found in humans. Furthermore, the larvae of
zebrafish can develop rapidly ex utero, the fish are very fecund, and convulsant chemicals
can easily be added directly into the water in which they swim. Together these features
create a very powerful experimental model [11,12].

Seizures are commonly induced by various chemoconvulsants, but preliminary testing,
performed by using the maximal electroshock (MES) test, has led to the discovery of many
clinically effective AEDs. The MES test is a reasonable model of grand mal seizures (i.e.,
generalized tonic-clonic seizures) and was once considered to be nonselective with respect
to molecular targets and mechanisms of action; however, nowadays, it is thought to be
sensitive to drugs that block Na+ channels. In any case, because the MES test can produce
false positive data, it is no longer recommended for any purpose [13]. Pentylenetetrazole
(PTZ), the chemoconvulsant most often used to induce acute seizures acts as a GABAA
antagonist. That the subcutaneous PTZ test is therefore most sensitive to GABA mimetic
drugs limits its applicability because compounds with other mechanisms of action could
be missed [14]. In addition to PTZ, other chemical GABAA antagonists, such as picrotoxin
(PTX) or bicuculline, possess the ability to induce absence-like seizures [12]. Kainic acid
(a glutamate analog) and pilocarpine (a muscarinic agonist) are used as experimental
models of status epilepticus or to produce chronic epilepsy with recurrent spontaneous
seizures. Chronic models of epilepsy are used to predict clinical efficacy and adverse
effects [15].

Aside from chemical models of epilepsy, genetic zebrafish models play an irreplaceable
role in evaluating anticonvulsant activity. Genetic models are based on knocking out the
genes responsible for an epilepsy-related disorder. Here, we briefly describe some of
them. Kcnj10a is a model responsible for EAST syndrome (epilepsy, ataxia, sensorineural
deafness, and renal tubulopathy), which causes seizures in infancy [16]. The Scn1Lab
gene encodes the voltage-gated sodium channel Nav1.1, the disruption of which causes
Dravet syndrome [17]. Stxbp1 (gene encoding syntaxin-binding protein 1) is a model
for EIEE (early infantile epileptic encephalopathy), that is, childhood epilepsy. It plays
a role in epilepsy and metabolic, physiological, and behavioral changes. Mutations of this
protein are found in Dravet syndrome and Lennox–Gastaut syndrome [18]. Gabra1 encodes
GABA type A receptor subunit alpha 1. The knockdown of this gene revealed a reduced
amount of GABAA receptors in the brain, which causes epilepsy in juvenile zebrafish, and
probably not only causes an imbalance between neuronal inhibition and excitation but also
disrupts early development of the brain [19]. Stx1b—mutations in this gene cause epilepsy
syndromes associated with fever. These seizures manifest ranging from febrile seizures to
severe epileptiform encephalopathies. In zebrafish, it manifests as seizure-like behavior
accompanied by epileptiform discharges resulting from hyperthermia [20].
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Furthermore, an alteration in the expression of an epilepsy-related gene has also been
observed when different methods of inducing convulsions were applied. Brain-derived
neurotrophic factor (BDNF) plays an important role in epileptogenesis because its level
is dramatically increased in both animal models and humans with epilepsy. The ability
to regulate the neuronal morphology linked with neuroprotective effects is attributed
to BDNF; it also reduces the excitability of neurons and prevents or slows seizures and
seizure-induced neuronal damage. On the other hand, seizures induce the expression of
BDNF, which then activates its receptor TrkB, and the consequent cascade can produce
structural plasticities of the hippocampal dentate granule cells similar to those identified in
the epileptic brain [21,22]. Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme
for the synthesis of GABA. Its isoform GAD65 is related to epilepsy, and the family of
these enzymes represents a promising target not only for potential antiepileptic drugs but
also in the therapy of various autoimmune diseases [23,24]. The protooncogene c-fos is
upregulated in response to such stress stimuli as seizures; therefore, natural compounds
that reduce the expression of c-fos in experimental models are considered to be potential
anticonvulsants [25]. In addition, many plant-derived products have been identified as
neuroprotectants that can be used in the treatment of epilepsy. Examples, such as cytokines
(TNF-α, IL-1β, IL-6) or apoptotic proteins (Bax/Bcl-2), most often affect various signaling
molecules linked to neurotoxicity and inflammation in the brain [26].

Modeling the different types of epilepsy that parallel human-type enabled the creation
of a platform for the high-throughput screening of drugs that might be used to treat those
epilepsies. Using this platform is not as complicated and time-consuming as would be the
case for rodent models, so it might be perfect for generating new epilepsy models to choose
drugs for further examination.

The small molecules isolated from plants have been summarized in Figure 2. They dif-
fer in their target structures, but all of them can influence the aforementioned proteins. We
have therefore summarized the results of our search in tables that describe the mechanism
of action according to the molecular target. The tables include the names of the com-
pounds and their classification, the effective doses, animal models used, seizure-inducing
agents, and proposed mechanisms of action. Natural anticonvulsants were administered
as a treatment for several days (mentioned in tables in brackets). If this is not specified
in the tables, each test substance was administered 10–90 min prior to the injection of the
seizure-inducing agent. We describe in detail the interaction of phytoconstituents with
voltage-gated ion channels (Table 1), GABA (Table 2), and AMPA and NMDA receptors
(Table 3). Those natural products that affect diverse targets and thus relieve seizures are
summarized in Table S1. Even more compounds exhibit anticonvulsant activity through
mechanisms that are still unknown. These are identified in Table S2, but only those
considered relevant receive mention in the text. Neuroprotective natural products are
summarized in Table S3. We did not pay increased attention to the detailed description
of neuroprotection in the text as this area has been reviewed extensively, e.g., by Brah-
machari [26]. Furthermore, we discuss in the text only those natural compounds present in
plants in significant amounts that could serve as a valuable source for effective isolation
with considerable yields.
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4.1. Natural Products That Affect Voltage-Gated Na+ and Ca2+ Channels

Voltage-gated sodium channels (VGSCs) initiate and conduct action potentials in
excitable cells such as neurons or muscle cells, whereas voltage-gated calcium chan-
nels (VGCCs) are activated during action potentials, and they conduct the influx of
Ca2+ into cells to initiate physiological processes, such as neurotransmission and muscle
contraction [27]. Both channels represent molecular targets for drugs used in the treatment
of epilepsy (see above).

Not many plant-derived compounds that affect VGSCs and VGCCs have been reported
(Table 1). The effects of monoterpenes on various ion channels have been reviewed recently
by Oz et al. [28], but most of the compounds mentioned exerted anticonvulsant effects only
at doses too high to be implemented in clinical practice. Therefore, alkaloids and coumarins
seem to have better prospects than monoterpenoids.

Several Aconitum alkaloids have been proven to interact with Na+ channels [29–34].
Unfortunately, these alkaloids have been isolated only from Aconitum species endemic to
some regions of China. Furthermore, the isolation of these compounds is very tricky, with
small yields. Because the total synthesis of aconitine-type alkaloids remains elusive, the
prospects for Aconitum alkaloids are vague.

On the other hand, piperine, the major bioactive component in black pepper (Piper nigrum),
significantly inhibited Na+ channel activity in mice [35]. Moreover, co-administration
with carbamazepine (CBZ) or phenytoin decreased the elimination of these AEDs and
enhanced their bioavailability [36]. The metabolism of piperine in the liver is limited, and
its high blood–brain barrier permeability has been demonstrated in the Caco-2 monolayer
model [37]. Its only limiting factor is poor solubility in water, and this can be improved,
e.g., by a nanoprecipitation method leading to enhanced oral bioavailability and brain
delivery of piperine after oral administration [38]. Altogether, piperine represents a very
promising candidate for further evaluation in clinical trials, albeit with the caveat that
increased attention must be paid to piperine-mediated drug interactions [39].

Similarly, the co-administration of coumarins significantly reduced the ED50 values of
AEDs in the MES test in mice, as observed for imperatorin (40 mg/kg, i.p.) in combination
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with CBZ, phenobarbital, or phenytoin [40], and for xanthotoxin (50 and 100 mg/kg, i.p.)
in combination with CBZ and valproate (VPA), respectively [41]. Additionally, xanthotoxin
increased the total brain concentration of CBZ and VPA by about 84% and 46%, respectively,
probably by inhibiting P-glycoprotein [41]. Therefore, co-administering natural compounds
with conventional AEDs could be a way to increase the anticonvulsant activity of AEDs
and thus improve the comfort of patients suffering from epilepsy.

Table 1. Natural products that affect VGSCs, VGCCs, or VGPCs.

Compound Effective Dose Animal Model Seizure-Inducing
Agent Mechanism Source

Paeoniflorin
(monoterpene)

100 mg/kg/day, p.o.
(for 10 days)

Male immature
Lewis rats Hyperthermia Suppression of [Ca2+]i

elevation via mGluR5
[42]

Thymol
(monoterpene) 50 and 100 mg/kg, i.p. Male Swiss mice

Male Wistar rats
PTZ, MES,

Strychnine, 4-AP

Possibly via positive
modulation of GABAA and

voltage-dependent Na+

channel blockade

[43]

Iritectol G
(triterpene) 10 µM Neocortical neurons

of C57BL/6 mice 4-AP Interaction with inactivated
state of VGSC [44]

Imperatorin
(coumarin) 30–50 µM NG108-15 cells Voltage-clamp assay Inhibition of VGSC [45]

Xanthotoxin
(coumarin)

50 and 100 mg/kg,
i.p. + CBZ

100 mg/kg, i.p. + VPA
Male Swiss mice MES

Inhibition of P-glycoprotein
Inhibition of VGPC

Modulation of
calcium-dependent
potassium channels

[46]

Acacetin
(flavonoid) 10 and 50 mg/kg, i.p. Male Sprague

Dawley rats KA
Inhibition of glutamate
release by decrease in

voltage-dependent Ca2+ entry
[47]

Aconitine
(alkaloid) 1 µM Hippocampal slices

of male Wistar rats Low Mg2+-ACSF Modulation of Na+ channels [29]

3-Acetylaconitine
(alkaloid) 0.01–1 µM Hippocampal slices

of male Wistar rats
Mg2+-free ACSF

Bicuculline
Inactivation of Na+ channels [31]

Lappaconitine
(alkaloid) 1–100 µM Hippocampal slices

of male Wistar rats
Low Mg2+-ACSF

Bicuculline
Blockade of Na+ channels [32]

N-desacetyl
lappaconitine

(alkaloid)
1–100 µM Hippocampal slices

of male Wistar rats
Low Mg2+-ACSF

Bicuculline
Blockade of Na+ channels [32]

1-Benzoylnapelline
(alkaloid) 1–100 µM Hippocampal slices

of male Wistar rats
Low Mg2+-ACSF

Bicuculline
Modulation of Na+ channels [33]

6-Benzoylheteratisine
(alkaloid) 0.01–10 µM Hippocampal slices

of male Wistar rats Bicuculline Blockade of Na+ channels [34]

Nantenine
(alkaloid) 20–50 mg/kg, i.p. Male albino mice PTZ

MES
Decrease in Ca2+-influx into

the cell
[48]

Piperine
(alkaloid) 5, 10, and 20 mg/kg, i.p. Male Swiss mice

PTZ, MES, NMDA,
PTX, Bicuculline,

BAYK-8644,
Strychnine

Na+ channel
antagonist activity [35]

Veratridine
(alkaloid) 1 µM Hippocampal slices

of male Wistar rats
Low Ca2+/high

Mg2+-ACSF
Block of inactivation of

Na+ channels [30]

4.2. Natural Products That Affect the Gabaergic Transmission

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central
nervous system (CNS). It is synthesized from glutamate by glutamic acid decarboxylase
(GAD). GABA receptors can be divided into the ionotropic GABAA receptors and the
metabotropic GABAB receptors. GABAA receptors are ligand-gated ion channels that
increase the flow of chloride ions into the cell and thus promote inhibitory effects in the
brain [49]. The potentiation of GABAergic transmission is one of the main targets of the
AEDs currently used in clinical practice (see above).

Whereas only a few natural products interact with VGSCs and VGCCs, phytocon-
stituents most often affect the modulation of GABAA receptors (Table 2). The most signifi-
cant anticonvulsant effects mediated by GABAergic transmission have been observed for
terpenoids. Manayi et al. [50] have reviewed the ability of natural terpenoids to modulate
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the GABAergic system, but most of the compounds identified exerted anticonvulsant effects
only at doses too high to be implemented in clinical practice. We have therefore pointed
out only those terpenes that exhibit notable activity at relevant doses.

Monoterpenes and sesquiterpenes are constituents of essential oils, and they have
properties plausible for a potential application. Their low molecular weight and high
lipophilicity allow them to penetrate membranes and interact with epilepsy-related
proteins [51]. Thymoquinone, the dominant compound in black seed oil (Nigella sativa), has
shown the most notable activity of all the monoterpenes found in this search, inhibiting
convulsions in male BALB/c mice at the relatively low dose of 40 mg/kg [52]. Preclinical
findings led to a pilot study in children with refractory epilepsy (see Section 5). The
results demonstrated that thymoquinone was effective and well-tolerated [53]. Moreover,
thymoquinone potentiated the antiepileptic properties of VPA [50] and phenytoin [54]. It
also displayed a neuroprotective effect in Sprague Dawley rats by phosphorylating cAMP
response element-binding protein (CREB) [55] and downregulating TNF-α and COX-2 [56].
Unfortunately, thymoquinone inhibits the activity of cytochrome P450 2C9 (CYP2C9), and
this must be taken into account when thymoquinone is co-administered with phenytoin [57].
To sum up, its anticonvulsant and neuroprotective properties make thymoquinone a very
promising substance that deserves further investigation with emphasis on an in-depth
exploration of its pharmacokinetics and potential interactions.

Iridoids seem to be effective in the inhibition of convulsions as well, and especially
the reports of the anticonvulsant activity of the extracts of Valeriana species are increas-
ingly frequent. Pretreatment with valepotriate (5, 10, 20 mg/kg/day, i.p.) protected mice
against MES and PTZ-induced convulsions, but it was far less effective than diazepam
(4 mg/kg/day, i.p.) [58]. Significant anticonvulsant activity has also been reported for
paederosidic acid, a rare sulfur-containing iridoid [59], but such compounds are, unfortu-
nately, very unstable under acidic conditions, which makes their peroral administration
difficult [60].

Bilobalide, the main sesquiterpene trilactone found in the leaves of Ginkgo biloba, must
be included. Bilobalide (30 mg/kg, p.o., once a day for 4 days) elevated GABA levels in
the hippocampus, cerebral cortex, and striatum of male ddY mice, possibly through the
potentiation of the activity of GAD [61]. Also considering its neuroprotective effect [62],
makes bilobalide seems very promising, although Ng et al. point out that bilobalide
negatively modulated the action of GABA at α1β2γ2L GABAA receptors [63].

An even more promising natural product affecting GABA transmission has been found
in huperzine A (HupA), a dietary supplement used in the USA as a memory enhancer.
HupA is an acetylcholinesterase inhibitor isolated from the Chinese club moss Huperzia
serrata. It also exerts anti-inflammatory and neuroprotective effects by activating nicotinic
cholinergic receptors [64]. In addition, HupA has delivered seizure relief in a 6 Hz model,
with an ED50 value of 0.34 mg/kg in the 32 mA paradigm, being 57 times more potent than
levetiracetam and 301 times more potent than VPA [65]. It also suppressed PTZ-induced
seizures in rats by activating the cortical transmission of GABA [66]. These findings,
together with the favorable pharmacokinetic properties of HupA in humans [67], have led
to clinical testing (see Section 5).

Recently, several coumarins have been reported to effectively inhibit PTZ-induced
seizures in the zebrafish larvae model of epilepsy at doses lower than those of the positive
controls diazepam (10 mM) and VPA (1 mM), respectively [68,69]. Based on the seizure-
inducing agent used (PTZ), it was postulated that the test coumarins interfered with
the GABA transmission. Coumarins have previously been shown to inhibit the activity
of GABA transaminase (GABA-T), the main degradative enzyme of GABA [70]. This
hypothesis was supported by a molecular docking study of oxypeucedanin hydrate, the
most active furanocoumarin, to the structural model of GABA-T. The results indicated
that a bulky substituent at the C5 position is crucial for antiseizure activity, whereas an
analogous bulky moiety substituted at the C8 position diminishes the activity [69]. Similar
results have been reported by Singhuber et al. [71] in a study dealing with the modulation of



Pharmaceuticals 2023, 16, 1061 9 of 22

GABA-induced chloride currents by selected coumarin derivatives on recombinant α1β2γ2S
GABAA receptors expressed in Xenopus laevis oocytes [71]. On the other hand, exactly
the opposite results were found for the mice MES test. C5-substituted furanocoumarins
were inactive, whereas C8-substituted furanocoumarins exerted strong anticonvulsant
activity [72]. Hence, more studies are needed to clarify the structure–activity relationship
with respect to the model of epilepsy used as well as to find out more about bioavailability.
However, as coumarins are simple molecules, they are ideal for chemical synthesis and
modifications to improve their pharmacodynamic and pharmacokinetic properties.

Table 2. Natural products with influence on GABAergic transmission.

Compound Effective Dose Animal Model Seizure-Inducing
Agent Mechanism Source

Thymol (monoterpene) 50 and 100 mg/kg, i.p. Male Swiss mice
Male Wistar rats

PTZ, MES, Strychnine,
4-AP

Possibly via positive modulation
of GABAA and

voltage-dependent Na+

channel blockade

[43]

Thymoquinone
(monoterpene)

40 mg/kg/day, p.o.
(for 7 days) Sprague Dawley rats PTZ

Activation of
GABAB1R/CaMKII/

pCREB pathway
[55]

Paederosidic acid (iridoid) 5–40 mg/kg, i.p. Male ICR mice
Sprague Dawley rats

MES
PTZ Upregulation of GAD65 [59]

Valepotriate (iridoid) 5–20 mg/kg/day, i.p.
(for 3 weeks)

Male ICR mice
Sprague Dawley rats

MES
PTZ

Upregulation of GABAA, GAD65,
and Bcl-2 and downregulation

of caspase-3
[58]

Bilobalide (sesquiterpene) 30 mg/kg/day, p.o.
(for 4 days)

Hippocampus, cortex,
and striatum of male

ddY mice
INH Elevation of GABA levels

Potentiation of GAD activity [61]

Curcumol (sesquiterpene) 100 mg/kg/day, i.p.
(for 3 days) Male C57BL/6J mice PTZ

KA
Facilitation of

GABAergic inhibition [73]

(+)-Dehydrofukinone
(sesquiterpene)

10, 30, and
100 mg/kg, i.p. Female Swiss mice PTZ Modulation of GABAA receptors [74]

Betulin
(triterpene) 50 and 100 mg/kg, i.p. Male ICR mice Bicuculline Binding to the GABAA receptor [75]

Ginsenoside Rg3 (triterpene) 100 µM Xenopus laevis oocytes Electrode voltage-clamp
technique

GABAA receptor activation via
interaction with the γ2 subunit [76]

Ursolic acid stearoyl
glucoside (triterpene) 50 mg/kg, i.p. Wistar albino rats MES

INH
Possibly via GABA

receptor stimulation [77]

Embelin (benzoquinone) 0.156–0.625 mg/kg, i.p. Adult zebrafish PTZ Affinity toward GABAA receptor [78]

Cnidilin
(coumarin) 300 µM Xenopus oocytes Two-microelectrode

voltage clamp assay

Modulation of GABAA receptors
of the subunit

combination α1β2γ2S

[79]

Osthole
(coumarin) 300 µM Xenopus oocytes Two-microelectrode

voltage clamp assay

Modulation of GABAA receptors
of the subunit

combination α1β2γ2S

[79]

Lucidafuranocouma-rin A
(coumarin) 10–16 µM Zebrafish larvae PTZ Possibly via interaction with the

GABAA receptor [68]

Oxypeucedanin (coumarin) 10–40 µM Zebrafish larvae PTZ Possibly via interaction with the
GABAA receptor [69]

Oxypeucedanin hydrate
(coumarin) 20–50 µM Zebrafish larvae PTZ Possibly via interaction with the

GABAA receptor [69]

Notopterol (coumarin) 0.25–2 µM Zebrafish larvae PTZ Possibly via interaction with the
GABAA receptor [69]

Pimpinellin (coumarin) 20–80 µM Zebrafish larvae PTZ Possibly via interaction with the
GABAA receptor [69]

Hyuganin C (coumarin) 2.5–20 µM Zebrafish larvae PTZ Possibly via interaction with the
GABAA receptor [69]

Rosmarinic acid
(phenolic) 30 mg/kg, i.p. Female C57BL/6 mice PTZ

Pilocarpine
Probably activation of the

GABAergic system [80]
Chlorogenic acid

(phenolic)
5 mg/kg/day, p.o.

(for 15 days) Male Swiss albino mice Pilocarpine Suppressing glutamate receptors,
neuroprotective effect [81]

Gastrodin
(phenolic)

60 mg/kg/day, p.o.
(for 7 days) Mongolian gerbils

Genetic seizure model
(seizure-sensitive

gerbils)

Decrease in GABA degradation
Decrease in GABA-T, SSADH,
and SSAR immunoreactivities

[82]

Rutin
(flavonoid) 50 and 150 nM, i.c.v. Male Wistar rats PTZ

Positive allosteric modulation of
the GABAA receptor complex via

interaction at the
benzodiazepine site

[83]

Wogonin
(flavonoid) 5 and 10 mg/kg, i.p. Male Sprague

Dawley rats
MES
PTZ

Potentiation of the activity
of GABA [84]

Vitexin
(flavonoid)

100 and 200 µM, i.c.v. Male Wistar rats PTZ Interaction with GABAA
benzodiazepine receptor complex [85]

10 mg/kg/day, p.o.
(for 15 days) Male Swiss albino mice Pilocarpine Suppressing glutamate receptors,

neuroprotective effect [81]

Nobiletin
(flavonoid)

12.5, 25, and 50
mg/kg/day, o.g.

(for 6 days)
C57BL/6 mice PTZ

Modulation GAD65/GABAA
expression, BDNF-TrkB,

PI3K/Akt
[86]
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Table 2. Cont.

Compound Effective Dose Animal Model Seizure-Inducing
Agent Mechanism Source

(+)-Erythravine (alkaloid) 0.25–3 µg/µL, i.c.v. Male Wistar rats Bicuculline, NMDA,
KA, PTZ

Probably modifying
GABA neurotransmission [87]

(+)-11-α-Hydroxy-
erythravine
(alkaloid)

0.25–3 µg/µL, i.c.v. Male Wistar rats Bicuculline, NMDA,
KA, PTZ

Probably modifying
GABA neurotransmission [87]

Huperzine A (alkaloid) 0.6 mg/kg, i.p. Male Sprague
Dawley rats PTZ Activation of cortical

GABA transmission [66]

Lobeline
(alkaloid) 10, 20, 30 mg/kg, i.p. Male Swiss mice PTZ

Strychnine
Enhancing the
GABA release [88]

Montanine
(alkaloid) 30 and 60 mg/kg, i.p. Swiss mice and Wistar

rats of either sex PTZ

Modulation of several
neurotransmitter receptor

systems including
GABAA receptors

[89]

Piperine
(alkaloid)

2.5, 5, 10, and
20 mg/kg, i.p. Male Swiss mice Pilocarpine

Multiple anticonvulsant
mechanisms, modulation of the
GABA system, antioxidant, and

anti-inflammatory activity

[90]

4.3. Natural Products That Reduce Postsynaptic Excitability by Affecting AMPA or NMDA Receptors

Glutamate is the principal excitatory neurotransmitter in the brain, and therefore,
glutamate receptor agonists, such as α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate, act as elicitors of seizures.
Glutamate receptors can be divided into ionotropic glutamate receptors (ligand-gated
ion channels) and metabotropic glutamate receptors (G-protein-coupled receptors) [91].
Among the ionotropic glutamate receptors, the AMPA-type and NMDA-type glutamate
receptors are the most important, as certain AEDs affect these ionotropic receptors (e.g.,
perampanel and topiramate).

Interestingly, no reports of natural products interacting with AMPA receptors have
been found during our search, except for one recent study describing the potent anti-
convulsant activity of magnolol and honokiol in a model of therapy-resistant epilepsy.
However, the authors postulate the involvement of not only AMPA receptors but also
GABAA and cannabinoid receptors [92]. Magnolol and honokiol, the main bioactive sub-
stances in the bark of Magnolia officinalis, are known for antioxidant, anti-inflammatory,
and neuroprotective properties that make them promising for further research in the field
of epilepsy, especially at a time when knowledge of their toxicity and bioavailability is
accumulating [93].

Panax ginseng is well-known for its neuroprotective properties with ginsenosides as the
main active constituents. Among the test ginsenosides, 20(S)-Rg3 and 20(S)-Rh2 inhibited
NMDA receptors. However, 20(S)-Rg3 interacted with the glycine site, while 20(S)-Rh2
likely did so with the polyamine-binding site of NMDA receptors. (R)-isomers were inactive
and the mono-glycosylated moiety at C-3 was found to be essential for binding to polyamine
sites [94]. Further assays showed that 20(S)-Rg3 regulated GABAA receptor activity by
interacting with the γ2 subunit [76], demonstrating its multitarget mechanism of action.
Nevertheless, the bioavailability of ginsenosides after oral administration is relatively poor.
Low water solubility and easy degradation by gastric acid and gut microbiota are the
crucial disadvantages. Therefore, their absorption needs to be enhanced by sophisticated
formulation strategies [95].
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Table 3. Natural products that affect AMPA or NMDA receptors.

Compound Effective Dose Animal Model Seizure-Inducing
Agent Mechanism Source

20(S)-Ginsenoside Rh2
(triterpene) 10 µM

Hippocampal
neurons of Sprague

Dawley rats

NMDA, AMPA,
KA, Glycine

Inhibition of NMDA
receptors via the interaction

with the
polyamine-binding site

[94]

Saikosaponin A (triterpene) 1 µM
Hippocampal

neurons of Sprague
Dawley rats

Kynurenic acid
PTX

Inhibition of NMDA receptor
current and persistent sodium

current (INaP)
[96]

3β,6β,16β-Trihydroxylup-
20(29)-ene

(triterpene)
30 mg/kg, i.g. Swiss mice PTZ Possibly via Na+, K+-ATPase

activity maintenance [97]

6-Gingerol
(phenolic) 37.5 µM Zebrafish larvae PTZ

Inhibition of NMDA
receptors via the interaction

with the
glutamate-binding site

[98]

Magnolol
(neolignan)

12.5 µM
30 mg/kg, i.p.

Adult zebrafish
Male NMRI mice

PTZ, EKP
6-Hz test

Probably targeting GABAA,
cannabinoid, and
AMPA receptors

[92]

Honokiol
(neolignan) 6.25 µM Adult zebrafish PTZ

EKP

Probably targeting GABAA,
cannabinoid, and
AMPA receptors

[92]

Huperzine A (alkaloid) 1, 2, and
3 mg/kg, i.m.

Male Sprague
Dawley rats NMDA NMDA antagonism [99]

14-Benzoyltalitasamine
(alkaloid) 0.3–10 µM Hippocampal slices

of male Wistar rats
Low Mg2+/high

K+-ACSF
Modulation NMDA receptors [100]

Ibogaine
(alkaloid)

ED50
31 mg/kg, i.p. Male NIH Swiss mice MES

NMDA Blockade of NMDA receptors [101]

Rhynchophylline (alkaloid) 30 µM

Xenopus laevis
oocytes injected with
total RNA from Male

Wistar rat cortices
or cerebelli

NMDA
Glycine

Noncompetitive antagonist of
the NMDA receptor [102]

100 µM, i.c.v. Male Sprague
Dawley rats Pilocarpine

Inhibition of the persistent
sodium current INaP and
NMDA receptor current

[103]

Isorhynchophylline (alkaloid) 30 µM

Xenopus laevis
oocytes injected with
total RNA from Male

Wistar rat cortices
or cerebelli

NMDA
Glycine

Noncompetitive antagonist of
the NMDA receptor [102]

4.4. Natural Products with Multiple Mechanisms of Action: Cannabinoids

Cannabis sativa contains more than 100 compounds (lipophilic phytocannabinoids)
with different therapeutic potentials and because phytocannabinoids affect diverse
epilepsy-related targets [104], they have been given a separate section. Medicinal mari-
juana is applicable as a treatment option mainly for patients with chronic, autoimmune,
inflammatory, degenerative, or oncological illnesses, and also for palliative care [105].
Multiple in vitro and in vivo preclinical trials have reported antiepileptic effects for
several constituents of medical marijuana. Compounds of interest include psychoactive
∆9-tetrahydrocannabinol (∆9-THC) and structurally similar cannabidiol (CBD), along with
non-psychoactive ∆9-tetrahydrocannabivarin (∆9-THCV), cannabidivarin (CBDV), and
∆9-tetrahydrocannabinolic acid (∆9-THCA). ∆9-THC acts as a potent partial agonist on
endocannabinoid receptor CB1, influencing both GABAergic and glutamatergic synaptic
transmission. The clinical use of medical marijuana is limited because the anticonvulsant
effect of ∆9-THC is relatively unpredictable. It acts simultaneously on several receptor
targets, such as the transient receptor potential (TRP) cation channels TRPA1, TRPV2,
and TRPM8; the orphan G-coupled protein receptor GPR55; the 5-HT3A receptor; the
peroxisome proliferator-activated receptor gamma (PPARγ); the µ- and δ-opioid receptors,
the β-adrenoreceptors; and some subtypes of Ca2+, K+, and Na+ channels. Interestingly,
some experiments have shown medical marijuana to have no or even a pro-convulsant



Pharmaceuticals 2023, 16, 1061 12 of 22

effect [104]. ∆9-THCA is used to prevent seizures, e.g., in the USA. This metabolic precursor
of ∆9-THC is more affordable and should have only minor psychoactive properties [106].
Experimental observations have demonstrated that it has anticonvulsant effects via the
modulation of ion channels and enzymes crucial for the biosynthesis of the endocannabi-
noid 2-arachidonoylglycerol [104]. The mechanisms of anticonvulsant activity of ∆9-THCV
and CBDV are not well understood. Both compounds probably exert their anticonvulsant
effects via non-CB1/CB2 mechanisms. TRPV1, TRPV2, TRPA1, and TRPM8 channels are
the likely molecular targets of ∆9-THCV and CBDV [107].

CBD is the most promising of these agents, with effects proved by several clinical trials,
especially for the treatment of drug-resistant epilepsies (see Section 5. Clinical data). Recent
studies have proposed that its anticonvulsant effect may involve agonistic activity at the
TRPV1 channel, the blockade of human T-type VGCCs, the modulation of various receptors
such as 5-HT1A, 5-HT2A, GPR55, adenosine A1 and A2, voltage-dependent anion-selective
channel protein 1 (VDAC1), or an influence on the release of TNF-α [104].

Unlike other natural constituents mentioned in this review, the metabolism, pharma-
cokinetics, side effects, and interactions of the main phytocannabinoids have been and
continue to be deeply studied. Smoked, inhaled, or vaporized ∆9-THC has a bioavailability
in the range from ~10–35% in contrast to (~6%) by oral administration. CBD and CBDV are
hardly soluble in water, and their bioavailability after oral administration is poor, but many
trials have evaluated cannabinoids suspended in sesame oil or mixed with glycocholate to
increase their bioavailability, and intranasal, sublingual, and transdermal applications are
common. Unfortunately, because of their lipophilic properties, large amounts of cannabi-
noids accumulate in adipose and other tissues, especially with repeated administration.
Negative interactions with other drugs metabolized by the cytochrome P450 system or
isoenzymes CYP3A4, CYP2C19, CYP2C9, and CYP2D6 should be taken into account, espe-
cially in Europe, where the co-administration of CBD and clobazam has been approved as
adjunctive treatment of Dravet syndrome (DS) and Lennox–Gastaut syndrome (LGS). The
strong inhibition of CYP2C19 by CBD leads to a remarkable rise in clobazam concentration,
which may contribute to side effects, including somnolence and sedation. Finally, potential
pharmacodynamic interactions with conventional antiepileptics must be investigated as
well [104,108].

5. Clinical Data

Although many natural compounds exert significant anticonvulsant activity in vivo,
clinical data from human subjects are almost nonexistent. Some timid attempts have been
made; but a robust, double-blind, placebo-controlled trial is missing in most cases.

We cannot begin a discussion of clinical data with anything other than medicinal
cannabis. Many clinical trials have reported anticonvulsant effects of constituents isolated
from C. sativa and medicinal cannabis itself. Although recent studies describe the safety
and efficacy profiles of medicinal cannabis and CBD as comparable, the potential use of
cannabis extract is not recommended because of adverse events related to THC, especially
in long-term use [109]. Therefore, a highly purified CBD (Epidiolex®) remains the only
cannabis-based product approved in 2018 by the Food and Drug Administration (FDA) for
the treatment of drug-resistant epilepsies (LGS and DS). The European Medicine Agency
(EMA) followed in 2019 by approving CBD (Epidyolex®) in combination with clobazam as
adjuvant therapy for LGS and DS [108].

Epidiolex (100 mg/mL CBD solution in sesame oil) was approved based on re-
sults reported by Devinsky and coworkers. An open-label interventional trial including
214 patients (aged 1–30 years) with severe, intractable, childhood-onset, treatment-resistant
epilepsy was undertaken at 11 epilepsy centers across the USA. CBD reduced seizure fre-
quency and appeared to be an effective treatment option in highly treatment-resistant epilep-
sies, such as DS or LGS [110]. A double-blind, placebo-controlled trial on 225 participants
(aged 2–55 years) investigated the effect of CBD on drop seizures in LGS. The adminis-
tration of CBD at a dose of 10 or 20 mg/kg/day and added to a conventional therapy
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decreased the frequency of seizures compared to a placebo [111]. Similarly, a reduction
in convulsive seizure frequency was achieved in a randomized, double-blind, placebo-
controlled study that evaluated the effect of CBD on 120 participants (aged 2–18 years)
with DS [112]. Recently, an open-label extension trial showed that long-term use of add-on
CBD had an acceptable safety profile and led to sustained reductions in seizure frequency
in patients with treatment-resistant DS [113]. However, as the clinical impact of CBD is
difficult to predict, the individual’s response should be carefully observed [114].

Cannabidivarin (CBDV), a natural n-propyl analog of CBD, has been tested in a phase
II clinical trial with a double-blind, randomized, placebo-controlled design, involving
162 adult patients (aged 18–65 years). The study was intended to evaluate the anticon-
vulsant effect of CBDV as add-on therapy in drug-resistant focal seizures [115], but the
results of the study have not been published, and in 2018, GW Pharmaceuticals announced
that the trial did not meet its primary endpoint, i.e., the percent change in focal seizure
frequency from baseline to the end of treatment in subjects taking CBDV compared with
a placebo [108,115].

Although in previous parts we have focused only on pure and structurally character-
ized compounds, black seed oil, the main product obtained from Nigella sativa, should not
be omitted. A prospective, randomized, single-blinded, crossover pilot study has examined
an adjuvant therapy with black seed oil on intractable pediatric seizures. Unfortunately,
the administration of 40–80 mg/kg/day of black seed oil for a 4-week period showed
a statistically non-significant effect on seizure frequency and serum levels of oxidative
stress parameters [116]. Nevertheless, the preclinical findings of the significant anticon-
vulsant activity of thymoquinone, the major monoterpene of black seed oil, led to a pilot
study that involved 22 juvenile patients with refractory epilepsy. After four weeks of ad-
ministration of thymoquinone at a dose of 1 mg/kg/day, patients exhibited a significantly
reduced frequency of seizures for thymoquinone compared with placebo groups. As most
patients were taking other AEDs, the influence of thymoquinone on the blood levels of
these drugs cannot be ruled out. Altogether, thymoquinone was generally well-tolerated
with no serious adverse effects, such as nausea or somnolence [53].

Several alkaloids have also been tested in a clinical setup, with huperzine A (HupA)
showing the most promising results. HupA is a well-known acetylcholinesterase (AChE)
inhibitor that exerts anticonvulsant activity by activating cortical GABA transmission [66].
Although it has been demonstrated that naturally occurring (−)-HupA inhibited AChE
38-fold more potently than its synthetic (+)-isomer [117], (−)- and (+)-HupA both blocked
the NMDA channel similarly [99]. Clinical testing of HupA has determined that the
immediate-release formulation currently available is not adequate for clinical development
as an antiseizure medication because its cholinergic side effects (nausea and vomiting) limit
the acceptable dose. Attention was therefore focused on the development of an extended-
release (ER) formulation of HupA to reduce dosing and side effects [118]. A phase I clinical
trial to evaluate the bioavailability, safety, and tolerability of an ER formulation of HupA
has recently been completed. The study was conducted on eight participants who were
administered an initial dose of 0.5 mg twice daily (b.i.d.). The dose was increased every
2–3 days up to the maximum tolerated dose of 2.5 mg twice daily (b.i.d.) (NCT03156439).
A clinical study (involving sixteen participants) is currently underway to evaluate an
ER formulation of HupA for the treatment of adult focal impaired awareness seizures
(NCT03474770). Since HupA is otherwise well-tolerated, shows no serious adverse effects,
and has favorable pharmacokinetic properties [119], it is worth watching whether or not
this substance will find application in clinical practice.

Reports of beneficial effects of quinidine in patients with KCNT1 mutations are increas-
ing dramatically, supporting the use of quinidine in the treatment of epilepsy of infancy
with migrating focal seizures (EIMFS), which is also known as migrating partial seizures
of infancy (MPSI). The KCNT1 gene encodes the sodium-dependent potassium channel,
with quinidine being a partial antagonist of the KCNT1 channel [120]. Quinidine has been
reported to decrease seizure frequency in one patient with the Y796H mutation in the
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KCNT1 gene, but not in another patient with the K629N mutation in the same gene [121].
Other studies indicate that quinidine could be a candidate drug for the treatment of KCNT1-
positive epilepsies [120,122,123] even though its efficacy has been demonstrated in only
a small number of patients. Abdelnour et al. suggest that response may be age-dependent
because, in their report, only the 3-month-old infant responded to quinidine, while two
older children (9 and 13 years) did not [124]. On the other hand, quinidine did not show
efficacy in six patients with autosomal dominant nocturnal frontal lobe epilepsy (AD-
NFLE) due to KCNT1 mutations in a single-center, inpatient, order-randomized, blinded,
placebo-controlled, crossover trial [125]. Similarly, an observational study of 43 patients to
evaluate the treatment responsiveness of patients with KCNT1-related epilepsy reported
that quinidine was not utilized in any patients with an ADNFLE phenotype, whereas
quinidine treatment was attempted in 17 patients with an EIMFS phenotype. Unfortunately,
a reduction > 50% in seizures was seen in only four patients treated with quinidine [126].
Despite its controversial efficacy, quinidine deserves attention and should be evaluated
further because too few cases have been studied.

6. Conclusions

This review describes the significant anticonvulsant effects of various natural products.
Although their anticonvulsant activity is evident in in vivo models of epilepsy, and in most
cases, their molecular targets are clearly recognized, not many plant-derived compounds
have made the step up to evaluation by clinical trials. As summarized in Tables 1–3 and
Tables S1–S3 [127–180], natural anticonvulsants can be found across the plant kingdom.
They affect the same targets as conventional AEDs yet are still overlooked within drug
development. An argument based purely on limited solubility and bioavailability becomes
less and less acceptable in an era of nanocarriers and bioenhancers. Natural products
can also serve as suitable templates for semisynthetic derivatives with better efficacy and
pharmacokinetic properties. Moreover, plant-based therapy is usually well-tolerated, and
in most cases, it is associated with no or only moderate adverse effects (if used sensibly).
Plant-based therapy has a number of benefits. Given the multiple effects of many natural
compounds, including neuroprotective and anti-inflammatory activity, plant-based therapy
could become a powerful anticonvulsant tool and should not be overlooked. This review
assumes that soon Epidiolex will not be the only plant-derived product approved for the
treatment of epilepsy-related disorders.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16081061/s1, Table S1: Natural products with other
targets title; Table S2: Unknown targets; Table S3: Natural products with potential anti-epileptic
activity via neuroprotection and anti-inflammatory action; References for Supplementary Material.
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